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Abstract

We emphasize the role of the choice of vocabulary in formalization of a mathe-
matical area and remark that this is a particular preoccupation of logicians. We use
this framework to discuss Kennedy’s notion of ‘formalism freeness’ in the context
of various schools in model theory. Then we clarify some of the mathematical
issues in recent discussions of purity in the proof of the Desargues proposition.
‘We note that the conclusion of ‘spatial content’ from the Desargues proposition in-
volves arguments which are algebraic and even metamathematical. Hilbert showed
that the Desargues proposition implies the coordinatizing ring is associative, which
in turn implies the existence of a 3-dimensional geometry in which the given plane
can be embedded. With W. Howard we give a new proof, removing Hilbert’s ‘de-
tour’ through algebra, of the ‘geometric’ embedding theorem.

Finally, our investigation of purity leads to the conclusion that even the intro-
duction of explicit definitions in a proof can violate purity. We argue that although
both involve explicit definition, our proof of the embedding theorem is pure while
Hilbert’s is not. Thus the determination of whether an argument is pure turns on
the content of the particular proof. Moreover, formalizing the situation does not
provide a tool for characterizing purity.

Mathematical logic formalizes normal mathematics. We analyze the meaning of
‘formalize’ in that sentence and use this analysis to address several recent questions.
In the first section we establish some precise definitions to formulate our discussion
and we illustrate these notions with some examples of David Pierce. This enables us to
describe a variant on Kennedy’s notion of formalism freeness and connect it with recent
developments in model theory. In the second section we discuss the notion of purity in
geometric reasoning based primarily on the papers of Hallet [22] and Arana-Mancoso
[4]. In the brief Section 3, we discuss differences in algebraic and geometric proof.
In particular, we consider the ability of algebraic proofs to avoid specials cases. This
theme is reinforced by the many special cases in the appendix written with William
Howard of a geometric proof (differing from Levi’s in [37]) of Hilbert’s theorem that a
Desarguesian projective plane can be embedded in three-space.

Suppose there is some area of mathematics that we want to clarify. There are five
components of a formalization. The first four 1) specification of primitive notions,
2) specifications of formulas and 3) their truth, and 4) proof provide the setting for
studying a particular topic. 5) is a set of axioms that pick out the actual subject area.
We will group these five notions in various ways through the paper to make certain
distinctions.



Our general argument is: while formalization is the key tool for the general foun-
dational analysis and has had significant impact as a mathematical tool' there are spe-
cific problems in mathematical logic (Section 1.3) and philosophy (Section 2) where
‘formalism-free’ methods are essential. In the case of logic, we describe the long stand-
ing contrast in model theory between formal definability of a class and definition by
closure under mathematical operations. In philosophy, we note that such natural for-
mal notions as extension by explicit definition can introduce impurity. And yet, such
extensions are natural mathematical constructions. We argue that the purity or impurity
of such an argument must be decided on the contentual grounds of the specific case.

We adapt the term ‘formalism-freeness’ from [33]. In order to clarify this concept,
we first describe our notion of a formalization of a mathematical topic?. This involves
not only the usual components of a formal system, specification of ground vocabulary,
well-formed formulas, and proof but also a semantics. From a model theoretic stand-
point the semantic aspect has priority over the proof aspect. The topic could be all
mathematics via e.g. a set theoretic formalization. But our interest is more in the local
foundations of, say, plane geometry. In any case, a mathematical topic is a collection
of concepts and the relations between them.

It is not accidental that ‘formalization’ rather than ‘formal system’ is being defined.
The relation between intuitive conceptions about some area of mathematics (geometry,
arithmetic, Diophantine equations, set theory) and a formal system describing this area
is central to our concerns. The first step in a formalization is to list of the intuitive
concepts which are the subject of the formalization. The second is to list the key
relations the investigator finds among them.

Definition 0.0.1 We see a full formalization as involving the following components.

1. Vocabulary: specification of primitive notions.
2. Logic
(a) Specify a class® of well formed formulas.
(b) Specify truth of a formula from this class in a structure.
(c) Specify the notion of a formal deduction for these sentences.

3. Axioms: specify the basic properties of the situation in question by sentences of
the logic.

We adopt Kennedy’s term ‘formalism-freeness from [33]. Formalism-freeness is a
matter of degree. It involves suppressing some of the components of Definition 0.0.1.
The most extreme version reduces to a semantic study (involving only a rough version
of 1 and some of 2b): we can determine whether a structure is a member of a class

!Examples include the theory of computability, Hilbert’s 10th problem, the Ax-Kochen theorem, o-
minimality and Hardy fields, Hrushovski’s proof of the geometric Mordell-Lang theorem and current work
on motivic integration.

%In general, context and topic are synonyms in this paper. See Subsection 2.3.

3For most logics there are only a set of formulas, but some infinitary languages have a proper class of
formulas.



of structures that are being studied. This determination will often be expressed in
terms of the closure of the class under certain mathematical operations*. We think
of the specification above as being in informal set theory; the usual mathematicians’
could formalize in ZFC” applies. In the critique of some problems from a calculus text
(Example 1.1.2) we will see how crucial item 1 is to avoid confusions in a situation
where there is no thought of a formal language as in 2a). An even more basic example
of the importance of fixing vocabulary is the confusion between whether the minus
sign represents binary subtraction or the unary operation of taking the additive inverse.

This semantic approach both represents a method of doing mathematics in the first
section and a tool, we argue an essential tool, for analysis of the notion of purity in the
second.

I thank Paolo Mancosu for introducing me to the study of purity, Juliette Kennedy
for the notion of ‘formalism-free’ and acknowledge helpful comments from Andrew
Arana, Phil Ehrlich, Bill Howard, Juliette Kennedy, and Victor Pambuccian.

1 Formalization: Vocabulary, Logic and Proof

In Section 4.1 of [4], Arana and Mancosu draw an important distinction between ‘in-
tuitive’ and ‘formal’ content. We expand a bit on that distinction. First we stress that
the ‘intuitive content of a proposition’ is often ill-defined; there is some background
context of the proposition that needs to be clarified. As a simple example, consider
‘Are there infinitely many primes?’. At the most basic level, one might take this to
mean ‘prime natural numbers’. But it is not clear whether these are numbers are in
the structure (N, x, 1), (N, x, 1, <), (N, +, x,0, 1), or many other choices including
(N,],1,5,<); see [3] for a number of variants. A natural response from a mathemati-
cian might be, ‘In what ring?’.

So we speak not of formalizing a proposition but of formalizing a topic or context -
those words are interchangeable. A first step towards formalization is to further specify
the intuitive content. What concepts are involved? By the intuitive content of a context
or a fopic we mean a certain collection of concepts and a mental image of how they
are related. The daily work of a mathematician is to take such situations and write
down more precise descriptions. Formalization is a very stringent scheme for writing
such a description. In our description of formalization, Section 1.2, we lay out one
schema for making such descriptions’. As the examples indicate, the intuitive content
is determined by an individual (or community) understanding of a complex of concepts;
it is not a property of a proposition.

In [4], formal content is defined somewhat vaguely as the ‘inferential role of a
statement’. Here we will say the formal content of a collection of statements ® is the
collection of their models. Of course, by the completeness theorem, we could equally
well say the logical consequences of ®.

We distinguish two degrees of formalization. We’ll call the first framework Euclid-
Hilbert and the second Hilbert-Godel-Tarski. In the first we have the notions of axioms,

4See Subsection 1.3.
3Note that our focus on formal languages is a definite choice; Turing’s ‘formalization’ of the notion of
computability goes in a very different direction.



definitions, proofs and, with Hilbert, models. This Hilbert is the author of the Grund-
lagen. We could treat formal content as consequences or the collection of models of
consequences in this framework but it would be more by convention than a theorem.
For Euclid-Hilbert logic is a means of proof. For Hilbert-Godel-Tarski, logic is a math-
ematical subject. This Hilbert is the founder of proof theory. There are now explicit
rules of proof and after Godel and Tarski proofs within set theory of the completeness
theorem. So our identification of the two notions of formal content is a theorem. A
full formalization requires the second understanding. But as we’ll point out at sev-
eral points in this paper, the Euclid-Hilbert understanding is adequate for most of the
philosophical points of this paper.

The process of specification of intuition forces clarification of the relations between
the concepts. Thus the notion that through any line and any point not on that line there
is a unique line parallel to the given line is a natural intuition about geometry. One
of Euclid’s great contributions is to realize that this intuition might require a separate
declaration; it took 2000 years to confirm his doubt.

We will elaborate on our definition of ‘formalization’ in Subsection 1.2 and on
‘formal content’ in Subsections 2.1 and 2.3. But first in Subsection 1.1 we emphasize
the significance of the first item: vocabulary. We elaborate on ‘formalism-freeness’ in
Subsection 1.3.

1.1 Vocabulary

We establish some specific notations which emphasize some distinctions between the
mindsets of logicians, in particular, model theorists, and ‘normal’ mathematicians.

Definition 1.1.1 1. A vocabulary T is a list of function, constant and relation sym-
bols.

2. A t-structure A is a set with an interpretation of each symbol in T.

Specifying a vocabulary (signature, similarity type)® is only one aspect of the no-
tion of a formal system. But it is a crucial one and one that is often overlooked by
non-logicians. From the standpoint of formalization, fixing the vocabulary is singling
out the ‘primitive concepts’. This choice is a first step in formalization. Considerable
reflection from both mathematical and philosophical standpoints may be involved in
the choice. For example, suppose one wants to study ‘Napoleon’s theorem’ that the
lines joining the midpoints of any quadrilateral are a parallelogram. At first sight, one
might think the key notions (and therefore primitive concepts) are quadrilateral and par-
allelogram. But experience even before Euclid showed that the central basic notions
for studying the properties of quadrilaterals are point, line, incidence, and parallel’ and
the delineation of types of quadrilaterals is by explicit definition.

Years ago Tarski used the phrase similarity type for essentially this notion; sometimes it is called the
signature. These notions (a specification of arities of a sequence of arities) are one level of abstraction higher
than vocabulary. But they have the same effect in distinguishing the syntactic from the semantic and we will
use vocabulary. Still another ‘synonym’ is language. We explain in Section 1.3 why we try to avoid this
word.

7I note that alternatives basing geometry on regions rather than line for epistemological reasons were
advanced by e.g. Whitehead and Les$niewski, but that is not relevant to this point.



The choice of primitive notions for a topic is by no means unique. For example,
formulated in a vocabulary with only a binary function symbol, the theory of groups
needs V3-axioms and groups are not closed under subalgebra. Adding a constant for the
identity and a unary function for inverse, turns groups into a universally axiomatized
class. Alternatively, groups can be formulated with one ternary relation as the only
symbol in the vocabulary. The three resulting theories are pairwise bi-interpretable.

It is a commonplace in model theory that just specifying a vocabulary means little.
For example in the vocabulary with a single binary relation, I can elect to formal-
ize either linear order or successor (by axioms asserting the relation is the graph of a
unary function). Thus, while I here focus on the choice of relation symbols — their
names mean nothing; the older usage of signature or similarity type might be more
neutral. The actual collection of structures under consideration is determined in a for-
mal theory — by sentences in the logic. In the formalism-free approaches discussed in
Subsection 1.3 the specification is in normal mathematical language. Having fixed a
vocabulary with one binary relation, we say, e.g., ‘Let K be the class of well-orderings
of type < Asuch that...’

But while axioms are necessary to determine the meanings of the relations in a
vocabulary; the mere specification of the vocabulary provides important information.
David Pierce [46] has pointed out the following example of mathematicians’ lack of
attention to vocabulary specification.

Example 1.1.2 (Pierce) Spivak’s Calculus book [54] is, one of the most highly re-
garded texts in late 20th-century United States. It is more rigorous than the usual
Calculus I textbooks. Problems 9-11 on page 30 of [54] ask the students to prove the
following are equivalent conditions on N, the natural numbers. This assertion is made
without specifying the vocabulary that is intended for N. In fact, N is described as the
counting numbers,

1,2,3,....

1induction (1 € X and k € X implies £ + 1 € X) implies X = N.
2 well-ordered Every non-empty subset has a least element.

3 strong induction (1 € X and for every m < k, m € X implies k£ € X) implies
X =N.

As Pierce points out, this doesn’t make sense: 1 is a property of a unary algebra; 2 is a
property of ordered sets (and doesn’t imply the others even in the language of ordered
algebras); 3 is a property of an ordered unary algebras. E.g., 2) is satisfied by any
well-ordered set while the intent is that the model should have order type w.

It is instructive to consider what proof might be intended for 1) implies 3). Here
is one possibility. Let X be a non-empty subset of N. Since every element of N
is a successor (Look at the list!), the least element of X¢ must be k + 1 for some
k € X. But the existence of such a k contradicts property 1). There are two problems
with this ‘proof’. The first problem is that there is no linear order mentioned in the
formulation of 1). The second is, “what does it mean to ‘look at the list’?”. These
objections can be addressed. Assuming that N has a discrete linear order satisfying



(Vz)(Vy)[z <y Vy+ 1 < z] and that the least element is the only element which is
not a successor resolves the problem. This assertion follows informally (semantically)
if one considers the natural numbers as a subset of the linearly ordered set of reals.

As Pierce notes [46], a fundamental difficulty in Spivak’s treatment is the failure
to distinguish the truth of each of these properties on the appropriate expansion of
(N, S) and a purported equivalence of the properties— which can make sense only if the
properties are expressed in the same vocabulary.

But in another sense the problem is the distinction between Hilbert’s axiomatic
approach and the more naturalistic approach of Frege. I'll call Pierce’s characterization
of Spivak’s situation, Pierce’s paradox. It will recur; Pierce writes:

Considered as axioms in the sense of Hilbert, the properties are not mean-
ingfully described as equivalent. But if the properties are to be understood
just as properties of the numbers that we grew up counting, then it is also
meaningless to say that the properties are equivalent: they are just proper-
ties of those numbers.

Note that this distinction about vocabulary is prior to distinctions between first and
second order logic. We stated the difficulty in the purported equivalence of 1) and 2) in
terms of second order logic. But the same anomaly would arise if PA (with a schema
of first order induction) were compared with ‘every definable set has a least element’.

Pierce’s paradox is fundamentally a semantic remark. Two sentences are equivalent
if they have the same models; this makes no sense if they do not have same vocabularies
or at least are viewed as sentences for a vocabulary that contains the symbols from
each sentence. It might have been more precise for Pierce to say ‘trivial’ rather than
meaningless. In the second and third cases enumerated by Pierce, it is clear that as
sentences in the language (S, <) they are simply not equivalent. And trivially they are
both true in (N, S, <). It can be objected that it makes sense to prove one property of a
given structure .4 implies the truth of another on A using properties of .A. That seems
a normal enough mathematical strategy. But consider the case at hand: on (N, <, .5),
well-order implies induction (i.e. order type w). Why? Because it is a property of NV
that the order type is w. But this seems to me to be just the type of argument I attribute
to Spivak a few paragraphs up; it is hard to find a non-trivial phrasing of it.

We introduced vocabulary in Definition 0.0.1 as ‘the specification of primitive no-
tions’. Thus the choice of the vocabulary is the fundamental step in the formalization
process. The vocabulary should focus attention on the concepts seen as most basic.
Thus in algebraic geometry, systems of equations (perhaps of high degree in several
variables) pick out the geometric relations that are the main subject of study.

As the Spivak example illustrates, the specification of a vocabulary can be rather
fluid. Much of this paper concerns the role of explicit definition.

Definition 1.1.3 For any theory T in vocabulary T and formula ¢(x), if we expand T
to 7' by adding a new relation symbol, Ry, and the axiom

(vx)[p(x) < Ry (x)]
we say Ry is explicitly defined in T’



At first sight it seems extension by explicit definition is totally harmless. No new
concept can be introduced?®; it is just a kind of abbreviation. And if no new proper-
ties that are not provable in the base theory are introduced, this step should surely not
infringe on the purity of an argument. It is a ‘logical’ not a ‘mathematical’ step. How-
ever, we will see that if arbitrary explicit definitions are allowed in a proof, the notion
of such a proof being pure is almost meaningless.

It is natural when formalizing to try to find a minimal set of ‘primitive concepts’.
This was a frequent theme of Tarski’. And arguments for the naturality of various
notions are part of the justification for a particular choice. However, there are other
considerations.

Explicit definition can reduce complexity in a way that can be measured formally
— by reducing quantifier complexity. In developing a first order theory to describe
a given mathematical structure or class of structures, a model theorist would like to
have the resulting theory 7" admit elimination of quantifiers (every formula ¢(x) is
equivalent in 7" to a formula 1/ (x) which has no quantifiers '°) and, as we stressed above
in discussing the process of formalization, be formulated with concepts which are basic
and central to the topic under study. Sometimes, with judicious choice, a small family
of well understood predicates can be added that suffice for the quantifier elimination.
Two examples are Pressburger arithmetic where unary-predicates for divisibility by
n are added and Macintyre’s celebrated proof of quantifier elimination for the p-adic
numbers; he adds predicates P, (x) meaning x is an nth power.

In contrast, the quantifier elimination can be easily established by fiat [41, 32]:
add explicit definitions for each formula ¢(x), a predicate Ry(x) and an axiom
R4(x) <> ¢(x). But now the vocabulary contains many essentially incomprehensi-
ble relations. The definition of infinitely many formulas by recursive introduction of
quantifiers of indefinite length has been done in one step by fiat. There is no attempt
to ground the meaning of each formula from the primitive concepts. This defeats the
goal of quantifier elimination in studying specific theories: every definable relation is a
Boolean combination of well-understood relations. This quantifier elimination by fiat
is a powerful tool at the foundation of stability theory. And it provides positive results
for specific theories. But it loses the analysis of definable sets in terms of the primitive
notions.

1.2 Formalization

We first expand a bit on what we mean by a full formalization. Definition 1.2.1 sum-
marizes the notion of a model theoretic logic L defined in [9]. This paper will only use
some specific examples of such logics including, first order, second order, L,,, ., etc..

8We think of the concepts formalizable in a theory as exactly those expressed by the formulas. Making
an explicit definition is focusing attention an existing concept, not adding a new one. See the discussion in
Subsection 2.1.

9See [19] for a summary of Tarski’s work on this area for geometry.

10Sometimes, the specification that ¢ have the same free variables as ¢ is omitted. But this seems wrong-
headed. The actual equivalence is then ¢(x) < (Vyv(x,y)). And the negation of ¢ is equivalent to an
existential formula. So this is an equivalence to a Ag formulas and holds only on models of T". Quantifier
elimination in our sense means that each formula has unique interpretation on each substructure of any model
of T



Definition 1.2.1 A logic contains certain logical vocabulary: connectives, quantifiers
and a set of variables. For each (non-logical) vocabulary T, the collection of L(T)-
Sformulas is defined inductively in the natural way. An L(T)-formula with no free vari-
ables is called an L(T)-sentence.

Thus, a logic L is the pair (L, =) such that L(T) is a collection of T-sentences
and for each ¢ € L(7) and each T-structure A, A =, ¢ is defined in the natural
inductive way.

Crucially, ‘the natural inductive definition’ implies that the truth of a 7-sentence in a
T-structure M depends only on the isomorphism type of M. Thus the entire framework
of ‘model-theoretic’ logics depends on what Burgess[10] has called ‘indifferentism to
identity’: ignoring a specific set theoretic construction of the model. This is one aspect
of formalism freeness; but much more is entailed. !!

Definition 1.2.1 yields two natural notions of implication.

Definition 1.2.2 For any ¢,v € L(7), we say ¢ logically implies 1) and write ¢ = 1
if for every T-structure M, M \=, ¢ then M = 1.

Alternatively, L may be assigned a collection of logical axioms and deduction rules
giving rise to the natural notion of 1\ can be deduced from ¢, ¢ -, .

Deduction is a syntactic notion. We divided the notion of formalization into five
components: 1) specification of primitive notions, 2a) specifications of formulas and
2b) their truth, 2c) proof and 3) axioms. The standard account of a formal system (e.g.
[52]) includes 2a), 2c) and 3) but not 2b). From our standpoint and that of [9], 2a), and
2b) are basic; 2c) may or may not exist. (There is no good proof system for second
order logic and the proof systems for infinitary logic use inference rules with infinitely
many premises.)

In Definition 0.0.1, the logic does not depend on the particular area of mathemat-
ics. In earlier days, from a more general logical perspective, the vocabulary might be
universal, containing infinitely many n-ary relations for each n. In contrast, we seek
primitive terms which pick out the most basic concepts of the field in question and
axioms which in Hilbert’s sense give us an implicit definition of the area. Thus, we
can formalize concepts such as real closed fields (RCF) or algebraic geometry!'? or set

!t is ironic that although model theory is based on the notion of identifying structures up to isomorphism
with respect to the given vocabulary, Shelah has proved major results by deliberately ignoring this conven-
tion. For example, J.H.C. Whitehead asked whether whenever B is an abelian group and f: B — Aisa
surjective group homomorphism whose kernel is isomorphic to the group of integers Z,then B =~ 7. ® A.
This question is entirely about abelian groups. Nevertheless, Shelah[17] shows the answer is independent
of the axioms of ZFC by representing a Whitehead group of cardinality N; as a structure with universe Ny
and identifies invariants depending on both the group operation and the e-relation on X1. A further example
of this use of the explicit construction of a model is Shelah’s use of Ehrenfeuht-Mostowski models in an
expanded language to construct many non-isomorphic models of first order theories under various instability
hypotheses. Still another is the Ehrlich’s [16] use of Conway’s surreal numbers to investigate real closed
fields. These examples illustrate the power that derives from being careful about vocabulary and in con-
trast to the usual indifferentism, paying careful attention to how a structure is built in an expanded language
(essentially set theory in the first and third case, the Skolem theory with order in the second). We are not
arguing against formal methods; we are just pointing to some limitations.

12See the discussion of Zariski geometries in Subsection 1.3.



theory without reference to the construction of specific models'3. Our treatment of the
primitive terms is analogous to the treatment of the element relation in set theory. But
this analysis is relevant to either traditional (global) or local foundations. For any par-
ticular area of mathematics, one can lay out the primitive concepts involved and choose
a logic appropriate for expressing the important concepts and results in the field. While
in the last quarter century mathematical logic has primarily focused on first order logic
as the tool, we discuss some alternatives in Subsection 1.3.

1.3 Formalism Freeness (Mathematical Properties)

We have defined formalization. What do we mean by ‘formalism-freeness’? Kennedy
begins [33] with

That mathematics is practiced in what one might call a formalism free
manner has always been the case — and remains the case. Of course, no one
would have thought to put it this way prior to the emergence of the founda-
tional formal systems in the late nineteenth and early twentieth centuries;

Kennedy goes on to explore what Godel[20] calls the search for absolute notions of
computability, provability, and definability. We try to distinguish such practice from
the use of logical methods (either for metamathematical studies or as tools for proving
mathematical results in the normal sense (in number theory or geometry or graph theory
or ...). Our topic differs from Kennedy’s by focusing specifically on the development
of (formal?) theories for parts of mathematics.

Formalism-free is a matter of degree. It involves dropping some of the components
of Definition 0.0.1. Clause 1 of Definition 0.0.1 is sacrosanct. We deal only with
structures of a fixed vocabulary. In Kennedy’s work on the notion of definition she says
that a class of structures has been given a Formalism independent definition if the class
can be defined in several different logics. We are investigating the interaction between
proof and definition here and make a more stringent requirement on definitions. We
call a definition formalism free if it is given semantically without any formal distinction
between syntax and a semantics. E.g. ‘ a group is a set and a binary function satisfying
... We call an investigation formalism free if it is a semantic study. Thus there are two
aspects: definability and investigation.

In Subsection 1.3 we give several examples from model theory of the definition and
investigation of classes of structures for a fixed vocabulary by studying mathematical
properties (closure under certain operations) of the class. In Section 2 we discuss the
use of semantic methods in addressing both mathematical and philosophical problems.

Here are three illustrative examples. We say the notion of ‘computability’ is
‘formalism independent’ or formalism-free in Kennedy’s terminology because of the
known equivalence among the Turing, Markov, A-calculus, Godel characterizations.
Only the Godel characterization as AY-definable functions in number theory is com-
pletely formal in the sense defined here.

13Geometry and analysis are presented in this way in e.g. [54, 26, 25].



Secondly, as Kennedy has pointed out'®, if L is constructed by adding relatively
definable sets then the usual L is obtained by several different logics; e.g. either by
iterating first order definitions or weak second order logic definitions. This represents
formalism independence. But the definition of L as the closure of the ordinals under
the Godel functions provides a fully formalism-free definition'>.

In a third direction, consider the notion of a polynomial. In a standard Algebra I
book ([15]) a polynomial is defined (with no fanfare of syntax and semantics) as a sum
of monomials where a monomial is earlied defined as a product of variables raised to
non-negative integer powers and a (usually real) number coefficient. In this style of de-
velopment a polynomial function is map (e.g. from R? ~ R defined by a polynomial).
The interpretation of the formal language in the structure that is fundamental to Tarski’s
definition of truth is made matter of factly in elementary algebra. In this formulation
the ring of polynomials is smoothly defined in a concrete way in the style of universal
algebra [21]. In contrast, the definition of a ring of polynomials in Lang’s Algebra
book [36] is much more abstract but avoids even a glimpse of the syntax-semantic dis-
tinction. Then polynomial functions are defined by a composition of functions. In our
terminology, both of these approaches are formalism-free.

We turn to the historical origins of this distinction in model theory. In the opening
paragraph of what might be viewed as the founding paper of model theory [56], Tarski
writes,

Every set 3 of sentences determines uniquely a class K of mathematical
systems. ... Among questions which arise naturally in the study of these
notions, the following may be mentioned: Knowing some structural (for-
mal) properties of a set X of sentences, what conclusions can we draw
concerning the mathematical properties of the correlated set of models?
Conversely, ...

Tarski takes his readers to understand the notion of ‘mathematical property’. His
sample theorems make his meaning plain - the ordinary stuff of mathematics: subal-
gebra, homomorphisms, direct products, etc. Tarski gives a number of examples of
answers to questions of this sort; two are:

Tarski A class K of structures in a finite relational language is axiomatized by a set of
universal sentences if and only if K is closed under isomorphism, substructure
and if for every finite substructure B of a structure A, B € K then A € K.

Birkhoff A class K of algebras is axiomatized by a set of equations if and only it it is
closed under homomorphism, subalgebra, and direct product.

Thus formal properties of the axioms for a class of models are shown equivalent to
the mathematical property of the class being closed under certain basic mathematical

14This is a sampling from a much more detailed account in [33].

15 Although Gédel’s construction takes place in models of set theory, whose vocabulary contains only e,
this choice of vocabulary is in the background for the definition of L. Crucially, L is defined by a normal
mathematical construction. The eight Godel functions are defined (really in naive set theory) and Lq41 is
the closure of L, under these functions[31]. In fact, the first order definability of the Godel functions plays
a crucial role in the proofs but is suppressed in describing the structure L.

10



operations. This notion of ‘mathematical property’ is similar to that which Kennedy
[33] traces as the notion of ‘formalism freeness’ in the works of Godel. She writes,
‘one can think of indifferentism!® or formalism-freeness ... as the simple preference
for semantic methods, that is methods which do not involve or require the specification
of a logic— at least not prima facie. We hope that the distinctions in Section1.2!7 can
clarify this notion. It is tempting to speak of language here. We have avoided the word
‘language’ because of its several usages in the context at hand. One may speak of the
‘language of rings’ meaning +, x,0,1. A different and more specific version is for
this phrase to imply that these operations obey the axioms of ring theory; see Subsec-
tion 2.3. In a third version, one speaks of the language of first order logic, meaning
the collection of formulas generated from a vocabulary (equivalently signature) by the
finitary propositional connectives and existential and universal quantification. Kennedy
is making this distinction. That is, a formalism-free approach would take language in
the first sense, not the second or third. An inquiry can be ‘formalism-free’ while being
very careful about the vocabulary but eschewing a choice of logic (in the sense of Defi-
nition 1.2.1) and in particular any notion of formal proof. Thus it studies mathematical
properties in the sense we quoted from Tarski above.

It is in this sense that certain recent work of Zilber and Shelah can be seen as
developing a formalism-free approach to model theory. Both Zilber’s notions of a
quasi-minimal excellent class [59] and of a Zariski geometry [29], and Shelah’s concept
of an Abstract Elementary Class [49] give axiomatic but mathematical definitions of
classes of structures in a vocabulary 7. That is, the axioms are not properties expressed
in some formal language based on 7 but are mathematical properties of the class of
structures and some relations on it.

These are three examples where difficulties in the normal (from a logician’s view-
point) syntactic approach to a problem led to more semantic methods. The notion of
abstract elementary class arose from the difficulties of dealing with the syntax of in-
finitary logics. The failure of compactness leads to an inability to develop the usual
model theoretic tools of stability theory. And underlying similarities among different
logics are obscured by technicalities about the meaning of sentence. The axiomatic
properties of ‘strong submodel’ summarise the properties of elementary submodel in
various infinitary logics as well as some unexpected contexts. In contrast the examples
of Zilber and Hrushovski-Zilber arise from specific mathematical problems: the desire
to understand the complex numbers with exponentiation and investigating the failure of
the first order model theoretic formalization to catch a key idea of algebraic geometry.

In Shelah’s case, the basic relation is a notion of ‘strong submodel’ relating the
members of the class. Quasiminimal excellent classes require a combinatorial geome-
try on each model which has certain connections with the basic vocabulary.

The notion of abstract elementary class arose from the difficulties of dealing with
the syntax of infinitary logics. The axiomatic properties of ‘strong submodel’ sum-
marise the properties of elementary submodel in first order and various infinitary logics

161 regard Burgess’s notion of indifferentism to identity page 9 of [10] as a component of formalism
freeness. Indifferentism seems to me to refer to working with structures up to isomorphism rather than
caring about the set theoretic construction. Here we take that modus operandi for granted and consider how
one is to describe the connection between various structures.

17Qur articulation of them here was partially motivated by Kennedy’s work.
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as well as some unexpected contexts. An abstract elementary class (AEC) (K, < g) is
a collection of structures'® for a fixed vocabulary 7 and a relation of ‘strong substruc-
ture’, < g among the members of K. Examples of ‘strong substructure’ might be
‘substructure’, or elementary substructure, or elementary in L, ,. But these various
syntactically based properties are replaced by mathematical properties of < g-. First
the class is closed under unions of increasing < g-chains and more subtly the union
of a < gr-chain is a strong submodel of any M which is an extension of each element
in the chain. From a category theoretic standpoint this just means the class is closed
under direct limits. There is a more technical condition which is the semantic version
of the Tarski-Vaught condition for elementary submodel'. Finally, countable Lowen-
heim Skolem number means, every infinite subset is contained in a submodel of the
same size?’.

In fact, these classes can be defined in another ‘formalism-free’ way using purely
categorical terms; see Kirby: “Abstract Elementary Categories” [34] or Lieberman:
”AECs as accessible categories” [38]. The connection with logic is at first only mo-
tivational. The AEC notion was developed to simplify the study of infinitary logics
by generalizing some of the crucial properties and avoiding syntactical complications.
The crucial Lowenheim Skolem property is derived from thinking of < as a kind of
elementary submodel. But there is no explicit syntax??> and no notion of a definable
set.

In contrast, Zilber’s notion of a quasiminimal excellent class [59] was developed to
provide a smooth framework for proving the categoricity in all uncountable powers of
Zilber’s pseudo-exponential field. This example itself can be axiomatized in a standard
model theoretic framework in L, .,(Q). But this is not the way the construction is
made. The structure is patterned on (and conjecturally isomorphic to) to the complex
exponential field (C, +, x, e®). For technical reasons having to do with the simplicity
of dealing with relational languages, the vocabulary is taken to include all polynomially
definable sets as basic predicates. The fundamental result that a quasiminimal excellent
class is categorical in all uncountable powers can be presented in a formalism-free
way. The key point is that there are no axioms in the object language of the general
quasiminimal excellence theorem; there are only statements about the combinatorial
geometry determined by what are in the application the (L,,, .,(Q))-definable sets.

$Naturally we require that both K and < K are closed under isomorphism.

19Here is how 1) below represents the Tarski-Vaught test semantically. If a formula with parameters from
A has a solution in B then it certainly has a solution in C' so by Tarski-Vaught between A and C' it has a
solution in C'; this shows A and B satisfy the Tarski-Vaught condition.)

20 An abstract elementary class (AEC) (K, < ) is a collection of structures?! for a fixed vocabulary 7
that satisfy the following, where A < g B means in particular A is a substructure of B:

1. IfA,B,Ce K, A< C,B < Cand A C Bthen A < B;
2. Closure under direct limits of < g--embeddings;

3. Downward Lowenheim-Skolem. If A C B and B € K there is an A’ with A C A’ < g B and
|A'] < |A| = LS(K).

22Shelah’s presentation theorem, discussed below, shows there is an ‘implicit’ syntax.
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Hrushovski and Zilber [29] introduced Zariski geometries partly in an attempt to
remedy a notorious gap in the model theoretic study of algebraic geometry?3. Algebraic
geometry is concerned with the solution of systems of equations. But from a semantic
standpoint, there is no way to distinguish among definable sets, ‘all definable sets are
equal’. In particular, the class of definable sets is closed under negation and equations
and inequations have the same status. But from the perspective of algebraic geometry,
‘some definable sets are more equal than others’. Systems of equations (varieties) are
the objects of true interest. Hrushovski and Zilber remedy this situation by introducing
a topology. The definition of a Zariski geometry [60] concerns the relations between a
family of topologies (with a dimension) on the sets D™ for a fixed D. Generalizing the
case of algebraic geometry the closed sets should be given by conjunction of equations.
The main result of [29] is that every Zariski geometry satisfying sufficiently strong
semantic conditions can in fact be realized as a finite cover of an algebraic curve?*.

The classes of Zilber and Shelah are presented ‘mathematically’: by properties of
the class of models that are not connected to truth of formal sentences. But Zilber’s
quasiminimal excellent classes are definable in L, .,(Q) [35]% and this axiomatiza-
tion was the explicit goal of the project.

To clarify the distinctions between ‘formalism-free’ and logical treatments, we pro-
vide some more examples of results in the study of AEC. Here is an example of a
‘purely semantical’ theorem. WGCH abbreviates the assertion, for all A, 2 < ",

Theorem 1.3.2 [WGCH] Let K be an abstract elementary class (AEC). Suppose \ >
LS(K) and K is M-categorical. If amalgamation fails in X there are 22" models in K
of cardinality k = \V.

Theorem 1.3.2 is proved in a ‘formalism-free’ manner; there is no mention of syntax.
Shelah’s celebrated ‘presentation theorem’ [48, 6] changes the role of logic from
a motivation (AEC are supposed to abstract the properties of classes defined in vari-
ous infinitary logics.) to a tool. The presentation theorem asserts that an AEC with
arbitrarily large models can be defined as the reducts of models of a first order theory
which omit a family of types. But Morley [42] had calculated the Hanf number for
such syntactically defined classes. Thus, using the syntactical presentation as a tool,

23Experts may correctly point out that the immediate impetus was to find a correct version of Zilber’s
conjecture that all strongly minimal sets were ‘set-like’, ‘group-like’ or ‘field-like’. That is true but does not
affect the explanation here.

24More precisely,

Theorem 1.3.1 (Hrushovski-Zilber) If M is an ample Noetherian Zariski structure then there is an alge-
braically closed field K, a quasi-projective algebraic curve Cpy = Cpy(K) and a surjective map

p:M’—)CIW

of finite degree such that for every closed S C M™, the image p(S) is Zariski closed in C'}; (in the sense of
algebraic geometry); if S C CYy is Zariski closed, then p1 (S ) is a closed subset of M™ (in the sense of
the Zariski structure M ).

Z5Kirby’s formulation makes the clear distinction between the ‘mathematical’ and ‘logical’ descriptions;
Zilber blurs the distinction in the original paper [59].
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Shelah obtains a purely semantic theorem: if an AEC with Lowenheim number X has
amodel of cardinality 3, it has arbitrarily large models.

When spelled out, the syntactic condition in the presentation theorem is a set of
sentences in roughly Tarski’s sense. We have discussed several modern examples of
Tarski’s consideration of a duality between description in a formal language and math-
ematical description. In the case of Kirby’s axiomatization of quasiminimal excellent
classes and Shelah’s presentation theorem we gain a firmer grasp on a certain class of
models by seeing a specific logic in which they are definable. The Hrushovski-Zilber
analysis provides a syntactical analysis of the relations on a model, provided these rela-
tions satisfy a set of semantic conditions. In addition, via the presentation theorem, we
are able to deduce purely semantical conclusions passing through the syntactic repre-
sentation. Notably, the vocabulary arising in the presentation theorem arises naturally
only as a tool to prove that theorem. There is no apparent connection of each sym-
bol of the resulting vocabulary with any basic mathematical properties of the abstract
elementary class in question.

2 Formalization and Purity in geometry

In this section, we use our earlier analysis of vocabulary as a tool for considering the
question of whether/how formalization can be used to capture the notion of ‘purity of
method’. Our attention was drawn to this topic by the papers of [22, 4]. Our first goal
here is to use our perspective of the role of vocabulary to set out the mathematical
issues involved in the study of Desargues theorem in a somewhat different way and to
make some comment on how this affects purity concerns. This analysis is based rather
directly on a first order axiomatization of geometry. Consideration in terms of Manders
[39] ‘diagram proofs’ would raise other pertinent issues.

However, careful analysis (Section 2.4) of Hilbert’s embedding theorem shows that
even explicit definition can introduce impurities. This emphasizes the impotence of
pure formal methods (as logical and strong logical purity discussed in Section 2.3)
to characterize purity. We see that to diagnose the impurity of Hilbert’s embedding
theorem one must consider the content of what is in fact a ‘formalism-free’ proof in
the sense of Section 1. The appendix provides what I argue in a pure proof.)

We discuss the relation between the choice of vocabulary and basic axioms and
the ‘content’ of a subject in Subsection 2.1. In Subsection 2.2 we lay out some of the
mathematical background in terms of formal axiomatic systems to clarify the relation
between the Desargues proposition in affine and projective geometry. Subsection 2.3
analyzes several attempts to define the notion of purity and concludes that formaliza-
tion can highlight impure methods but does not give a criteria for ‘purity’. In Subsec-
tion 2.4, we come to grips with the essence of Hilbert’s work on Desargues’ theorem
and assert the impurity of his argument that the 3-dimensional proof is impure.

The discussion of purity below will make clear that the context of a proposition is
crucial for the issues we are discussing. But the notions of what geometry actually is
have changed radically over the centuries. The distinction between the coordinate ge-
ometry of Descartes and synthetic geometry is crucial for our purposes. As [4] makes
clear the study of geometry in the late 19th century involved multiple dimensions,
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surfaces of various curvature, coordinate and coordinate-free approaches. These dis-
tinctions remain today although perhaps fields of mathematics are laid out differently:
algebraic geometry, real algebraic geometry, differential geometry, topology, etc. etc.
Hilbert’s work on Desargues theorem led directly to one subfield of geometry; the coor-
dinatization theorems which are a main focus of this paper led to the study of projective
planes over usually finite fields as a distinct area of mathematics. In such major sources
for this area as [5, 30, 13] the proof of the Desargues theorem in 3-D geometry is not
central, if it appears at all. Rather, the importance of Desargues theorem is an indicator
of the algebraic properties of the coordinatizing field. The latter two books connect the
projective geometries with combinatorics. There are important links with the statistical
field of experimental design.

2.1 Content and Vocabulary

Given some area of mathematics, e.g. plane geometry, a formalization of the area has
three essential components: the choice of primitive notions (vocabulary), the choice of
logic?, and the choice of basic assumptions (axioms). In this section, we restrict to
first order logic.

The discussion of purity in geometry frequently [4, 22] draws on the following re-
mark of Hilbert in his Lectures on Geometry of 1898/99 (page 316 of [27]), translation
from [4]).

This theorem gives us an opportunity now to discuss an important is-
sue. The content of Desargues’ theorem belongs completely to planar ge-
ometry; for its proof we needed to use space. Therefore we are for the
first time in a position to put into practice a critique of means of proof. In
modern mathematics such criticism is raised very often, where the aim is
to preserve the purity of method, i.e. to prove the theorem using means
that are suggested by the content of the theorem.

We stress that the task is to ‘critique a means of proof’. We are given both con-
clusion and some premises. Both the premises and the intermediary steps are at issue.
And the issue is ‘method’. It is not the mere existence of a valid implication; there can
be pure and impure proofs of the same implication.

A key issue is whether concepts are introduced in the proof that are not inherent
‘in the statement of the problem’. But ‘in the statement of the problem’ is incomplete
without some specification of the context. In Hilbert’s approach such a specification
is made by asserting axioms for the geometry which ‘implicitly define’ the primitive
concepts. We follow that line here.

We somewhat refine below the ‘standard account of definability’ from [55] which
argues that a proper definition must satisfy the eliminability and non-creative criteria®’.
As pointed out in [50], an extension by explicit definitions, is conservative over the
base theory, i.e. non-creative. We will justify below the need to allow adding to the
vocabulary of a given formalization (even in pure proofs) in order to prove a result.

26The choice of logic includes three of the components we discussed in Section 1: formulas, truth, proof.
27Suppes attribution of these criteria to Lesnewieski is vigorously contested in [57].
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The next examples show that axioms for additional relations can change content; we
provide directly relevant examples in Subsection 2.3. The crux is the word ‘content’.
What is the content of a proposition? Surely, the content changes if the models in the
base vocabulary in which the proposition holds change when additional axioms are
added.

Example 2.1.1 1. A vocabulary to study equivalence relations contains only = and
a binary relation symbol E;. There we can assert by a theory 7 that Ej is
an equivalence relation. But suppose the vocabulary is expanded by a binary
relation symbol F5 and T3 to a theory T% asserting that F is also an equivalence
relation and each Fs class intersects each F; class in a single element. Now all
the reducts of models of the full theory are equivalence relations in which all
equivalence classes have the same size.

Example 2.1.1.1 makes the point very clearly. Surely the first theory tells us
exactly what an equivalence relation is. And the concept of equivalence relation
entails nothing about the relative size of the equivalence classes. Specifically, the
sentence:

[(32)(Vy)(zEry — z = y)] = [(V2)(Vy) (zEry — z = y)]
is a consequence of the added information about Es.

2. Consider the proposition - z - = x in the class of Abelian groups formulated
in a vocabulary with a binary operation - and a constant symbol 1. Now expand
the vocabulary to a vocabulary for fields by adding new symbols + and 0; add
the axioms for fields and the axiom z + x 4+ x = 0.

The meaning of the expression x - x - ¢ = =z is very different in an arbitrary
Abelian group (where there may be elements of arbitrary order) than it is in a
field of characteristic 3 (where it is a law of the multiplicative group).

3. Consider the class of linear orders in a vocabulary with a single binary relation
symbol <. Add an operation symbol + and constant 0 and assert the structure is
an ordered Abelian group. The original class contained 2% countable models;
but only X; can be expanded to a group. See page 207([28]).

Of course, our assertion that content changes if the class of models changes is
based on the Hilbertian notion that the primitive concepts are implicitly defined by the
axioms. One might think of content in a more Fregean way; the axioms are describing
geometry. The danger of such a position is falling victim to Pierce’s paradox. If we
are speaking of a fixed geometry, the various properties are just true; one cannot be
meaningfully said to strictly imply the other without access to countermodels. I don’t
see how one can back off from describing a geometry to describing a family of geome-
tries without embracing Hilbert?®. For Hilbert, the axioms are not arbitrary; they are
developed to clarify intuition. But the geometries we are able to study formally are
whatever happens to satisfy the axioms.

28Smith [51] ascribes priority for this viewpoint to Peano and especially Pieri.
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The sense in which the Arana-Mancosu attempt to found ‘purity’ on the ‘intuitive
content’ of geometry falls victim to Pierce’s paradox. They argue in Section 4.5 of [4]
‘against construing purity in terms of formal content’. In fact we agree that ‘purity’
concerns cannot be fully resolved in terms of formal content. But we object to portions
of their justification. On page 237, they write ‘Formal content entails, however, a
radical contextualism regarding the content of statements like Desargues theorem.” We
argue at several points in this paper for the necessity of describing a context rather
than a particular statement that has radically different meanings in different contexts® .
But our complaint here is. Arana-Mancosu reject the Hilbertian view that represents
the first horn of the Pierce paradox. But now compare the theorem of Pappus with
the theorem of Desargues. They are both true in ‘intuitive geometry’. And Pappus
implies Desargues by strictly geometric arguments®®. The two propositions are not
equivalent but we can only see this by adapting Hilbert’s view of axioms admitting
multiple interpretations.

2.2 Projective and Affine Geometry

Before turning to our specific analysis of the purity of proof of the Desargues propo-
sition we set some notation and clear away some extraneous matters. In this paper we
discuss first order axiomatizations of geometry. As in [26], we are trying to formal-
ize the ‘field of geometry (in the traditional sense)’. We make precise the distinction
and connections between affine and projective geometry to clarify that while the two
situations are distinct they behave the same with respect to purity of the Desargues
propostion.

In this subsection we formulate some formal systems for geometry. We have slightly
modified the statement of the axioms for projective planes from [25] and for affine
geometry from [26]. A crucial distinction is that the axioms given here for a projective
plane actually imply the structure is planar; any two lines intersect.

Definition 2.2.1 A projective geometry is a structure for a vocabulary with one binary
relation R. We interpret the first coordinate to range over points and the second to
range over lines. The axioms for a projective plane assert:

1. Any two lines intersect in a unique point.
2. Dually, there is a unique line through two given points.

3. There are four points with no three lying on a line.

These axioms are far from complete; analogous axioms for an affine plane assert:

29Most glaringly, the Desargues proposition is contingent is two-space and true in 3 space.

30This proof is a common exercise in undergraduate projective geometry courses. E.g. in [58] students
are asked to draw and make connections between the diagrams for Pappus and Desargues. However, Hilbert
did not know this implication. It was proved by Hessenberg [24] in 2005. This raises the question of why
Hilbert’s concern is with the purity of Desargues rather than Pappus. Of course Hilbert’s argument equally
well shows that any Pappian plane is embeddible in 3-space. But the converse fails; not every subplane of
3-space is Pappian.
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Definition 2.2.2 1. There is a unique line through two given points.
2. There are four points with no three lying on a line.

We could extend Hilbert by passing from the informal axiomatization of the Grund-
lagen to fully formalized axiomatizations based on the conventions for first order logic
not fully established until some thirty to forty years years after his work on geometry.
While we don’t write out the axioms symbolically, the translation is clear. We could
introduce predicates for points and lines or we could simply insist that the domain and
range of the relation R do not intersect (a Oth axiom) and then define them to be respec-
tively the set of points and the set of lines. Note that the axioms for spatial geometry
in [25] and [26] explicitly introduce a new primitive term: plane.

Following [12] by the ‘high school parallel postulate’ we mean the assertion: for
any line ¢ and any point p not on the line, there is a unique line £’ through p and parallel
to /31

Remark 2.2.3 There is an easy translation between projective and affine geometry.
Given a projective plane P = (II, R), eliminate one line, ¢, and all points that lie
on it. Now two lines ¢, /5 whose intersection point was on ¢ are parallel. It is easy to
see that the affine plane satisfies the parallel postulate.
Similarly, suppose A = (II, R) is an affine plane satisfying the high school parallel
postulate. Add a new line /., and let all members of an equivalence class of parallel
lines in IT intersect at a point on {; let these be the only points on £..

Definition 2.2.4 1. The affine Desargues proposition asserts: if ABC and A'B'C’
are triangles with AC || A'/C', AB || A’B’ and BC' || B'C’ then AA’, BB’ and

CC' are parallel or the three intersect in a single point.

2. The projective Desargues proposition asserts: if ABC and A’ B'C’ are triangles
such that the points of intersection of AC with A’C’', AB with A’B’ and BC
with B'C’ are collinear then AA', BB’ and CC' intersect in a point p.

It is easy to check:

Claim 2.2.5 Under correspondence in Remark 2.2.3, the affine plane satisfies affine
Desargues if and only if the projective plane satisfies projective Desargues.

Hilbert introduced a ternary betweenness relation to fill what he regarded as gaps in
Euclid; this extension is essentially irrelevant to our discussion here. While between-
ness is appropriate for affine geometry, to consider both affine and projective geometry
requires the more general quaternary separation predicate introduced by Pasch (See
e.g., [4].) representing that the four points are cyclically ordered. Unlike betweenness
this relation is projectively invariant. For the axioms of this relation see e.g. [25]. No-
tably, neither betweenness nor cyclic order appears in [25] until after the discussion of
Desargues and coordinatization.

31Euclid proves the existence of a parallel line on the basis of his first four axioms; in this context, the
5th postulate asserts uniqueness. In the context of projective plane geometry existence fails. See [12] for
an amusing and informative account of professional confusion over the difference between existence and
uniqueness of parallel lines and the actual statement of Euclid’s fifth postulate.
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2.3 General schemes for characterizing purity

In this subsection, we discuss several suggestions for more clearly specifying the notion
of a ‘pure’ proof, consider how they evaluate the purity of certain arguments, and then
draw some conclusions about these specifications.

Detlefsen and Arana distinguish a notion of topical purity. Rephrasing their discus-
sion in Section 3.5 of [14], there are certain resources which determine a problem (for
a given investigator). In mathematics, the determinants include, definitions, axioms
concerning primitive terms, inferences. These are referred to as the ‘commitments of
the problem’ and specify what we call the context of the problem. The topic of a prob-
lem is a set of commitments. ‘A purity constraint restricts the resources available to
solve a problem to those which determine it They then analyze the topical purity of
a solution in terms of its stability under changes in the commitments. We want here
to connect topical purity with several related notions considered by Arana [1, 2]. Our
general conclusion (as Arana’s) is that it is not possible to translate the problem of pu-
rity into a proposition about formal systems in the most traditional sense; it is essential
to retain a notion of ‘meaning’ in the discussion. Our argument can be seen as a model
theoretic analogue of the proof theoretic discussion in [2].

Arana introduces a notion of logical purity in [1].

Definition 2.3.1 (Logical Purity A) 1. The axiom set S is logically minimal for P
if S & P but there is no proper subset of S proves P.

2. The proof of P is pure if it is a proof from an S which is logically minimal for P.

He points out that there are some obvious difficulties with this definition, since we
could conjoin a set of axioms and get something that is logically minimal. Here is a
more robust formulation.

Definition 2.3.2 (Logical Purity B) 1. The axiom set S is fully logically minimal
for P if S+ P and there is no S’ such that S+ S’, S+ P and S’ 1/ S.

2. The proof of P is pure if it is a proof from an S which is fully logically minimal
for P.

The difficulty with the second formulation is that it turns out to be an even stronger
version of the following notion of Arana. [1].

Definition 2.3.3 (Strong logical purity) The proof of P from S over T is strongly log-
ically pure over some basis theory T ifalso T - P — S.

As, S can only be minimal in the sense of Definition 2.3.2 if S is logically equiva-
lent to P; otherwise choose P as the S’ to show S is not minimal. Thus the existence
of logically pure proof of P from S in the sense of Definition 2.3.2 requires that .S and
P are logically equivalent.

Strong logical purity has a long history including Sierpinski’s equivalents of the
Continuum hypothesis in the 20’s, Rubin and Rubin’s 101 equivalents of the axiom
of choice and Friedman’s reverse mathematics. Pambuccian [44] pursues a similar
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‘reverse geometry’, finding a minimal weak axiom system for four results in Euclidean
geometry. These are searches for the weakest hypotheses in terms of proof-theoretic
strength. They are not what Hilbert or Hallett claims for the Desargues property. And
as Arana rightly points out ‘reverse mathematics’ is not an issue of purity. Each of
these notions of logical purity, which I have just described, is about equivalence of
statements not about proofs; none of them address the key issue: ‘Which, if any, proof
of a theorem is pure?’.

Nevertheless, these formal notions are sometimes capable of detecting the non-
existence of pure proofs.

Proposition 2.3.4 No proof of Desargues proposition from the assumption of three
dimensions is strongly logical pure.

If there were such a proof, every geometry satisfying the Desargues proposition
would actually be three dimensional. This is clearly false; we investigate the subtly
different consequence (embedability) of the Desargues proposition in Subsection 2.4.

The notion of topical purity builds on an earlier formulation of Arana, ‘a proof
...which draws only on what must be understood or accepted in order to understand
that theorem.” (Page 38 of [1].)

Two issues arise. What does it mean to draw on? How can one determine ‘must be
understood or accepted to understand’. We follow Arana in leaving the second question
to individual cases. But there is a more uniform way to understand ‘draw on’. We say
that a ‘concept’ is drawn on in a proof when it is given a name. We are going to discuss
arguments below which could be formalized as derivations in a basic language. We first
observe that introducing relations that are not definable in the base language is either a
definite sign of impurity or an admission that the formalization of the hypothesis omit-
ted a necessary concept. In the latter case there might be pure argument although the
one originally given was not. On the one hand, we argued in Subsection 2.1 that adding
both additional relations and axioms about them often distorts meaning. More strongly
if non-definable relations are added, even with no additional axioms, any claim that this
is a pure move, is simply a claim that the additional formalization left out crucial con-
cepts. An example shows how this issue focuses on the importance of specifying what
is being formalized. I take Presburger arithmetic as an attempt to formalize addition on
the natural numbers. If one moves from the schema of induction to introducing multi-
plication by a recursive definition, the topic has vastly changed. (N, +) is decidable;
(N, +, x) is not.

But we argue more strongly that an explicit definition may violate purity concerns.
We will discuss what we claim are ‘pure’ and ‘impure’ proofs, both invoking explicit
definition, of the same fundamental result, explaining the reasons for this diagnosis.
And then we argue for the value of each of these proofs.

In earlier sections we avoided the word language because of its multiple meanings
in similar situations. We now introduce a specific meaning clarifying one of the three
discussed in Subsection 1.3. We seek now a more mathematical formulation of the
topical purity introduced in [14]%.

32 Arana suggested the specification was close enough to topicality to not deserve a new name.
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Definition 2.3.5 The language for a mathematical topic A is a vocabulary for A with
symbols for each of the primitive notions identified by the investigator and axioms for
the relations which are sufficient to delimit these concepts.

Some examples are the language (+, -, 0, 1) for rings (where the ring axioms are
specified) and the language (V, A, 0, 1) for bounded lattices (with appropriate axioms).
The vocabularies differ only in notation; this difference is meaningless without the
description of the properties.

Arana and Detlefsen introduced topical purity as concept about the solution of a
problem. In accordance with the last couple of pages, we require the context in which
this problem arose must be formalized. There is an issue of whether the following def-
inition should be construed in the Euclid-Hilbert or Hilbert-Godel-Tarski frameworks
that we laid out in Section 1. For most of the argument it makes no difference. How-
ever, Lemma 2.4.4 and its application in Theorem 2.4.2 are mathematical theorems
invoking the completeness theorem and so require full formalization. Thus officially
we see the definition from the second standpoint. I think Arana and Detlefsen saw it
more from the Euclid-Hilbert perspective.

Definition 2.3.6 (Topical purity) Choose a first order formalization for the resources
which determine the problem in the sense of the first paragraph of this section
(Detlefsen-Arana). That is specify a language including a set of primitive concepts
and axioms needed to describe the particular problem and its context A.

More formally, fix a vocabulary T and a theory Ty that implicitly defines the con-
cepts named by the symbols T. Now a topically pure proof of ¢ from 1) where ¢ and 1)
are T-sentence is a proof of V¥ from ¢ in Ty that invokes only concepts from the context
A.

We will interpret ‘invoke’ in Definition 2.3.6 as ‘introduce by explicit definition’.

The particular first order formalization is a real choice. In [43, 45] Pambuccian
provides examples of distinct interpretations of the basic notions of a proposition which
lead to distinct, indeed incompatible, systems; each system can be thought to provide a
pure proof for the understanding of the concepts that has been formalized. [45] studies
the Sylvester-Gallai theorem: If the points of a finite set are not all on one line, then
there is a line through exactly two of the points. One might conceive of a line in terms of
betweenness or as ‘the shortest distance between two points’. These provide different
contexts; Pambuccian explains three distinct proofs, one using the first concept and
two the second. These are based on incompatible axioms systems. He remarks that
still another proof holds for planes satisfying a certain Artin-Schreier condition.

A natural question is whether this notion is different from the notion of logical
purity described above. To show it differs from strong logical purity, we need only
exhibit a proposition which has both topically pure and impure proofs from the same
base theory. We will note this in Corollary 2.4.7.

It is tempting to insist that the analysis of the context and conclusion should elicit
all relevant concepts and thus the set of concepts used in the proof should be fixed in the
choice of language. Sobocinski [53] discusses this criteria on a formal system, primar-
ily in the context of propositional logics. Givant and Tarski [19] argue that including
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defined concepts in an axiom system leads to a misleading appearance of simplicity of
the axioms. They discuss simplicity in terms of both the ‘length’ of the axiom system
and its complexity in terms of the number of quantifier alternations. While the second
has important structural consequences, as we discussed in Subsection 1.2, either mea-
sure of simplicity appears to irrelevant to the notions of purity considered here. Both
relate to technicalities of the formalization.

For purity purposes, the ‘resources which determine the problem’ in the definition
of topical purity must seen as a limitation- ‘which determine the problem and no more’.
This is another reason for demanding that base language should reflect both the partic-
ular problem and the context. But this condition is too strong. If it were accepted, the
formalizations of Heyting and Hilbert [26, 25] would be impure for studying Desargues
theorem because they take‘plane’ as a primitive concept. And Desargues’s theorem is
about lines, points and incidence. But according to the definition of plane in Defini-
tion 4.3.13, these points and lines all lie in the same plane. So ‘plane’ should be viewed
part of the context and it is not important for purity considerations whether it is taken as
a primitive or introduced by explicit definition. This is a judgement about this specific
case™®.

We reject the criteria of demanding all relevant concepts be fixed among the primi-
tive terms for a number of reasons. It is contrary to the goal of finding ‘basic’ vocabu-
lary. It is not true to mathematical practice. Mathematical proofs are not carried out as
derivations in a fixed formal language. In particular, new concepts are introduced by
definition for the purpose of particular proofs. We explore examples of this type of ex-
tension in detail in Subsection 2.4. But a simple example is to consider a formulation
of projective geometry [47] (see the Appendix) that contains only points, lines, and
incidence as primitive terms. In order to carry out the proof that Desargues theorem
holds in three-dimensional space, one needs the notion of plane. And it is straightfor-
ward (Definition 4.3.13) to introduce the notion of plane as an explicit definition in this
system.

If these new definitions are mere abbreviations it seems they should be harmless.
Certainly if axioms are added about the new relations, this is no longer harmless (See
Example 2.1.1.). In fact, we will argue that, even without additional axioms, explicit
definitions can violate purity. That is why we add the requirement that the new defini-
tions remain within context of the original topic. We further illustrate the meaning of
this phrase in Subsection 2.4.

The first use of our characterization of topical purity is to determine cases where
there is no topically pure proof of a proposition. Here is an example. We generalize
Proposition 2.3.4 from ‘strongly logically pure’ to the much broader notion of topical
purity.

Proposition 2.3.7 There is no topically pure proof of the Desargues proposition in the
plane (from PP).

A proof of this proposition requires three steps. Choose a formalization; then argue

33 As another justification of considering ‘plane’ to be part of the context, we could simply ask from the
standpoint of three dimensional geometry whether the Desarguesian proposition can be proved using only
resources from the plane.
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that this formalization is appropriate for the context and that there is no topically pure
proof in that formalization.

Clearly the Desargues proposition is stated in terms of points, lines, and incidence.
And the basic properties of points lines and incidence in a projective plane are given
by PP (Definition 2.2.1), so this is the appropriate formalization. Thus for the projec-
tive plane the existence of a topically pure proof would entail that every model of the
axioms in Definition 2.2.1 is a Desarguesian projective plane. Many counterexamples
to this assertion have been exhibited in the last 100-odd years. The result extends to
the affine plane by Claim 2.2.5.

This claim is controversial. It is well-known that there many distinct completions
of PP, so it does not exhaust our intuitions about the relations of lines in the projective
plane. But it does set the context in the sense of purity issues. We want to argue that
certain sufficient conditions clearly add information that is not in the context. It has
been argued*.

Remark 2.3.8 Counterclaim: Affine Desargues can be proved from planar axioms so
there is a pure proof in the plane

To evaluate this claim, we first clarify the mathematical situation. In [26], Hilbert
proves two mathematical results:

Fact 2.3.9 1. In three dimensional (affine or projective) geometry, Desargues the-
orem holds. This depends only on the incidence and order® axioms.

2. In two dimensions, the affine Desarguesian theorem can be proved from the in-
cidence axioms, the parallel axiom, and the congruence axiom.

We showed in Example 2.1.1 that adding additional relations and structure can
change the interpretations of the basic structure. Here, we note that the problems arise
in the specific geometric context. It is true that affine Desargues can be proved from
the parallel postulate and congruence axioms (basically side-angle-side) and these are
surely planar concepts. But while parallelism is necessary to understand affine De-
sargues, congruence is not. The proof of Fact 2.3.9.2 requires extensions of the basic
geometric axioms in two distinct ways. First there are additional axioms in the same
vocabulary, the parallel postulate. But secondly a new concept of congruence must be
introduced; in fact several of them. A priori, one needs relations for segment congru-
ence (4-ary), triangle congruence (6-ary) and angle congruence (perhaps formulated
as a four-ary predicate on lines). And a congruence axiom such as SAS must also
be posited. The fact that additional axioms are introduced is immediate evidence of
impurity. In fact congruence is definitely foreign to the situation as the theorem of De-
sargues holds in an affine plane over any algebraically closed field. There is no notion
of congruence definable in the geometry over such fields (consider the Riemann map-
ping theorem). To define congruence one must introduce further relations, e.g., regard
the complexes as a two-dimensional real vector space). Thus, in the spirit of [14], there

3See sections 4.1 and 4.7 of [4]
351n fact, the order axioms are a red herring. They are used only to guarantee that the coordinatizing field
is ordered. See Bernays Supplement IV in [26].
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can be no topically pure proof of the Desargues theorem in the plane, even for affine
geometry.

The basic point here is that two distinct geometrical contexts are being considered.
Metric geometry (or in the Euclidian formulation, geometry with parallels and congru-
ence) is a different subject than projective geometry which encodes only the properties
of lines and incidence. But in fact there is no pure proof in the context of affine met-
ric geometry, because the congruence axioms require ‘flatness’; Desargues theorem
fails in various non-Euclidean geometries. This illustrates an important attribute of the
search for pure proofs. It forces the clarification of hypotheses.

The next section explains that although the definition of topical purity allows the
introduction of new terms by definition, this introduction is restrained by the informal
context A. We will see that without this restriction proofs using manifestly impure
notions would meet the requirement for topical purity.

2.4 Purity and the Desargues proposition

As reported by Hallett in (page 227 of [22]), Hilbert argues that although the content
of the Desargues proposition is manifestly two-dimensional; three dimensional meth-
ods are necessary for its proof. We explore the role of vocabulary versus axioms in
understanding this claim. We first want to formalize Hilbert’s results on the strength of
planar Desargues. Thus the following notation is introduced in the parlance of contem-
porary model theory. We will further explain the motivation for the introduction of ¥
after stating Theorem 2.4.2.

Notation 2.4.1 Fix a vocabulary of points, lines, and the incidence relation.

1. PG is the theory of projective geometry®® (asserting the existence of at least 3
dimensions) and PP is the theory of projective planes as in Definition 2.2.177.

2. Let X be the collection of sentences o that are satisfied in some projective plane
such that PG & o. Le., o € 3 just if o is true in at least one projective plane
and in every projective geometry of dimension at least 3.

Hilbert( page 227 of [22] or page 240 of [27]) conjectured and later proved two
results which establish the pivotal role of the Desargues theorem from a geometrical
standpoint.

Is Desargues’ Theorem also a sufficient condition for this? ie. can a
system of things (planes) be added in such a way that all Axioms I, IT are
satisfied, and the system before can be interpreted as a sub-system of the
whole system? Then the Desargues Theorem would be the very condition
which guarantees that the plane is distinguished in space, and we could
say that everything which is provable in space is already provable in the
plane from Desargues.

36To be precise, we take the formalization in [47] since it has the same vocabulary: points, lines, and
incidence for two and multidimensional geometry. The notion of plane is introduced by explicit definition as
in Definition 4.3.13.

37Note that the union of the theories PP and PG is inconsistent.

24



Using Notation 2.4.1, we formulate the two assertions of this quote in modern
terms; the first is ‘formalism-free’, the second is formal.

Theorem 2.4.2 (Hilbert)  [. IfIlis a Desarguesian projective plane, II can be em-
bedded in three-space.

2. If o € X then (PP + Desargues) - o.

We place the situation in a more general framework. For a formula 6(y, x) a tuple
a and a sentence v, 1/?(@?) denotes the relativization of v to f(a,z). The Hilbert
quote above is somewhat ambiguous. What does ‘everything’ in ‘everything which is
provable in space’ mean? It must mean ‘everything about planes’; there is no intent to
assert that an arbitrary statement about 3-space (e.g. properties of spherical geometry)
is provable from the planar axioms and Desargues. We introduced the set of sentences
¥ in Definition 2.4.1 to formalize this observation. Letting 6(y, x) define the plane®®
generated by y, we rephrase the key sentence in formal terms as, * If Ty |= (Vy)o?®®)
then T} = o)

Definition 2.4.3 [Interpretation] Let Ty and T5 be two theories in the same vocabu-
lary. We say T» is interpretable in T} if there is a formula 0(y, x) such that

1. forevery ) € Ty, Ty = Vyy?™®);

2.0 M E Tyand M’ =Ty and M C M, there is an a € M’ such that M =
O(M’,a).

In our current situation, take 75 as PP + Desargues, Ty as PG, 0(y, ) as the
formula: z is on the plane generated by v, y2,ys. Note the projective plane M is
merely a substructure not an elementary submodel of M’; the structure M satisfies

that every two lines intersect. When 6(a, x) defines M, M |= o if and only if M’ =
o(a,z)
o .

Lemma 2.4.4 Suppose T is interpretable in Ty. Suppose further that if M |= T» there
isan M' =Ty with M C M.
If Ty = (Yy)a?:?) then T |= o.

Proof. Fix 0 € X. Let M = T, then M extends to a model M’ of T;. By
Condition 2) of Definition 2.4.3, there is an @ € M’ such that M = 0(M’,a). By
Condition 1), for each such a, M’ |= o%(@2). in particular, M = o. Since we have
shown every model of 7} is a model of o, by the extended completeness theorem
T o U244

Proof of 2.4.2: We discuss 1) at length and prove it (informally) in the appendix°.
For part 2, let §(y, x) assert that z is on the plane*’ generated by y1, y2, y3. To apply

38Hilbert’s informal use of plane in [26] reinforces our concern about vocabulary. Axiom II,5 refers to a
line a lying in the plane ABC. Theorem 5 refers to a line a lying in a plane o (without parameters). Axiom
III refers to both points and lines lying in a plane .. This can all be naturally formalized by a 4-ary predicate
P(y,x) which holds if the point z lies on the plane generated by y = (y1, y2, y3), where for Hilbert this
would be an implicit definition of ‘generated’. We give an explicit definition in Section 4.

30f course, Hilbert had already proved it; the point of the appendix is to exhibit a pure proof.

40Thus 6 formalizes Definition 4.3.13
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Lemma 2.4.4, take 75 as PP + Desargues and T} as PG. Condition 1) of Def-
inition 2.4.3 holds since every subplane of a 3-dimensional space is Desarguesian.
Clearly 75 is interpretable in 7;. Condition 2) holds since planes are definable. The-
orem 2.4.2.1 gives us the second hypothesis of Lemma 2.4.4. Note that 0 € X (Defi-
nition 2.4.1) implies PG I (Yy)o?®*). By Lemma 2.4.4, (PP + Desargues) - X.
O.4.2

Thus if 6 is a sentence about projective planes that we show (perhaps in a
formalism-free way) to be true in every plane that can be embedded in three-space,
then @ can be formally derived from the PP plus the Desargesuian property. The Pap-
pus theorem is an example of a statement concerning projective planes, which is false
in some planes that can be embedded in three-space.

Hilbert’s analysis of the quality of a proof extends beyond topical purity. He wrote,
(in unpublished notes of Hilbert that are quoted in [22]).

Nevertheless, drawing on differently constituted means has frequently
a deeper and justified ground, and this has uncovered beautiful and fruitful
relations; e.g. the prime number problem and the () function, potential
theory and analytic functions, etc. In any case one should never leave such
an occurrence of the mutual interaction of different domains unattended.

The role of ‘spatial assumptions’ is better seen by a more careful examination of
Hilbert’s proof of Fact 2.3.9 and Theorem 2.4.2. He begins [26] by noting that the three-
dimensional proof of Desargues’ theorem (Fact 2.3.9.1) from the axioms of connection,
order and parallels is well-known. The structure of his proof of each of Fact 2.3.9.2.
and Theorem 2.4.2 follows that pointed out for the proof of embeddability from Desar-
gues on page 228 of [22]. A ternary field is a structure with a single ternary operation;
roughly t(a, x,b) corresponds to az + b, which satisfies a set of axioms as specified in
[13, 30]. But for this correspondence to be literally true the plane coordinatized by the
ternary field must satisfy the Desargues property *!.

Remark 2.4.5 The structure of the argument:
1. Any geometry can be coordinatized by a ternary field.
2. If the geometry satisfies

(a) the Desargues proposition or

(b) the parallel postulate and SAS (the congruence axiom in Hilbert’s par-
lance)

4n [7] I constructed a non-Desarguesian projective plane which is Ri-categorical. In [8], I prove that
despite its well-behaved nature from a model theoretic standpoint, this plane admits little ‘algebraic’ struc-
ture; in particular the ternary operation can not decomposed into two well-behaved binary operations and no
group is interpretable in the structure. I also proved this projective plane is in the definable closure of any
line (with no parameters) That is, the plane admits no perspectivities. The task of giving a geometric proof
of this result remains open.
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then the coordinatizing ring is associative (and in fact a skew field*?).

3. An n-dimensional affine (projective) geometry can be constructed as a set of n
(n + 1)-tuples from a Skew field and the plane can be embedded in the three-
space.

Hilberts embedding theorem is an example** of what we call a fully semantic proof:
the entire proof consists of operations on mathematical structures. Geometric state-
ments like Desargues theorem or that two points determine a line or algebraic proper-
ties such as the associative law are treated as properties of mathematical objects. These
objects might be geometric or algebraic. The proof proceeds from a plane to a 3-space
by an explicit definition of binary functions that satisfy the axioms for a skew field.
Now the original geometric properties are ignored and a 3 space structure is defined on
the product of two copies of the skew field.

This proof from [26] introduces a different set of purity concerns. In Hilbert’s ar-
gument, a field is defined whose elements are equivalence classes of segments. These
are not geometric notions and the objects are not in the model but are what model
theorist now call ‘imaginary [40] elements’**. This objection is somewhat reduced by
Heyting’s proof. Heyting still defines a field, but its elements are points of the given
plane. Even if we have the fields as the points on a line, the construction of the three
dimensional model goes far afield from geometry. These new objects do not have ‘geo-
metric interpretations’. One on the hand, the objects of the field are viewed as numbers.
In Hilbert’s formulation, they are equivalence classes of segments (hardly a geometric
notion). Even accepting the domain of the field (as points on a single line), the oper-
ation of multiplication while explained geometrically is hardly geometrical in a Greek
sense. The modern geometry of homogenous quadruples is employed in the construc-
tion. This is essentially a metamathematical argument constructing a three-space out
of whole cloth and embedding the original plane in it. This seems to be a really new
method introduced by Hilbert®. It is very different from Hilbert’s geometric construc-
tion of counterexamples to Desargues or the geometric arguments for Theorem 4.0.1
given by Levi [37] or in the appendix. At the least it is a precursor of the modern
notion of the interpretation of one theory in another. Moreover, Hilbert’s proof of De-
sargues in an affine plane (Proposition 2.3.9.2) with congruence also goes through this
metamathematical trick of embedding in three-space and deducing the result from the
known proof of Desargues in 3-space. In fact, as pointed out in [4], Desargues gave a
geometric proof of his theorem in the in three dimensional affine case using the theorem
of Menelaus.

Our use of ‘metamathematical’ in the last paragraph has two senses. Metaphori-
cally, Hilbert is constructing a model and so this is a precursor of model theory. But

42 A skew field or division ring is a structure for the vocabulary (+, %, 0, 1) which satisfies all the axioms
for a field except commutativity of multiplication.

43Most mathematical proofs are of this sort. Note in particular Theorem 1.3.2.

#4This is a deliberate decision of Hilbert so as to study the geometry of segments. Already in his 1893-
1894 lectures he had established a correspondence between the points on a line and numbers. See pages
68-69 of [27].

45This was remarked by Hallett[22].
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he has also given a ‘formalism-free’ proof of Theorem 2.4.2.2. (L.e. with the conclu-
sion expressed as in the quotation before Theorem 4.0.1.) In the weakest sense this
proof is formalism free since there is no formal proof system. But even more, the ‘in-
terpretation’ makes no reference to the formal vocabulary or any notion of a formal
language. But as we noted in proving Theorem 2.4.4, this formalism-free proof trans-
lates to the existence of a formal proof by the extended completeness theorem. (Of
course, this translation was not available to Hilbert in 1900.) That is, in the proof of
the formal Theorem 2.4.2.2, we invoked Hilbert’s semantic proof of Theorem 2.4.2.1.
Such a translation is a standard consequence of the extended completeness theorem and
a routine model theoretic tool. This does not mean that the semantical proof is tacitly
formal; it just expresses the content of the completeness theorem.

Consideration of some of the standard texts in projective geometry of the last half
century [5, 13, 30] reveals an interesting phenomena. The proof of Desargues propo-
sition is at best barely mentioned*®. The crux is the understanding of the Desargues
proposition in terms of the properties of the group of collineations and in terms of the
properties of the coordinatizing ternary ring.

As we noted in Remark 2.4.5 and Proposition 2.3.4, the Desargues proposition
does not imply there are non-coplanar points. Thus, it is not true that the Desargues
proposition implies there is a third dimension. Rather, Hilbert showed, by a funda-
mentally non-geometric construction, one can embed the given plane in three-space.
But there is a ‘geometric’ construction of this embedding, which we present in the
appendix. Thus we have an example where an impure proof provides very significant
information. Indeed the very impurity of Hilbert’s argument is crucial for the 20th cen-
tury development of the theory of plane projective geometry. In fact, this may be the
mathematical impact of a proof of impurity. It focusses attention on the proposition
in question as an axiom for selecting a new field of study. For example, the fact that
there is no pure proof of the Desargues proposition in the plane calls attention to the
importance of studying Desarguesian planes. The crucial property, as Hilbert saw, is
not the geometric configuration itself but the associated algebraic structure; it was later
codified in terms of transitivity properties of the automorphism group (Lenz-Barlotti
classification). The new ‘algebraic’ concepts introduced by Hilbert are all introduced
by explicit definition but they stray far from the geometric topic under consideration.

In contrast, I claim that the argument for Theorem 4.0.1 in the appendix is topically
pure. The crucial point is that Hilbert’s argument introduces the notions of coordi-
natization and field which are foreign to synthetic geometry. In the Appendix, we
reinterpret the words, point, line, and plane in terms of certain planar configurations to
interpret a 3-space containing 7 in a Desarguesian plane 7 but don’t introduce signifi-
cantly new concepts. Since Hilbert’s proof is impure, we conclude.

Fact 2.4.6 The assertion that every Desarguesian plane is embedded in three-space
has both topically pure and topically impure proofs from the axioms PP of projective
planes.

Corollary 2.4.7 The notions of strong logical purity and topical logical purity differ.

46Hartshorne, [23], is an exception.
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This difference is evident. Topical purity is a property of a particular argument.
While, strong logical purity was defined in terms of the existence of a derivation (Def-
inition 2.3.3) and does not depend on the particular argument advanced for the propo-
sition.

The Desarguesian proposition is a dividing line in the sense of Shelah (e.g. intro-
duction to [49]). Its truth implies strong coordinatization properties; its failure implies
planarity (in an axiom system that is agnostic on dimension). Specifically, the asso-
ciativity of the coordinatizing field is used to prove that the relation of tuples from the
field: x ~ y if there is a ‘number’ ¢ with y = c¢x by coordinate-wise multiplica-
tion (used to introduce homogenous coordinates) is transitive and thus an equivalence
relation. Thus we have:

Fact 2.4.8 The following are equivalent: A projective plane is
1. coordinatized by an associative skew field.
2. satisfies the Desargues property;

3. can be embedded in three-space.

There is another connection between spatial axioms and associativity. In three-
dimensional Euclidean geometry the volume of a cube can be computed. Interpreting
XI1.32 of [18] in modern language yields the formula V' = fwh. (Euclid proves that the
volume of a parallelpiped is determined by the area of the base and the height.) The
fact that the geometric notion is independent of which side is chosen as the base of the
parallepiped implies the associative law for the coordinatizing field 47.

Finding the associative field is, in modern terms, an interpretation (Definition 2.4.3)
of the ‘field’ into the geometry. It proceeds by a sequence of explicit definitions. The
proof of the algebraic axioms follows from the geometry. And then the plane is in-
terpreted back into the 3-space over the field. Thus if there is any distinction between
algebra and geometry the deduction of 3) from 2) via 1) fails to be a topically pure
proof. But this conclusion cannot be established by a characterization of purity such
as strong logical purity which concerns the mere existence of proof. In fact, since we
know 3) implies 2), the proof that 2) implies 3) is strongly logically pure*®. The failure
of topical purity is seen by consideration of the meaning of concepts introduced in the
proof: the introduction of the notion of a skew field which is not a geometric notion is
decisive.

This illustrates Tait’s maxim: The notion of formal proof was invented to study the
the existence of proofs, not methods of proof. Or as Burgess [10] puts it, ‘For formal
provability to be a good model of informal provability it is not necessary that formal
proof should be a good model of informal proof.’

We should not ignore the virtues of a demonstration that there is no pure proof.
It shows that additional resources are needed for a particular claim. The Desargues

4TSerendipitously, this argument was given by Ken Gross in a professional development program for
elementary school teachers while I was working on this paper.

“8We can take the base theory T in Definition 2.3.3 as PP. The formalization of the embedding is clearer
from the argument of the Appendix than from Hilbert.
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proposition is particulary instructive in showing the value of the searching for the con-
tent of those additional resources. Hilbert isolated the ability to coordinatize in terms
of the Desargues configuration and its connections with the interpretability of division
rings. A significant part of 20th-century mathematics, the further development of pro-
jective planes, particularly finite projective planes, relied both on the algebraization
and on the discovery of the underlying properties of the group of perspectivities of the
plane.

Hilbert succeeded in showing a deep connection between algebraic and geometric
conceptions by identifying both the algebraic (associativity) and geometric (Desargues
proposition) conditions necessary and sufficient for Descartes coordinatization to suc-
ceed.

3 Distinguishing Algebraic and Geometric proof

This section is a commentary on the Appendix, arguing that it provides a pure geo-
metric proof of the embedability theorem while Hilbert’s proof is manifestly not pure.
For this we need some distinction between algebra and geometry. Algebra deals with
numbers (of various sorts); geometry deals with magnitudes. Geometric arguments
admit and (as the writing of the appendix demonstrated) often demand pictures. The
distinction is clearly made in the quotation from Newton in [14]; there should be no
arithmetical computations except of ‘Quantities truly geometrical’. The essence of co-
ordinatization, fundamental to Hilbert’s proof of the embedding theorem, is to reject
this notion.

Thus in the appendix the crucial vocabulary remains points, lines, and planes. There
is no introduction of multiplication and addition and no reliance on the development of
coordinate geometry. Crucially, however, new ‘points’ are introduced as certain triples
of points and new ‘lines’ are introduced as sets of these ‘points’; explicitly defined
equivalence relations play a significant role. This is a more complex argument than the
construction of models of non-Desarguesian planes that interpret (pieces) of curves as
lines. This level of complexity is implicit in Hilbert.

The number of special cases that appear in the proof below are characteristic of ge-
ometric arguments. Algebraic methods (as is clear in the developments of 20th century
algebraic geometry) can clarify the notion of a ‘generic configuration’. Thus, the coor-
dinatization of a Desargesuian plane requires a not-quite arbitrary choice of coordinate
points. In contrast Claim 4.3.12 requires a delicate argument to replace ‘arbitrary’
points by ones that are in general position. A similar situation concerns the relation
between Pappian and Desarguian fields. The first is coordinatized by a commutative
field, the second by a division ring (which will not be commutative if the plane is not
Pappian). Hessenberg [24] proved this in 1905. But he missed some possible intersec-
tions in the Desargues configuration and the proof was completed by Cronheim [11] in
1953.

Levi [37] early gave a pure geometric proof of the Hilbert embedding theorem.
The argument with Howard in the appendix makes clear the geometric picture that
motivates the coding of points in three-space by triples in the plane. Levi does not
bring this out and it is unclear if he had the same picture in mind. In particular, he gave
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the proof in the affine case and then extended to projective planes on general grounds
as in Remark 2.2.3.

4 Appendix: A geometric proof that Desargues implies
embeddability
with William Howard

Theorem 4.0.1 A Desarguesian projective plane 7 can be embedded in a three dimen-
sional geometry.

Levi’s first ‘geometric’ proof of Theorem 4.0.1 appeared in [37] in 1939. The sec-
ond author remembers reading a version of the proof but not where *°. The argument
here stems mostly from the second author’s reanalysis and differs from Levi by pre-
senting the motivation more clearly and by a quite different application of Desargues.
It differs from both Hilbert and Levi in being purely projective with no reference to
affine geometry. The crux is that either this argument or Levi’s differ from Hilbert’s
as there is no mention of coordinatization by a skew field. For concreteness, we view
projective geometry as axiomatized in [47] and recite the exact axioms later.

4.1 Some plane projective geometry

The following key property of a Desarguesian projective plane drives the main work.

Definition 4.1.1 Fix a point P and let Sp denote the set of pairs 4 = (al, as) such
that P lies on the line a1as. For any ¢ € w, and a, be Sp such that a and b do not lie
on the same line through P, define Ry by

aRb if and only a1, as and by, bs are centrally perspective by a point on £.

Lemma 4.1.2 Forany/{ € m,
1. Ifa,b,é € Sp lie on distinct lines through P then aRob and ¢Rob imply a.R,¢

2. Ry is an equivalence relation on any set of pairs which determine distinct lines
through P.

Proof. Suppose a, 3, ¢ determine distinct lines through P . Suppose aReb and
éRgl;. Note that the result holds trivially if either a1bic; or asbsco are collinear.
So we may assume the triangles a1b1c; and asbacy are proper; by definition of Sp
they are centrally perspective through P . Note that the points of central perspectivity
Oa i Oae OC ; are the intersections of the sides of a1b;c; and azbacy. By Desargues’
theorem 0, Oa & OC ; are collinear. By the definition of I2, the first and third are on
£ so all three are. Applylng the first part of the lemma multiple times yields the result.

|:|4.1.2

4IVictor Pambuccian pointed us to an exact reference, [37].
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4.2 Motivation

The goal here is a direct construction: Given a Desarguesian plane 7w, we construct a
three dimensional projective space containing . We will describe incidence in 7 in
English; incidence in the new structure will be given by ‘element of’. We use capital
Roman letters for the points in a general projective plane, lower case Roman letters
for points in the new space (i.e. ‘triangles’ in %) and list the points on the triangle a
as a1, a9, a3 in . Points in m may be labeled by capital Roman letter or subscripted
lower-case Roman letters depending on the context. Planes are labeled by Greek letters
and lines by lower case Roman letters.

The basic idea is to reverse the following operation. Fix a plane 7 in three-space.
Then map the three-space onto 7 by fixing a triangle M; M> M3 in a plane « not equal
to m and mapping each P to the triangle, say (a1, as, a3) that P projects My Mo Ms;
onto in 7. A little thought shows there are certain subtleties in this idea. Let w denote
the line where o and 7 meet and let H denote M M> A w, V denote M7 M3 A w and
D denote MsM3 A w. Any point not in aw U 7 will project to a proper triangle in 7.
Points on « have various special forms which are precisely defined as the sets €2; in
Definition 4.3.1. If P is on « but not colinear with one of the edges of M; M;Ms it
projects to three distinct points on w (in ). If P is on M; M5 but not My or My it
projects to (H, H, s) for some s € w — {H,V, D} (in £4). The cases of My, My, M3
are even more special. Each of them projects to a pair from { H, V, D} (into €25). A line
{ in three-space not in o will project to a ‘line’ of triangles in 7 which are in perspective
from ¢ A 7.

4.3 The Construction

With a little care for special cases and appropriate use of the Desargues theorem we can
reverse the map in Section 4.2 and code the three-space. While, especially in footnotes,
we return to the picture of the previous paragraph for motivation, formally, we are now
defining a three-space by defining in 7 a set of points (certain triangles) and the notions
of line, incidence and eventually plane on those points.

Definition 4.3.1 (The Model: I) Fix a line w in the Desarguesian plane 7 and distinct
points H, 'V, D, called the coordinate points, on w. S is a collection of ordered triples
from .

1. The set of regular points S, in the new three space consists of the proper triangles
a = ayasag in 7 such that H is on aias, D is on asas, and V' is on ayas. We
call them regular triangles.

S also contains several exceptional cases.

(a) degenerate triangles: a1 = as = as. That is, a € .

(b) ‘triangles’ on w: *°:

50These points corresponding to the images of elements of the plane a.
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i. Qo denotes the set of special triangles, ordered triples (a1, as,as3), of
51

distinct points on w >".
ii. Q) is the set of very special triangles, triples of points from w of the
form (H,H,z),(V,2,V),(z,D, D) withx € = — {H,V, D}>%.
iii. Qo denotes the three ‘triples’ (x, H, V'), (H,*, D), (V, D, x) where x
indicates that one coordinate is undefined>.

Q= Qo UQ; UQy Uw is called the plane at infinity.

2. A regular line m in the three-space is a set of a € S such that for some fixed
0,n € T any a,b € m are centrally perspective’* with center O,,. Note that O,,,
is a degenerate point in S of type la) and O,,, € m.

L denotes the set of all lines including those entirely contained in () and L,
denotes the set of regular lines (those which contain a regular triangle).

The lines on () are described in Definition 4.4.5.

We will say a special triangle b is centrally perspective with a regular triangle a if
the lines a;b; (for 7 < 3) meet in a point. We write O, 5, for the point on 7 of central
perspectivity of a and b. We say two or more points in S are regularly collinear if
there is a regular line through them. Suppose a,b,c € S are three points that are not
regularly collinear and that a is a regular triangle. Then ab and ac are two distinct
regular lines.

We begin by observing a natural classification of regular lines in S.

Remark 4.3.2 (Classifying regular lines) Each regular line € £, (i.e. not on 2) is
given by a triple (71, r2, 73) of lines in 7. (In case 3a below one of the ; is not defined,;
all triangles on the line share a point.) r; goes through the x; coordinate of the triangles
in r. The intersection of the r; is O,., the vertex.

type 1 None of the coordinates H,V, D is on any r;; the r; are distinct.

type 2 Two of the r; agree and go through a coordinate point, H, V, or D>,

r Aw ro N\ W r3 A\ w
2a) r1=r9 H H w—{V,D}
2b) i =rs 14 w—{H,D} v
2¢) ro=r3 w—{HV} D D

51These points are in central perspective with a regular triangle and are discussed in Remark 4.3.3.

52These are also in perspective with a regular triangle; see Remark 4.3.2.

33n our prototype, M1 > (%, H, V'), My + (H,*, D), M3 > (V, D, x). These points lie on the type
3 lines in Remark 4.3.2.

54More precisely, a1 a2as and by b2bs are centrally perspective at a1b; A azba A azbs = Opy,. There are
three special cases, e.g. when a1 a2 and by ba are the same line through H in 7. In this case, letting s denote
azbs N\ w, the very special point (H, H, s) is on the line.

331f one thinks of the affine part of the plane the lines in this class are horizontal, vertical, and diagonal in
that order. Note the special case when, e.g. in 2a), the intersection point is (H, H, H); this is the image of a
triangle whose plane contains M1 Mo. Lines of this form contain no special triangles.
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type 3 One of the r; is undefined and so has no intersection with w. O,. is a vertex of
every regular triangle in r.

rAw o AW r3 Aw
3a) wundefined H v
3b) H unde fined D
3c) % D unde fined

Remark 4.3.3 (Special triangles) Specifying two points on a regular triangle b deter-
mines the third and the labeling is determined by e.g. b; is the vertex that is the inter-
section of lines through Hby and V'bs. We establish the analogous claim for special
triangles in Lemma 4.3.4.

Lemma 4.3.4 Let s1, s2 be two points inw — {H,V, D}. Then there is a unique point
S3 on w so that s = s1S983 is in central perspectivity with a regular triangle aasas.
Thus, s € Q.

Proof. Choose any regular triangle a1 asas. Let P on 7 be the intersection of sya4
and sgaq. Since the s; are not in {H,V, D}, P is not on a line extending a side of
ajasas. Choose s3 as Pag intersect w. We show that s3 does not depend on the choice
of ajasas. Let bibybs be another regular triangle and by the same procedure choose
a point of perspectivity @ and an s5 = Qbs A w so that s1s2s and bibobs are in
perspective from (). By the converse of Desargues, the regular triangles ajasas and
b1b2b3 are centrally perspective through some point R. Further,

1. a1bys1 and asbyss are centrally perspective by H and
2. aobyss and agbsss are centrally perspective by asas A w = D.

Applying Desargues, 1) yields a1b1 Aasbs = R, bys1Abass = @, and a181Aagse = P
are collinear. And 2) implies asbs A azbs = R, asss A agss = P are collinear with
basa A bgss. Thatis byso A bssg lies on PR and so must equal (). But then Qb3 A w =
b3ss A w and s3 = s5. 0434

We make two crucial observations.

Fact 4.3.5 Ifa and b are in S and at most one of them is on Q, O, p, is well-defined.
Every regular line meets ).

Proof. The first sentence is clear from Lemma 4.3.4 when a € S, and b € )y has
two coordinates from w — {H,V, D}. But even in case b € €y U )y, there are two
lines a;b; and a;b; (for some 7, j among 1, 2, 3) which are distinct; their intersection is
Og,p. If @ € 7 then for any b, O, ;, = a. The second sentence is easy to check. [y 35

We now give an external definition using the tools of our construction of the plane
generated by three points, where one is regular. We will show that in (S, £, €) it de-
scribes the same notion as the intrinsic Definition 4.3.13.
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Definition 4.3.6 (The Model: II) Ifa,b,c € S are three points that are not regularly
collinear and a is a regular triangle, the plane o = (a,b,c) generated by abc is the
union of all lines £, € S that pass through a and some point x on the line ¢, =
Oa,p0q,c (called the trace of {,) in w. Formally

o= U £y

r€Lly

Remark 4.3.7 Since the 7 element Fano plane is the only projective plane with exactly
three points on a line and it is coordinatized by the 2 element field, we can assume that
each line in 7 has at least 4 elements. Consequently each regular line in S contains at
least two regular points.

We want to apply Desargues’s theorem to study planes containing regular points.
The difficulty is that applications of Desargues theorem to establish the transitivity of
the relations R, from Definition 4.1.1 require that certain triangles not have sides on
a common line. From now though Lemma 4.3.12 we see how to adjust situations to
avoid this problem.

Definition 4.3.8 By a direction of a regular triangle b we mean any of the lines that
extend a side of b to one of {H,V, D} (E.g. the line biba H, to specify the direction we
write X -direction for some X € {H,V, D}.).

Definition 4.3.9 Suppose a,b,c € S. We say a pair of regular triangles a, b are aligned
if they share a direction.

No regular triangle is aligned with a special triangle. Any pair of elements of ) is
aligned.

We say three triangles a,b, c are askew if there is a direction in which no pair of
them is aligned.

We will need some stronger variants on Lemma 4.1.2. First we extend the relation
R, from pairs to triangles.

Definition 4.3.10 For any ¢ € , and a,b € S such that O, exists define Ry by aReb
ifand only Ogqp € L.

Lemma 4.3.11 Suppose a,b,c € S, and at most one is in (), then Ry is transitive on
{a,b,c}. Ry is transitive on any finite set of elements in S with at most one on  and
the rest in S,..

Proof. Suppose a, b, c are all aligned in a direction, say D for simplicity. Then
a1, as,by,bs,c1,c3 lie on a line ¢ and each of O 4, Og ¢, Op, must lie on that line.
Assuming this case does not occur, we prove.

Claim 4.3.12 We can choose d such that
1. for two of the triangles (say a,c) Oq.q = O¢,qa = Oq.c;

2. a,d,bandb,c,d are askew.
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Proof of Claim: If one of the points is in 2, a, b, c are automatically askew. So we
consider the case where all are regular. There are two cases.

First suppose that two of the triangles are aligned in two directions. Fix these as b, ¢
and suppose they both D-aligned and V'-aligned. (The choice of names of the triangles
in the statement of Claim 4.3.12 depend on the choice made here.) Then c3 = b3 and
since the three are not X -aligned for any X, if there is any alignment with a, it is along
H. Suppose a and c are H-aligned. Choose ds on c3as not equal to either of them.
Then let dy = d3D A aicy and do = d3V A asce. Now neither d, b, a nor d, b, ¢ is
D-aligned.

The second case is when no pair is aligned in two directions but perhaps each pair is
aligned. Suppose for example, that a;, az and by, b are collinear. By our case analysis,
we may suppose that a, ¢ are not both D and V' aligned. For concreteness, say they are
D aligned. And we may also assume that as # ¢, as equality would imply that ¢ and ¢
are H-aligned. If they were, ¢c; would be on both aya3D and a1b1 H so a; = ¢ and we
would have all three H -aligned contrary to the first line of the proof of Lemma 4.3.11.
Thus, ag # c3 and ag # cp. Choose regular d; on a;c;0, . but not among a;g, ¢y or
Og,c. Now let dy be Hd; Aazcy and ds be Dda Aascs. Both of these points are defined

The construction guarantees that ¢, b, d are not H-aligned and b, a, d are not aligned
in the D (i.e. asas) direction. Us3.12

This implies that R, is transitive on any triple of elements in S with at most one
on {2 and the rest in S,.. For a, b, ¢ € S,, the result follows from Lemma 4.1.2 applied
to the two triples in 2) along the non-aligned direction. That is, suppose aR,c and
bR¢c. We have O, g = O, q and Oy . are both on £ so applying Lemma 4.1.2 in the
H -direction to ¢,b,d Oy q € £, 1. bR,d. We have bR,d and by construction aR,d, so
applying the Lemma 4.1.2 in the D-direction on a, b, d, we deduce aRb. If one of the
points is on €2, the result is easier as we don’t have to do so much adjustment to apply
Lemma 4.1.2.

For the second sentence, suppose we are given a set A of n regular triangles
ai,...an, € Sy and a,41 € €. It suffices to show Ry is transitive on each three
element subset of A. We can establish this by applying part 1) independently to each
such triple. 4311

Robinson [47], whose axiomatization we are using, unlike Hilbert, does not take
plane as a primitive but makes the following intrinsic definition.

Definition 4.3.13 The plane generated by a, b, c is the collection of all points on lines
that contain a and intersect bc.

We show in Lemma 4.3.18 that our external notion of plane, Definition 4.3.6, co-
incides with the intrinsic definition in the language of the geometry that we give now.
For this, we need the consequences of Desargues we have just developed and work ex-
tensively with the extrinsic definition until proving the equivalence in Lemma 4.3.18.

Lemma 4.3.14 Suppose a,b, c are distinct points in S and a is a regular triangle. If
d is a regular triangle on the plane « generated by abc (£, and a) in the sense of
Definition 4.3.6, then « is also generated by dbc (by £, and d) in the same sense.
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Proof. Suppose the trace of aw on wis £ = {,. If b,c € (), each of the triples
a,b,d and a, ¢, d is askew. In particular there is a direction X such that the three lines
through X extending sides of a, b, d are distinct. If at most one point is in {2 we apply
Lemma 4.3.11 to guarantee the triangles are askew. For any of these points v in S, let
@ denote the restriction to the relevant pair in Sx. We have nga and bRga Hence
we can apply the Lemma 4.1.2.1 for Sx, to conclude dRyb. Similarly, dRya and ¢éRya
imply by Lemma 4.1.2.1, dRé. So 04b04,c = Lo s0 oo = (d, b, c) and « is generated
by ga and d. |:|4.3_14

Lemma 4.3.15 If a = (a, b, ¢) is generated by abc, where a is regular, then there is a
k € {1,2,3} such that

1. For every regular point d = (dy,ds,ds) in «, dy, is not on £,
2. s A w is defined for the line through be, which is given by s = (s1, S2, S3).
3. For every regular line s = (s1, $2, 83) in a, s, is defined.

Proof. Note first that some coordinate a; of a, must not be on £, since a is proper
triangle in 7. We will show that in this case no regular triangle d in « has d; on «. For
simplicity, suppose ¢ = 1. Suppose for contradiction some d € « has d; on ¢,. Then
dy = Og,q 50 did2H, dyazdy and thus didaas H are collinear in 7. But then since
aias H is aline, a; is also on this line. Similarly didsasa,V is also a line. But they
meet in both a; and d;. So a; = d; contrary to a; not on £,,.

For the second claim, continue with the case &k = 1. Suppose the line s =
(s1,82,83) € « is through b, ¢, but s1 is not defined. Then by = c¢;. But O, lies
on aib; and O, . lies on a;cy, S0 by = ¢; is on £, contradicting part 1.

By Lemma 4.3.14, we can choose any d on s and assume « is generated by d and
be, yielding iii) from ii). 4315

We need a bit more information about the composition of lines.

Lemma 4.3.16 Let r = (ry,72,73) be a line with v, A\ w defined, say k = 1. For any
point by on 7, there is a unique triple (by,ba, bs) on r.

Proof. By the inventory of lines, Remark 4.3.2, we can choose a k, (say 2 for
concreteness) so that v # r1. Consider first the case that r is of type 1 or type 2.
Then, again by Remark 4.3.2, H is not on 71 nor ro. Let b = by H A ro. If by is not
on w then neither is by and b3 = r3 A boD. Then H is not on either 7 or ro. If by is
on w then so is bs. But ro A Hby = by so neither by nor b, is H. By Lemma 4.3.3,
we can choose b3 as required. If r is of type 3, we are in case Remark 4.3.2.3c and
<b1,bz,b3> = <V, D, *> Ua.3.16

Lemma 4.3.17 If a, b, c are regular, any two regular lines in the plane o generated by
abc in sense of Definition 4.3.6 intersect.

Proof. Let r and s = (sq, S2, s3) be two such lines. Lemma 4.3.14 allows us to
assume «a is on 7 and so r has the form y’a for some 3’ on £,. We need to show that
y'a A s is non-empty. By Lemma 4.3.15.2, there is a k such that s, is defined. For
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simplicity, assume k = 1. Let d; = y’a; A s1. By Lemma 4.3.16 there is a unique
triple d = (dy,da,ds) on s. We claim d is also on 3’a. By the definition of «, Oy lies
on £,. Butdy ison a1y’ so Oy, = y'. Thus d = y'a A be as required. 4317

Lemma 4.3.18 If a, b, c are regular, the plane o generated by abc in sense of Defini-
tion 4.3.6 is the same as that given by Definition 4.3.13:

o= UKM

z€be

where {,, € L is through the regular triangles x and a.

Proof. Let d be a regular triangle on bc. We must show O, 4 lies on £, =
O4,c0q,p € m. By Lemma 4.3.11, O . is on . Since dis on bc, Op g = Op ¢ € £,.
By Lemma 4.3.11 again, O, 4 is on {,, as required.

For the converse, let y € a. Then y is on a line 3'ay with ¢’ on £, and we need to
show that 3'a A be is non-empty. Apply Lemma 4.3.17 with » = 4'a and s = be.

Uisas

4.4 The plane at infinity

The points of €2 are a very special plane in S. In this subsection, we study the lines
on this plane and conclude with Lemma 4.4.7 verifying that (2 is in fact a plane in the
sense of Definition 4.3.13.

Remark 4.4.1 Note that if b, ¢ are regular triangles, the point O, ., € 7 is on every
plane containing b, c. Moreover if b, ¢ are in each of two planes « and (5 the line
through b, ¢ is the intersection of « and 3. As, if there were some regular d in the
intersection but not on that line, Lemma 4.3.14 and the argument in the first paragraph
of Lemma 4.4.2 shows o = f3.

We need to describe the line through two points on {2: some effort is needed to
define these lines. The key is to establish Remark 4.4.1 for special triangles.

Lemma 4.4.2 Suppose b, c € Q. There is a point t on w such that t is in every plane o
that contains a regular point of S and b, c.
If v is not contained in Q, {t} = o A w.

Proof. Consider two distinct planes « and 8 which both contain b,c. Say o =
(a1,b,c) and B = (ag, b, c). Then £, Alg = ¢ is a point (degenerate triangle) on 7. If ¢
is not on w, choose a regular triangle ¢’ on tbin S. By two applications of Lemma 4.3.14
(replacing either ay or as by t'), & = {(a1,b,¢) = (t',b,c) = {(az,b,¢) = . So any
plane  containing b, ¢ meets o in lo, A £, = {t}.

If « is not contained in {2, we can generate « as (a, b, c) for any regular a € «.
But then neither O, nor O, is on w so w N « must be singleton (otherwise o would
contain all of ). Cya0

Since t = Oy € £y, = Ogp Oy, We have:
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Corollary 4.4.3 Suppose b,c € Q and « is a plane containing b, c. Then for any
regular point a on o, o = {a,b,c) = {(a,¢,t) = {(a,b,t) where t = {4 A w.

Now we show that the intersection of a plane with 2 is determined by any pair of
points in that intersection.

Lemma 4.4.4 Suppose o, 5 are planes that are not contained in 2 and b,c € ),
bceanp. Ifde QNa, thend € QN S.

Proof. By Lemma 4.4.2, o and [ intersect in a point ¢ € w. Choose any regular
point a € f3,s0 8 = {(a,b,c). By Lemma 4.4.2, t € (3 since b,c € a A 8. Applying
Corollary 4.4.3, 8 = {(a,b,c) = (a, ¢, 1).

Let v be the plane generated by a,d,c. Then t € ~ since a and ~ are planes
containing a and d. Again by Corollary 4.4.3, v = (a,d,c) = {(a,t,c) = 8. Soy = 8
and d € (8 as required. Oy a4

Lemma 4.4.4 justifies the following Definition 4.4.5 of a line through two points in
Q.

Definition 4.4.5 For a,b € () the line through a,b is the intersection of some (any)
regular plane that contains a and b with §). Note this line includes the point t from
Lemma 4.4.2.

Lemma 4.4.6 Any two regular planes in S intersect in a line.

Proof. Let o and  be two regular planes. If there are two points b, ¢ in their
intersection the intersection is the line through b, ¢ by Remark 4.4.1. In particular we
are finished if £, = £g.

So we must show two regular planes «, 3 intersect in at least two points. One point
ise = £, N £g. To find a second, let r be a regular line in 3. We will prove that r
intersects « is a point different from e. For this, choose a € « but not on £,,. Let v
be the plane generated by r and a. Then v contains both 7 and the line s = ae. By
Lemma 4.3.17, r and s meet in a point, which since s lies on «, must be in «. Thus,
7 A s is our second point.

Uia6

Lemma 4.4.7 Q is a plane.

Proof. Let a,b,c lie on 2. Let «, 3,7 three planes, each containing a regular
point and containing ab, bc, ac respectively. For any d € €2, Definition 4.3.13 shows it
suffices to that ad A e¢—{. Let § be a regular plane which intersects € in the line ad.
By Lemma 4.4.6 or Definition 4.4.5 ¢ and [ intersect in a line m. Then m and bc are
both in 5. So by Lemma 4.3.18 and Lemma 4.3.17, m A bc is the required point of
intersection. Llya7
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4.5 Verifying the axioms

For concreteness, we specify the axioms as formulated in [47]. The term plane is not
primitive.

Definition 4.5.1 (Basic axioms) Axiom 1 There are at least two distinct points.

Axiom 2 Two distinct points A and B determine one and only one line on both A and
B.

Axiom 3 If A and B are distinct points, there is at least one point distinct from A and
B on the line My M.

Axiom 4 [If A and B are distinct points, there is at least one point not on the line AB.
First we verify the basic axioms.
Lemma 4.5.2 (S, L, €) satisfies the basic axioms.

Proof.

Axiom 1 Any two distinct points a1, as in 7 — w determine a unique regular triangle
aiagas € S by drawing the required lines through V' and D.

Axiom 2 Clearly the converse of Desargues implies any two triangles in S with at most
one on ) are centrally perspective by some point. The lines of perspectivity have
a unique intersection so there is a single point of perspectivity which indexes
the line. The axiom holds for pairs of points in €2 using Definition 4.4.5 and
Lemma 4.4.4.

Axiom 3 Given two regular triangles a, b which are in perspective from a point O and
so are on a line in S, choose any ¢; on ¢; = 0a;b; and let ¢o be the intersection
of ¢; K and ¢5 = Oasby; now the converse of Desargues theorem shows, since
the triangle c;coc3 generated from cqco by the procedure in the proof of Axiom
2 is axially perspective with a;azag, they are centrally perspective. So O is on
ciaq.

Axiom 4 Modify the proof for Axiom 3. Given two regular triangles a, b which are in
perspective from a point O, choose P # O and draw (1, {2, {5 through O and
each of the a;. Now repeat the rest of the argument for Axiom 3, using the new
choices for ¢, {5 to find ¢ not on the line ab € S.

Uis.2
Two more axioms in [47] relate to the 3 dimensionality. For convenience in the
proofs, we label the points in Pasch’s axiom with lower case letters.

Definition 4.5.3 (Pasch’s axiom:)

Axiom 5 Suppose A, B, C are three non-collinear points, D is a distinct point on BC'
and F is a distinct point on C A. Then there is a point F' on the intersection of
AB and DE.
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Lemma 4.5.4 (S, L, €) satisfies Pasch’s axiom.

Proof. Fix a,b, c as in Pasch’s axiom and suppose they generate the plane «. If
these three points are in €, then o« = 2 and we must show two lines , s in € intersect.
For some regular planes o and 5, a A2 =rand S AQ = s. By Lemma4.5.7 a A
intersect in a line ¢ and g A €2 is the required intersection of  and s.

So we may assume a is regular. And in fact, if b or c is in by replacing b by o/
a regular point on ab (or ¢’ a regular point on ac), we generate the same plane since
Lo = 04 3p0q.c = OgpyOq,r. But then by Lemma 4.3.18, the plane « is also the plane
generated by a, b, ¢ in sense of Robinson. By Lemma 4.3.17, we have Pasch’s axiom
except if d and e are in (2. But consider the regular line ab. Note by Fact 4.3.5 that
every regular line intersects €2 and we finish by Definition 4.4.5. Ug5.4

To specify the geometry is three dimensional, De Robinson adds:

Definition 4.5.5 (3-space axioms)

Axiom 6 If A, B, C are three non-collinear points, there is at least one point D not on
the plane ABC.

Axiom 7 Any two distinct planes have a line in common.

Remark 4.5.6 Axiom 6, the assertion that there is a point off each plane, is easily
checked by considering the cases by which a plane is generated.

Lemma 4.5.7 Axiom 7: Any two planes in S intersect in a line.

Proof. Let v and 3 be arbitrary planes. For regular planes this is Lemma 4.4.6. If
there are two points b, ¢ in their intersection the intersection is the line through b, ¢ by
Remark 4.4.1 and Lemma 4.4.4 (in the case one of the planes is §2). For the § = Q)
case, choose any a on « and two distinct lines through a. By Fact 4.3.5 they intersect
in (necessarily distinct) points.

Uas.7
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