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Abstract
We emphasize the role of the choice of vocabulary in formalization of a mathe-

matical area and remark that this is a particular preoccupation of logicians. We use
this framework to discuss Kennedy’s notion of ‘formalism freeness’ in the context
of various schools in model theory. Then we clarify some of the mathematical
issues in recent discussions of purity in the proof of the Desargues proposition.
We note that the conclusion of ‘spatial content’ from the Desargues proposition
involves arguments which are algebraic and even metamathematical. In particular,
the converse to Desargues cannot be read as: the Desargues proposition implies
there are non-coplanar points. Rather, Hilbert showed that Desargues proposition
implies the coordinatizing ring is associative, which in turn implies the existence
of a 3-dimensional geometry in which the given plane can be embedded. We (with
W. Howard) give a new proof, removing Hilbert’s ‘detour’ through algebra, of the
‘geometric’ embedding theorem and examine the issue of purity for this embed-
ding theorem.

Mathematical logic formalizes normal mathematics. We analyze the meaning of
‘formalize’ in that sentence and use this analysis to address several recent questions.
In the first section we establish some precise definitions to formulate our discussion
and we illustrate these notions with some examples of David Pierce. This enables us to
describe a variant on Kennedy’s notion of formalism freeness and connect it with recent
developments in model theory. In the second section we discuss the notion of purity in
geometric reasoning based primarily on the papers of Hallet [17] and Arana-Mancosuo
[3]. In an appendix written with William Howard we give a geometric proof (differing
from Levi’s in [29]) of Hilbert’s theorem that a Desarguesian projective plane can be
embedded in three-space.

Our general context is that there is some area of mathematics that we want to clarify.
There are five components of a formalization. The first four 1) specification of primitive
notions, 2) specifications of formulas and 3) their truth, and 4) proof provide the setting
for studying a particular topic. 5) is a set of axioms that pick out the actual subject area.
We will group these five notions in various ways through the paper to make certain
distinctions.

Our general argument is: while formalization is the key tool for the general foun-
dational analysis and has had significant impact as a mathematical tool 1 there are spe-

1Examples include the theory of computability, Hilbert’s 10th problem, the Ax-Kochen theorem, o-
minimality and Hardy fields, Hrushovski’s proof the geometric Mordell-Lang theorem and current work
on motivic integration.
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cific problems in mathematical logic (Section 1.3) and philosophy (Section 2) where
‘formalism-free’ methods are essential.

I thank Paolo Mancosu for introducing me to this topic and acknowledge helpful
comments from Andrew Arana, Phil Ehrlich, and Juliette Kennedy.

1 Formalization: Vocabulary, Logic and Proof
We describe our notion of a formalization of a mathematical topic. This involves not
only the usual components of a formal system, specification of ground vocabulary,
well-formed formulas, and proof but also a semantics. From a model theoretic stand-
point the semantic aspect has priority over the proof aspect. The topic could be all
mathematics via e.g. a set theoretic formalization. But our interest is more in the local
foundations of, say, plane geometry.

Definition 1.0.1 We see a full formalization as involving the following components.

1. Vocabulary: specification of primitive notions.

2. Logic

(a) Specify a class2 of well formed formulas.

(b) Specify truth of a formula from this class in a structure.

(c) Specify the notion of a formal deduction for these sentences.

3. Axioms: specify the basic properties of the situation in question by sentences of
the logic.

We will elaborate on this definition in Subsection 1.2. But first we want to empha-
size the significance of the first item.

1.1 Vocabulary
We establish some specific notations which emphasize some distinctions between the
mindsets of logicians, in particular, model theorists, and ‘normal’ mathematicians.

Definition 1.1.1 1. A vocabulary τ is a list of function, constant and relation sym-
bols.

2. A τ -structure A is a set with an interpretation of each symbol in τ .

Specifying a vocabulary3 is only one aspect of the notion of a formal system. But it
is a crucial one and one that is often overlooked by non-logicians. From the standpoint
of formalization, fixing the vocabulary is singling out the ‘primitive concepts’. This

2For most logics there are only a set of formulas, but some infinitary languages have a proper class of
formulas.

3Years ago Tarski used the phrase similarity type for essentially this notion; sometimes it is called the
signature. Still another ‘synonym’ is language. We explain in Section 1.3 why we try to avoid this word.
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choice is a first step in formalization. Considerable reflection from both mathematical
and philosophical standpoints may be involved in the choice. The choice is by no means
unique. For example, formulated in a vocabulary with only a binary function symbol,
the theory of groups needs ∀∃-axioms and groups are not closed under subalgebra.
Adding a constant for the identity and a unary function for inverse, turns groups into a
universally axiomatized class. Alternatively, groups can be formulated with one ternary
relation as the only symbol in the vocabulary. The three resulting theories are pairwise
bi-interpretable.

It is a commonplace in model theory that just specifying a vocabulary means little.
For example in the vocabulary with a single binary relation, I can elect to formalize
either linear order or successor (by axioms asserting the relation is the graph of a unary
function). Thus, while I here focus on the choice of relation symbols – their names
mean nothing; the older usage of signature or similarity type might be more neutral.
The actual collection of structures under consideration is determined in a formal theory
by sentences in the logic. In the formalism-free approaches discussed in Subsection 1.3
the specification is in normal mathematical language. Having fixed a vocabulary with
one binary function (or alternatively one ternary relation), we say e.g. ‘Let K be the
class of well-orderings of type < λ such that . . . .’

David Pierce [38] has pointed out the following example of mathematicians’ lack
of attention to vocabulary specification.

Example 1.1.2 (Pierce) Spivak’s Calculus book [45] is one of the most highly re-
garded texts in late 20th-century United States. It is more rigorous than the usual
Calculus I textbooks. Problems 9-11 on page 30 of [45] ask the students to prove the
following are equivalent conditions on N, the natural numbers. This assertion is made
without specifying the vocabulary that is intended for N. In fact, N is described as the
counting numbers,

1, 2, 3, . . . .

1 induction (1 ∈ X and k ∈ X implies k + 1 ∈ X) implies X = N .

2 well-ordered Every non-empty subset has a least element.

3 strong induction (1 ∈ X and for every m < k, m ∈ X implies k ∈ X) implies
X = N .

As Pierce points out, this doesn’t make sense: 1 is a property of a unary algebra; 2 is
a property of ordered sets (and doesn’t imply the others even in the language of ordered
algebras); 3 is a property of ordered algebras. e.g., 2) is satisfied by any well-ordered
set while the intent is that the model should have order type ω.

It is instructive to consider what proof might be intended for 1) implies 3). Here
is one possibility. Let X be a non-empty subset of N . Since every element of N
is a successor (Look at the list!), the least element of Xc must be k + 1 for some
k ∈ X . But the existence of such a k contradicts property 1). There are two problems
with this ‘proof’. The first problem is that there is no linear order mentioned in the
formulation of 1). The second is, “what does it mean to ‘look at the list’?”. These
objections can be addressed. Assuming that N has a discrete linear order satisfying
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(∀x)(∀y)[x ≤ y ∨ y + 1 ≤ x] and that the least element is the only element which is
not a successor resolves the problem. This assertion follows informally (semantically)
if one considers the natural numbers as a subset of the linearly ordered set of reals.

As Pierce notes [38] a fundamental difficulty in Spivak’s treatment is the failure
to distinguish the truth of each of these properties on the appropriate expansion of
(N,S) and a purported equivalence of the properties– which can make sense only if the
properties are expressed in the same vocabulary.

But in another sense the problem is the distinction between Hilbert’s axiomatic
approach and the more naturalistic approach of Frege. I’ll call Pierce’s characterization
of Spivak’s situation, Pierce’s paradox. It will recur; Pierce writes:

Considered as axioms in the sense of Hilbert, the properties are not mean-
ingfully described as equivalent. But if the properties are to be understood
just as properties of the numbers that we grew up counting, then it is also
meaningless to say that the properties are equivalent: they are just proper-
ties of those numbers.

Note that this distinction about vocabulary is prior to distinctions between first and
second order logic. We stated the difficulty in the purported equivalence of 1) and 2) in
terms of second order logic. But the same anomaly would arise if PA were compared
with ‘every definable set is well-ordered’.

As this example illustrates, the specification of a vocabulary can be rather fluid.
Much of this paper concerns the role of explicit definition.

Definition 1.1.3 For any theory T in vocabulary τ and formula φ(x), if we expand τ
to τ ′ by adding a new relation symbol, Rφ, and the axiom

(∀x)[φ(x)↔ Rφ(x)]

we say Rφ is explicitly defined in T

At first sight it seems extension by explicit definition is totally harmless. No new
concept can be introduced4; it is just a kind of abbreviation. And if no new proper-
ties that are not provable in the base theory are introduced, this step should surely not
infringe on the purity of an argument. It is a ‘logical’ not a ‘mathematical’ step. How-
ever, we will see that if arbitrary explicit definitions are allowed in a proof, the notion
of such a proof being pure is almost meaningless.

It is natural when formalizing to try to find a minimal set of ‘primitive concepts’.
This was a frequent theme of Tarski5. And arguments for the naturality of various
notions are part of the justification for a particular choice. However, there are other
considerations.

Explicit definition can reduce complexity in a way that can be measured formally
– by reducing quantifier complexity. In developing a first order theory to describe

4We think of the concepts formalizable in a theory as exactly the formulas. Making an explicit definition
is focusing attention an existing concept, not adding a new one. See the discussion in Subsection 2.1.

5See [16] for a summary of Tarski’s work on this area for geometry.
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a given mathematical structure or class of structures, a model theorist would like to
have the resulting theory T admit elimination of quantifiers (every formula φ(x) is
equivalent in T to a formula ψ(x) which has no quantifiers) and be formulated with
concepts intrinsic to the subject. The quantifier elimination is easily established by
fiat [33, 25]: add explicit definitions for each formula φ(x), a predicate Rφ(x) and an
axiom Rφ(x) ↔ φ(x). But now the vocabulary contains many essentially incompre-
hensible relations. This defeats the goal of quantifier elimination in studying specific
theories: every definable relation is a Boolean combination of well-understood rela-
tions. Sometimes, with judicious choice, a small family of well understood predicates
can be added that suffice for the quantifier elimination. Two examples are Pressburger
arithmetic where unary-predicates for divisibility by n are added and Macintyre’s cele-
brated proof of quantifier elimination for the p-adic numbers; he adds predicates Pn(x)
meaning x is an nth power.

1.2 Formalization
We first expand a bit on what we mean by a full formalization. Definition 1.2.1 sum-
marises the notion of a model theoretic logic L defined abstractly in [8]. This paper
will only use some specific examples of such logics including, first order, second order,
Lω1,ω etc..

Definition 1.2.1 A logic contains certain logical vocabulary: connectives, quantifiers
and a set of variables. For each (non-logical) vocabulary τ , the collection of L(τ)-
formulas is defined inductively in the natural way. An L(τ)-formula with no free vari-
ables is called an L(τ)-sentence.

Thus, a logic L is the pair (L, |=L) such that L(τ) is a collection of τ -sentences
and for each φ ∈ L(τ) and each τ -structure A, A |=L φ is defined in the natural
inductive way.

Crucially, ‘the natural inductive definition’ implies that the truth of a τ -sentence in
a τ -structure M depends only on the isomorphism type of M . Thus our entire frame-
work is based on what Burgess[9] has called indifferentism: ignoring a specific set
theoretic construction of the model. Ironically, Shelah has proved major results by
deliberately ignoring this convention. Thus the Whitehead problem6 is entirely about
abelian groups. Nevertheless, Shelah[14] shows the answer is independent of the ax-
ioms of ZFC by representing a Whitehead group of cardinality ℵ1 as a structure with
universe ℵ1 and identifies invariants depending on both the group operation and the ε-
relation on ℵ1. A further example of this use of the explicit construction of a model is
Shelah’s use of Ehrenfeuht-Mostowski models in any expanded language to construct
many non-isomorphic models of first order theories under various instability hypothe-
ses. Still another is the Ehrlich [13] use of Conway’s surreal numbers to investigate
real closed fields.

Definition 1.2.1 yields two natural notions of implication.

6J.H.C. Whitehead asked whether whenever B is an abelian group and f :B 7→ A is a surjective group
homomorphism whose kernel is isomorphic to the group of integers Z, then B ≈ Z⊗A.
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Definition 1.2.2 For any φ, ψ ∈ L(τ), we say φ logically implies ψ and write φ |=L ψ
if for every τ -structure M , M |=L φ then M |=L ψ.

Alternatively, Lmay be assigned a collection of logical axioms and deduction rules
giving rise to the natural notion of ψ can be deduced from φ, φ `L ψ.

Deduction is a syntactic notion. We divided the notion of formalization into five
components: 1) specification of primitive notions, 2a) specifications of formulas and
2b) their truth, 2c) proof and 3) axioms. The standard account of a formal system (e.g.
[43]) includes 2a), 2c) and 3) but not 2b). From our standpoint (and that of [8]), 2a),
and 2b) are basic and 2c) may or may not exist. (There is no good proof system for
second order logic and the proof systems for infinitary logic use inference rules with
infinitely many premises.)

In Definition 1.0.1, the logic does not depend on the particular area of mathemat-
ics. In earlier days, from a more general logical perspective, the vocabulary might be
universal, containing infinitely many n-ary relations for each n. In contrast, we seek
primitive terms which pick out the most basic concepts of the field in question and
axioms which in Hilbert’s sense give us an implicit definition of the area. Thus, we
can formalize concepts such as real closed fields (RCF) or algebraic geometry7 or set
theory without reference to the construction of specific models8. Our treatment of the
primitive terms is analogous to the treatment of the element relation in set theory. But
this analysis is relevant to either traditional (global) or local foundations. For any par-
ticular area of mathematics, one can lay out the primitive concepts involved and choose
a logic appropriate for expressing the important concepts and results in the field. While
in the last quarter century mathematical logic has primarily focused on first order logic
as the tool, we discuss some alternatives in Subsection 1.3.

1.3 Formalism Freeness (Mathematical Properties)
In the opening paragraph of what might be viewed as the founding paper of model
theory [47], Tarski writes,

Every set Σ of sentences determines uniquely a class K of mathematical
systems. . . . Among questions which arise naturally in the study of these
notions, the following may be mentioned: Knowing some structural (for-
mal) properties of a set Σ of sentences, what conclusions can we draw
concerning the mathematical properties of the correlated set of models?
Conversely, . . .

Tarski gives a number of examples of answers to questions of this sort; two are:

Tarski A class K of structures in a finite relational language is axiomatized by a set of
universal sentences if and only if K is closed under isomorphism, substructure
and if for every finite substructure B of a structure A, B ∈K then A ∈K.

Birkhoff A class K of algebras is axiomatized by a set of equations if and only it it is
closed under homomorphism, subalgebra, and direct product.

7See the discussion of Zariski geometries in Subsection 1.3.
8Geometry and analysis are presented in this way in e.g. [45, 20, 19].
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This notion of ‘mathematical property’ is similar to that which Kennedy [26] traces
as the notion of ‘formalism freeness’ in the works of Gödel. She writes, ‘one can think
of indifferentism9 or formalism-freeness ... as the simple preference for semantic meth-
ods, that is methods which do not involve or require the specification of a logic– at least
not prima facie.’ We hope that the distinctions in Section1.210 can clarify this notion.
It is tempting to speak of language here. We have avoided the word ‘language’ because
of its several usages in the context at hand. One may speak of the ‘language of rings’
meaning +,×, 0, 1. A different and more specific version is for this phrase to imply
that these operations obey the axioms of ring theory; see Subsection 2.3. In a third ver-
sion, one speaks of the language of first order logic, meaning the collection of formulas
generated from a vocabulary by the finitary propositional connectives and existential
and universal quantification. We interpret Kennedy to be making this distinction. That
is, a formalism-free approach would take language in the first sense, not the second or
third. An inquiry can be ‘formalism-free’ while being very careful about the vocabu-
lary but eschewing a choice of logic and in particular any notion of formal proof. Thus
it studies mathematical properties in the sense we quoted from Tarski above.

It is in this sense that certain recent work of Zilber and Shelah can be seen as
developing a formalism-free approach to model theory. Both Zilber’s notions of a
quasi-minimal excellent class [49] and of a Zariski geometry [23], and Shelah’s concept
of an Abstract Elementary Class [41] give axiomatic but mathematical definitions of
classes of structures in a vocabulary τ . That is, the axioms are not properties expressed
in some formal language based on τ but are mathematical properties of the class of
structures and some relations on it. In Shelah’s case, the basic relation is a notion of
‘strong submodel’ relating the members of the class. Quasiminimal excellent classes
require a combinatorial geometry on each model which has certain connections with
the basic vocabulary. For example, we have:

Definition 1.3.1 An abstract elementary class (AEC) (K,≺K ) is a collection of
structures11 for a fixed vocabulary τ that satisfy the following, where A ≺K B means
in particular A is a substructure of B:

1. If A,B,C ∈K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B;

2. Closure under direct limits of ≺K -embeddings;

3. Downward Löwenheim-Skolem. If A ⊂ B and B ∈ K there is an A′ with
A ⊆ A′ ≺K B and |A′| ≤ |A| = LS(K).

In fact, these classes can be defined in a ‘formalism-free’ way using purely categor-
ical terms; see Kirby: ”Abstract Elementary Categories” [27] and Lieberman: ”AECs
as accessible categories” [30]. The connection with logic is at first only motivational.

9I distinguish Burgess’s notion of indifferentism to identity page 9 of [9] from the issue studied here.
Indifferentism seems to me to refer to working with structures up to isomorphism rather than caring about
the set theoretic construction. Here we take that modus operandi for granted and consider how one is to
describe the connection between various structures.

10Our articulation of them here was partially motivated by Kennedy’s work.
11Naturally we require that both K and ≺K are closed under isomorphism.
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The AEC notion was developed to simplify the study of infinitary logics by generaliz-
ing some of the crucial properties and avoiding syntactical complications. The crucial
Löwenheim Skolem property is derived from thinking of ≺ as a kind of elementary
submodel. But there is no explicit syntax and no notion of a definable set.

In contrast, Zilber’s notion of a quasiminimal excellent class [49] was developed to
provide a smooth framework for proving the categoricity in all uncountable powers of
Zilber’s pseudo-exponential field. This example itself is developed in a standard model
theoretic framework in Lω1,ω(Q). The structure is patterned on (and conjecturally
isomorphic to) to the complex exponential field (C,+,×, ex). For technical reasons
having to do with the simplicity of dealing with relational languages, the vocabulary is
taken to include all polynomially definable sets as basic predicates. The fundamental
result that a quasiminimal excellent class is categorical in all uncountable powers can
be presented in a formalism-free way. The key point is that there are no axioms in
the object language of the general quasiminimal excellence theorem; there are only
statements about the combinatorial geometry determined by what are in the application
the (Lω1,ω)-definable sets.

Hrushovski and Zilber [23] introduced Zariski geometries partly in an attempt to
remedy a notorious gap in the model theoretic study of algebraic geometry. Algebraic
geometry is concerned with the solution of systems of equations. But from a semantic
standpoint, there is no way to distinguish among definable sets, ‘all definable sets are
equal’. In particular, the class of definable sets is closed under negation and equations
and inequations have the same status. But from the perspective of algebraic geometry,
‘some definable sets are more equal than others’. Systems of equations (varieties) are
the objects of true interest. Hrushovski and Zilber remedy this situation by introducing
a topology. The definition of a Zariski geometry [50] concerns the relations between a
family of topologies (with a dimension) on the sets Dn for a fixed D. Generalizing the
case of algebraic geometry the closed sets should be given by conjunction of equations.
The main result of [23] is that every Zariski geometry satisfying sufficiently strong
semantic conditions can in fact be realized as a finite cover of an algebraic curve: More
precisely,

Theorem 1.3.2 (Hrushovski-Zilber) If M is an ample Noetherian Zariski structure
then there is an algebraically closed field K, a quasi-projective algebraic curve CM =
CM (K) and a surjective map

p : M 7→ CM

of finite degree such that for every closed S ⊆Mn, the image p(S) is Zariski closed in
CnM (in the sense of algebraic geometry); if Ŝ ⊆ CnM is Zariski closed, then p−1(Ŝ) is
a closed subset of Mn (in the sense of the Zariski structure M ).

The classes of Zilber and Shelah are presented ‘mathematically’: by properties of
the class of models that are not connected to truth of formal sentences. But Zilber’s
quasiminimal excellent classes are definable in Lω1,ω(Q) [28]12 and this axiomatiza-
tion was the explicit goal of the project.

12Kirby’s formulation makes the clear distinction between the ‘mathematical’ and ‘logical’ descriptions;
Zilber blurs the distinction in the original paper [49].
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To clarify the distinctions between ‘formalism-free’ and logical treatments, we pro-
vide some more examples of results in the study of AEC. Here is an example of a
‘purely semantical’ theorem. WGCH abbreviates the assertion, for all λ, 2λ < 2λ

+

.

Theorem 1.3.3 [WGCH] Let K be an abstract elementary class (AEC). Suppose λ ≥
LS(K) and K is λ-categorical. If amalgamation fails in λ there are 2λ

+

models in K
of cardinality κ = λ+.

Shelah’s celebrated ‘presentation theorem’ [40, 5] changes the role of logic from a
motivation (AEC are supposed to abstract the properties of classes defined in various
infinitary logics.) to a tool. The theorem asserts that an AEC with arbitrarily large
models can be defined as the reducts of models of a first order theory which omit a
family of types. But Morley [34] had calculated the Hanf number for such syntactically
defined classes. Thus, passing through the syntax, Shelah obtains a purely semantic
theorem: if an AEC with Löwenheim number ℵ0 has a model of cardinality iω1

it has
arbitrarily large models.

When spelled out, the syntactic condition in the presentation theorem is a set of
sentences in roughly Tarski’s sense. Thus, each of these three results provide examples
of Tarski’s consideration of a duality between description in a formal language and
mathematical description. In the first two cases we gain a firmer grasp on a certain
class of relations on the universe of model by seeing a specific logic in which they are
definable. In the third, we are able to deduce purely semantical conclusions. Notably,
the vocabulary arising in the presentation theorem arises naturally only in the context
of the presentation theorem. There is no apparent connection of each symbol of the
resulting vocabulary with any basic mathematical properties of the abstract elementary
class in question.

2 Formalization and Purity in geometry
In this section, we use our earlier analysis of vocabulary as a tool for considering the
question of whether/how formalization can be used to capture the notion of ‘purity of
method’. Our attention was drawn to this topic by the papers of [17, 3]. Our goal
here is to use our perspective of the role of vocabulary to set out the mathematical
issues involved in the study of Desargues theorem in a somewhat different way and to
make some comment on how this affects purity concerns. This analysis is based rather
directly on a first order axiomatization of geometry. Consideration in terms of Manders
[31] ‘diagram proofs’ would raise other pertinent issues.

We discuss the relation between the choice of vocabulary and basic axioms and
the ‘content’ of a subject in Subsection 2.1. In Subsection 2.2 we lay out some of the
mathematical background in terms of formal axiomatic systems to clarify the relation
between the Desargues proposition in affine and projective geometry. Subsection 2.3
analyzes several attempts to define the notion of purity and concludes that formaliza-
tion can highlight impure methods but does not give a criteria for ‘purity’. In Subsec-
tion 2.4, we come to grips with the essence of Hilbert’s work on Desargues’ theorem
and ask about the purity of his argument that the 3-dimensional proof is impure.
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The discussion of purity below will make clear that the context of a proposition is
crucial for the issues we are discussing. But the notions of what geometry actually is
have changed radically over the centuries. The distinction between the coordinate ge-
ometry of Descartes and synthetic geometry is crucial for our purposes. As [3] makes
clear the study of geometry in the late 19th century involved multiple dimensions,
surfaces of various curvature, coordinate and coordinate-free approaches. These dis-
tinctions remain today although perhaps fields of mathematics are laid out differently:
algebraic geometry, real algebraic geometry, differential geometry, topology, etc. etc.
Hilbert’s work on Desargues theorem led directly to one subfield of geometry; the coor-
dinatization theorems which are a main focus of this paper led to the study of projective
planes over usually finite fields as a distinct area of mathematics. In such major sources
for this area as [4, 24, 11] the proof of the Desargues theorem in 3-D geometry is not
central, if it appears at all. Rather, the importance of Desargues theorem is an indicator
of the algebraic properties of the coordinatizing field. The latter two books connect the
projective geometries with combinatorics. There are important links with the statistical
field of experimental design.

2.1 Content and Vocabulary
Given some area of mathematics, e.g. plane geometry, a formalization of the area has
three essential components: the choice of primitive notions (vocabulary), the choice of
logic13, and the choice of basic assumptions (axioms). In this section, we restrict to
first order logic.

The discussion of purity in geometry frequently [3, 17] draws on the following re-
mark of Hilbert in his Lectures on Geometry of 1898/99 (page 316 of [21]), translation
from [3]).

This theorem gives us an opportunity now to discuss an important is-
sue. The content (Inhalt) of Desargues’ theorem belongs completely to
planar geometry; for its proof we needed to use space. Therefore we are
for the first time in a position to put into practice a critique of means of
proof. In modern mathematics such criticism is raised very often, where
the aim is to preserve the purity of method, i.e. to prove the theorem using
means that are suggested by the content of the theorem.

We stress that the task is to ‘critique a means of proof’. We are given both con-
clusion and some premises. Both the premises and the intermediary steps are at issue.
And the issue is ‘method’. It is not the mere existence of a valid implication; there can
be pure and impure proofs of the same implication.

A key issue is whether concepts are introduced in the proof that are not implicit
in the conclusion. But ‘in the conclusion’ makes no sense without some specification
of the context. In Hilbert’s approach such a specification is made by asserting axioms
for the geometry which ‘implicitly define’ the primitive concepts. We follow that line
here.

13The choice of logic includes three of the components we discussed in Section 1: formulas, truth, proof.
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We somewhat refine below the ‘standard account of definability’ from [46] which
argues that a proper definition must satisfy the eliminability and non-creative criteria14.
As pointed out in [42], an extension by explicit definitions, is conservative over the
base theory, i.e. non-creative. We will justify below the need to allow adding to the
vocabulary of a given formalization (even in pure proofs) in order to prove a result.
The next examples show that axioms for additional relations can change content; we
provide directly relevant examples in Subsection 2.3. The crux is the word ‘content’.
What is the content of a proposition? Surely, the content changes if the models in the
base vocabulary in which the proposition holds change when additional axioms are
added.

Example 2.1.1 1. A vocabulary to study equivalence relations contains only = and
a binary relation symbol E1. There we can assert by a theory T1 that E1 is
an equivalence relation. But suppose the vocabulary is expanded by a binary
relation symbol E2 and T1 to a theory T2 asserting that E2 is also an equivalence
relation and each E2 class intersects each E1 class in a single element. Now all
the reducts of models of the full theory are equivalence relations in which all
equivalence classes have the same size.

Example 2.1.1.1 makes the point very clearly. Surely the first theory tells us
exactly what an equivalence relation is. And the concept of equivalence relation
entails nothing about the relative size of the equivalence classes. Specifically, the
sentence:

[(∃x)(∀y)(xE1y → x = y)]→ [(∀x)(∀y)(xE1y → x = y)]

is a consequence of the added information about E2.

2. Consider the proposition x · x · x = x in the class of Abelian groups formulated
in a vocabulary with a binary operation · and a constant symbol 1. Now expand
the vocabulary to a vocabulary for fields by adding new symbols + and 0; add
the axioms for fields and the axiom x+ x+ x = 0.

The meaning of the expression x · x · x = x is very different in an arbitrary
Abelian group (where there may be elements of arbitrary order) than it is in a
field of characteristic 3 (where it is a law of the multiplicative group).

3. Consider the class of linear orders in a vocabulary with a single binary relation
symbol <. Add an operation symbol + and constant 0 and assert the structure is
an ordered Abelian group. The original class contained 2ℵ0 countable models;
but only ℵ1 can be expanded to a group. See page 207([22]).

Of course, our assertion that content changes if the class of models changes is
based on the Hilbertian notion that the primitive concepts are implicitly defined by the
axioms. One might think of content in a more Fregean way; the axioms are describing
geometry. The danger of such a position is falling victim to Pierce’s paradox. If we
are speaking of a fixed geometry, the various properties are just true; one cannot be

14Suppes attribution of these criteria to Les̀newieski is vigorously contested in [48].
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meaningfully said to imply the other. I don’t see how one can back off from describing a
geometry to describing a family of geometries without embracing Hilbert; the analysis
of our concepts of geometry is a crucial tool to formulate the axioms. But geometries
we are able to study formally are whatever happens to satisfy the axioms.

2.2 Projective and Affine Geometry
Before turning to our specific analysis of the purity of proof of the Desargues propo-
sition we set some notation and clear away some extraneous matters. In this paper we
discuss first order axiomatizations of geometry. As in [20], we are trying to formal-
ize the ‘field of geometry (in the traditional sense)’. We make precise the distinction
and connections between affine and projective geometry to clarify that while the two
situations are distinct they behave the same with respect to purity of the Desargues
propostion.

In this subsection we formulate some formal systems for geometry.We have slightly
modified the statement of the axioms for projective planes from [19] and for affine
geometry from [20]. A crucial distinction is that the axioms given here for a projective
plane actually imply the structure is planar; any two lines intersect.

Definition 2.2.1 A projective geometry is a structure for a vocabulary with one binary
relation R. We interpret the first coordinate to range over points and the second to
range over lines. The axioms for a projective plane assert:

1. Any two lines intersect in a unique point.

2. Dually, there is a unique line through two given points.

3. There are four points with no three lying on a line.

These axioms are far from complete; analogous axioms for an affine plane assert:

Definition 2.2.2 1. There is a unique line through two given points.

2. There are four points with no three lying on a line.

We could extend Hilbert by passing from the informal axiomatization of the Grund-
lagen to fully formalized axiomatizations based on the conventions for first order logic
not fully established until some thirty to forty years years after his work on geometry.
While we don’t write out the axioms symbolically, the translation is clear. We could
introduce predicates for points and lines or we could simply insist that the domain and
range of the relationR do not intersect (a 0th axiom) and then define them to be respec-
tively the set of points and the set of lines. Note that the axioms for spatial geometry
in [19] and [20] explicitly introduce a new primitive term: plane.

Following [10] by the ‘high school parallel postulate’ we mean the assertion: for
any line ` and any point p not on the line, there is a unique line `′ through p and parallel
to `15.

15Euclid proves the existence of a parallel line on the basis of his first four axioms; in this context, the
5th postulate asserts uniqueness. In the context of projective plane geometry existence fails. See [10] for
an amusing and informative account of professional confusion over the difference between existence and
uniqueness of parallel lines and the actual content of Euclid’s fifth postulate.
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Remark 2.2.3 There is an easy translation between projective and affine geometry.
Given a projective plane P = (Π, R), eliminate one line, `, and all points that lie

on it. Now two lines `1, `2 whose intersection point was on ` are parallel. It is easy to
see that the affine plane satisfies the parallel postulate.

Similarly, supposeA = (Π, R) is an affine plane satisfying the high school parallel
postulate. Add a new line `∞ and let all members of an equivalence class of parallel
lines in Π intersect at a point on `∞; let these be the only points on `∞.

Definition 2.2.4 1. The affine Desargues proposition asserts: ifABC andA′B′C ′

are triangles with AC ‖ A′C ′, AB ‖ A′B′ and BC ‖ B′C ′ or intersect then
AA′, BB′ and CC ′ are parallel.

2. The projective Desargues proposition asserts: ifABC andA′B′C ′ are triangles
such that the points of intersection of AC with A′C ′, AB with A′B′ and BC
with B′C ′ are collinear then AA′, BB′ and CC ′ intersect in a point p.

The version in [20] (Theorem 53) 16) conflates the two by writing what I have given
as the affine form with the conclusion that the lines are parallel or all three intersect in
the same point.

It is easy to check:

Claim 2.2.5 Under correspondence in Remark 2.2.3, the affine plane satisfies affine
Desargues if and only if the projective plane satisfies projective Desargues.

Hilbert introduced a ternary betweenness relation to fill what he regarded as gaps in
Euclid; this extension is essentially irrelevant to our discussion here. While between-
ness is appropriate for affine geometry, to consider both affine and projective geometry
requires the more general quaternary separation predicate introduced by Pasch (See
e.g., [3].) representing that the four points are cyclically ordered. Unlike betweenness
this relation is projectively invariant. For the axioms of this relation see e.g. [19]. No-
tably, neither betweenness nor cyclic order appears in [19] until after the discussion of
Desargues and coordinatization.

2.3 General schemes for characterizing purity
In this subsection, we discuss several suggestions for more clearly specifying the notion
of a ‘pure’ proof, consider how they evaluate the purity of certain arguments, and then
draw some conclusions about these specifications.

Detlefsen and Arana distinguish a notion of topical purity. Rephrasing their discus-
sion in Section 3.4 of [12], there are certain resources which determine a problem (for a
given investigator). In mathematics, the determinants include, definitions, axioms con-
cerning primitive terms, inferences. These are referred to as the ‘commitments of the
problem’ and specify what we call the context of the problem. The topic of a problem
is a set of commitments. ‘A purity constraint restricts the resources available to solve a
problem to those which determine it. They then analyze the topical purity of a solution

16In the 1962 Open Court printing of Townsend’s translation of the first edition, Theorem 32 is the con-
verse and Hilbert writes this version in the text.
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in terms of its stability under changes in the commitments. We want here to connect
topical purity with several related notions considered by Arana [1, 2]. Our general con-
clusion (as Arana’s) is that it is not possible to translate the problem of purity into a
proposition about formal systems in the most traditional sense; it is essential to retain a
notion of ‘meaning’ in the discussion. Our argument can be seen as a model theoretic
analogue of the proof theoretic discussion in [2].

Arana introduces a notion of logical purity in [1].

Definition 2.3.1 (Logical Purity A) 1. The axiom set S is logically minimal for P
if S ` P but there is no proper subset of S proves P .

2. The proof of P is pure if it is a proof from an S which is logically minimal for P .

He points out that there are some obvious difficulties with this definition, since we
could conjoin a set of axioms and get something that is logically minimal. Here is a
more robust formulation.

Definition 2.3.2 (Logical Purity B) 1. The axiom set S is fully logically minimal
for P if S ` P and there is no S′ such that S ` S′, S′ ` P and S′ 6` S.

2. The proof of P is pure if it is a proof from an S which is fully logically minimal
for P .

The difficulty with the second formulation is that it turns out to be an even stronger
version of the following notion of Arana. [1].

Definition 2.3.3 (Strong logical purity) The proof of P from S over T is strongly log-
ically pure over some basis theory T if also T ` P → S.

As, S can only be minimal in the sense of Definition 2.3.2 if S is logically equiva-
lent to P ; otherwise choose P as the S′ to show S is not minimal. Thus the existence
of logically pure proof of P from S in the sense of Definition 2.3.2 requires that S and
P are logically equivalent.

Strong logical purity has a long logical history including Sierpinski’s equivalents of
the Continuum hypothesis in the 20’s, Rubin and Rubin’s 101 equivalents of the axiom
of choice and Friedman’s reverse mathematics. Pambuccian [36] pursues a similar
‘reverse geometry’, finding a minimal weak axiom system for four results in Euclidean
geometry. These are searches for the weakest hypotheses in terms of proof-theoretic
strength. They are not what Hilbert or Hallett claims for the Desargues property. And
as Arana rightly points out ‘reverse mathematics’ is not an issue of purity. Each of
these notions of logical purity, which I have just described, is about equivalence of
statements not about proofs; none of them address the key issue: ‘Which, if any, proof
of a theorem is pure?’.

Nevertheless, these formal notions are capable of detecting the non-existence of
pure proofs.

Proposition 2.3.4 No proof of Desargues proposition from the assumption of three
dimensions is strongly logical pure.
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If there were such a proof, every geometry satisfying the Desargues proposition
would actually be three dimensional. This is clearly false; we investigate the subtly
different consequence (embedability) of the Desargues proposition in Subsection 2.4.

The notion of topical purity builds on an earlier formulation of Arana, ‘a proof
. . . which draws only on what must be understood or accepted in order to understand
that theorem.’ (Page 38 of [1].)

Two issues arise. What does it mean to draw on? How can one determine ‘must be
understood or accepted to understand’. We follow Arana in leaving the second question
to individual cases. But there is a more uniform way to understand ‘draw on’. We say
that a ‘concept’ is drawn on in a proof when it is given a name. We are going to discuss
arguments below which could be formalized as derivations in a basic language. We
first observe that introducing relations that are not definable in the base language is a
definite sign of impurity. But we argue more strongly that an explicit definition may
violate purity concerns. We will discuss what we claim are ‘pure’ and ‘impure’ proofs
of the same fundamental result, explaining the reasons for this diagnosis. And then
argue for the value of each proof.

In earlier sections we avoided the word language because of its multiple meanings
in related contexts. We now introduce a specific meaning clarifying one of the three
discussed in Subsection 1.3. We seek now a more mathematical formulation of the
topical purity introduced in [12]17.

Definition 2.3.5 The language for a mathematical topic A is a vocabulary for A with
symbols for each of the primitive notions identified by the investigator and axioms for
the relations which are sufficient to delimit these concepts in the specified context.

Some examples are the language (+, ·, 0, 1) for rings (where the ring axioms are
specified) and the language (∨,∧, 0, 1) for bounded lattices (with appropriate axioms).
The vocabularies differ only in notation; this difference is meaningless without the
description of the properties.

Definition 2.3.6 (Topical purity) Choose a first order formalization for the resources
which determine the problems in the sense of the first paragraph of this section
(Detlefsen-Arana). That is specify a language including a set of primitive concepts
and axioms needed to describe the particular problem and its context A.

More formally, fix a vocabulary τ and a theory T0 that implicitly defines the con-
cepts named by the symbols τ . Now a topically pure proof of φ from ψ where φ and ψ
are τ -sentence is a proof of ψ from φ in T0 that invokes only concepts from the topic
A.

We will interpret ‘invoke’ in Definition 2.3.6 as ‘introduce by explicit definition’.

The choice of first order formalization is a real choice. In [35, 37] Pambuccian
provides examples distinct interpretations of the basic notions of a proposition which
lead to distinct, indeed incompatible, systems; each system can be thought to provide a
pure proof for the understanding of the concepts that has been formalized. [37] studies
the Sylvester-Gallai theorem: If the points of a finite set are not all on one line, then

17Arana suggested the specification was close enough to topicality to not deserve a new name.
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there is a line through exactly two of the points. One might conceive of a line in terms of
betweenness or as ‘the shortest distance between two points’. These provide different
contexts; Pambuccian explains three distinct proofs, one using the first concept and
two the second. These are based on incompatible axioms systems. He remarks that
still another proof holds for planes satisfying a certain Artin-Schreier condition.

We insist that the base language should reflect both the context of the topic and
the particular problem. If not, formalizations of [20, 19] would be impure for studying
Desargues theorem because they take‘plane’ as a primitive concept. And Desargues’s
theorem is about lines, points and incidence. But ‘plane’ is part of the context and it is
not important whether it is taken as a primitive or introduced by explicit definition.

A natural question is whether this notion is different from the notion of logical
purity described above. To show it differs from strong logical purity, we need only
exhibit a proposition which has both topically pure and impure proofs from the same
base theory. We will note this in Corollary 2.4.7.

It is tempting to insist that the analysis of the context and conclusion should elicit
all relevant concepts and thus the set of concepts used in the proof should be fixed in
the choice of language.

Sobociǹski [44] discusses this criteria on a formal system, primarily in the context
of propositional logics. Givant and Tarski [16] argue that including defined concepts in
an axiom system leads to a misleading appearance of simplicity of the axioms. They
discuss simplicity in terms of both the ‘length’ of the axiom system and it complex-
ity in terms of the number of quantifier alternations. While the second has important
structural consequences, as we discussed in Subsection 1.2, either measure of sim-
plicity appears to irrelevant to the notions of purity considered here. Both relate to
technicalities of the formalization.

We reject this criteria primarily because it is not true to mathematical practice.
Mathematical proofs are not carried out as derivations in a fixed formal language.
In particular, new concepts are introduced by definition for the purpose of particular
proofs. We explore examples of this type of extension in detail in Subsection 2.4. But
a simple example is to consider a formulation of projective geometry [39] (see the Ap-
pendix) that contains only points, lines, and incidence as primitive terms. In order to
carry out the proof that Desargues theorem holds in three-dimensional space, one needs
the notion of plane. And it is straightforward (Definition 4.3.13) to introduce the notion
of plane as an explicit definition in this system.

If these new definitions are mere abbreviations it seems they should be harmless.
Certainly if axioms are added about the new relations, this is no longer harmless (See
Example 2.1.1.). In fact, we will argue that, even without additional axioms, explicit
definitions can violate purity. That is why we add the requirement that the new defini-
tions remain within context of the original topic. We will illustrate the meaning of this
phrase in Subsection 2.4.

The first use of our characterization of topical purity is to determine cases where
there is no topically pure proof of a proposition. Here is an example. We generalize
Proposition 2.3.4 from ‘strongly logically pure’ to the much broader notion of topical
purity.

Proposition 2.3.7 There is no topically pure proof of the Desargues proposition in the
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plane.

Clearly the Desargues proposition is stated in terms of points, lines, and incidence.
Thus for projective or affine geometry, the existence of a topically pure proof would
entail that every model of the axioms in Definition 2.2.1 is a Desarguesian projective
plane. Many counterexamples to this assertion have been exhibited in the last 100-odd
years.

This claim is controversial. In particular, it has been argued18.

Remark 2.3.8 Counterclaim: Affine Desargues can be proved from planar axioms so
there is a pure proof in the plane

To evaluate this claim, we first clarify the mathematical situation. In [20], Hilbert
proves two mathematical results:

Fact 2.3.9 1. In three dimensional (affine or projective) geometry, Desargues the-
orem holds. This depends only on the incidence and order19 axioms.

2. In two dimensions, the affine Desarguesian theorem can be proved from the in-
cidence axioms, the parallel axiom, and the congruence axiom.

We showed in Example 2.1.1 that adding additional relations and structure can
change the interpretations of the basic structure. Here, we note that the problems arise
in the specific geometric context. It is true that affine Desargues can be proved from
the parallel postulate and congruence axioms (basically side-angle-side) and these are
surely planar concepts. But while parallelism is necessary to understand affine De-
sargues, congruence is not. The proof of Fact 2.3.9.2 requires extensions of the basic
geometric axioms in two distinct ways. First there are additional axioms in the same
vocabulary, the parallel postulate. But secondly a new concept of congruence must be
introduced; in fact several of them. A priori, one needs relations for segment congru-
ence (4-ary), triangle congruence (6-ary) and angle congruence (perhaps formulated
as a four-ary predicate on lines). And a congruence axiom such as SAS must also
be posited. The fact that additional axioms are introduced is immediate evidence of
impurity. In fact congruence is definitely foreign to the situation as the theorem of De-
sargues holds in an affine plane over any algebraically closed field. There is no notion
of congruence definable in the geometry over such fields (consider the Riemann map-
ping theorem). To define congruence one must introduce further relations, e.g., regard
the complexes as a two dimensional real vector space). Thus, in the spirit of [12], there
can be no topically pure proof of the Desargues theorem in the plane, even for affine
geometry.

The basic point here is that two distinct notions of geometry are being considered.
Metric geometry (or in the Euclidian formulation, geometry with parallels and congru-
ence) is a different subject than projective geometry which encodes only the properties
of lines and incidence. But in fact there is no pure proof in the context of affine metric

18See sections 4.1 and 4.7 of [3]
19In fact, the order axioms are a red herring. They are used only to guarantee that the coordinatizing field

is ordered. See Bernays Supplement IV in [20].
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geometry, because the congruence axioms require ‘flatness’; Desargues theorem fails
in various non-Euclidean geometries. But this illustrates an important attribute of the
search for pure proofs. It forces the clarification of hypotheses.

The next section explains that although the definition of topical purity allows the
introduction of new terms by definition, this introduction is restrained by the informal
context A. We will see that without this restriction proofs using manifestly impure
notions would meet the requirement for topical purity.

2.4 Purity and the Desargues proposition
As reported by Hallett in (page 227 of [17]), Hilbert argues that although the content
of the Desargues proposition is manifestly two-dimensional; three dimensional meth-
ods are necessary for its proof. We explore the role of vocabulary versus axioms in
understanding this claim. We first want to formalize Hilbert’s results on the strength of
planar Desargues.

Notation 2.4.1 1. PG is the theory of projective geometry (asserting the existence
of at least 3 dimensions) and PP is the theory of projective planes as in Defini-
tion 2.2.1.

2. Let Σ be the collection of sentences σ about projective planes (i.e. satisfied in
some projective plane) such that PG ` σ. I.e., σ ∈ Σ just if σ is true in at least
one projective plane and in every projective geometry of dimension at least 3.

Hilbert( page 220 of [17] or page 240 of [21]) conjectured and later proved two
results which establish the pivotal role of the Desargues theorem from a geometrical
standpoint.

Is Desargues Theorem also a sufficient condition for this? i.e. can a system
of things (planes) be added in such a way that all Axioms I, II are satisfied,
and the system before can be interpreted as a sub-system of the whole
system? Then the Desargues Theorem would be the very condition which
guarantees that the plane is distinguished in space, and we could say that
everything which is provable in space is already provable in the plane from
Desargues.

Using Notation 2.4.1, we formulate the two assertions of this quote in modern
terms.

Theorem 2.4.2 (Hilbert) 1. If Π is a Desarguesian projective plane, Π can be em-
bedded in three-space.

2. If ψ ∈ Σ then (PP + Desargues) ` ψ.

We place the situation in a more general framework. Let T1 and T2 be two ex-
tensions in the same vocabulary of a theory T . For a formula θ(y, x) a tuple a and a
sentence ψ, ψθ(a,x) denotes the relativization of ψ to θ(a, x).
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Definition 2.4.3 (Context) Suppose there is a formula θ(y, x) such that

1. For every ψ ∈ T2, T1 |= ∀yψθ(y,x)

2. For every ψ, T1 |= ∀yy′[ψθ(y,x) ↔ ψθ(y
′,x)]

3. If M |= T2 and M ′ |= T1 and M ⊆ M ′, there is an a ∈ M ′ such that M =
φ(M ′,a).

4. If T2 ∪ {ψ} is consistent and T1 |= ψ then T1 |= ∀yψθ(y,x)

Lemma 2.4.4 Let Σ be the collection of sentences that are consequences of T1 and
consistent with T2. Then Σ is contained in the consequences of T2.

Proof. Fix σ ∈ Σ. Let M |= T2, then M extends to a model M ′ of T1, so M ′ |= σ.
By 4) each instance φ(a, x) satisfies σ; in particular, by 3) M |= σ. Now by the
extended completeness theorem T1 ` σ. �2.4.4

Proof of 2.4.2: Taking T2 as PP + Desargues and T1 as PG, 2) is immediate
from 1) by Lemma 2.4.4. We discuss 1) at length and prove it in the appendix. �2.4.2

Thus if θ is a sentence about projective planes that we show in a formalism-free
way to be true in every plane that can be embedded in three-space, then θ can be
formally derived from the Desargesuian property. The Pappus theorem is an example
of a statement concerning projective planes, which is false in some planes that can be
embedded in three-space.

Hilbert’s analysis of the quality of a proof extends beyond topical purity. He wrote,
(in unpublished notes of Hilbert that are quoted in [17]).

Nevertheless, drawing on differently constituted means has frequently
a deeper and justified ground, and this has uncovered beautiful and fruitful
relations; e.g. the prime number problem and the ζ(x) function, potential
theory and analytic functions, etc. In any case one should never leave such
an occurrence of the mutual interaction of different domains unattended.

The role of ‘spatial assumptions’ is better seen by a more careful examination of
Hilbert’s proof of Fact 2.3.9 and Theorem 4.0.9. He begins [20] by noting that the three-
dimensional proof of Desargues theorem (Fact 2.3.9.1) from the axioms of connection,
order and parallels is well-known. The structure of his proof of each of Fact 2.3.9.2.
and Theorem 4.0.9 follows that pointed out for the proof of embeddability from Desar-
gues on page 228 of [17]. A ternary field is a structure with a single ternary operation;
roughly t(a, x, b) corresponds to ax+ b, which satisfies a set of axioms as specified in
[11, 24]. But for this correspondence to be literally true the plane coordinatized by the
ternary field must satisfy the Desargues property 20.

20In [6] I constructed a non-Desarguesian projective plane which is ℵ1-categorical. In [7], I prove that
despite its well-behaved nature from a model theoretic standpoint, this plane admits little ‘algebraic’ struc-
ture; in particular the ternary operation can not decomposed into two well-behaved binary operations and no
group is interpretable in the structure. I also proved this projective plane is in the definable closure of any
line (with no parameters) That is, the plane admits no perspectivities. The task of giving a geometric proof
of this result remains open.
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Remark 2.4.5 The structure of the argument:

1. Any geometry can be coordinatized by a ternary field.

2. If the geometry satisfies

(a) the Desargues proposition or

(b) the parallel postulate and SAS (the congruence axiom in Hilbert’s par-
lance)

then the coordinatizing ring is associative (and in fact a skew field21).

3. An n-dimensional affine (projective) geometry can be constructed as a set of n
(n + 1)-tuples from a Skew field and the plane can be embedded in the three-
space.

This proof from [20] introduces a different set of purity concerns. In Hilbert’s ar-
gument, a field is defined whose elements are equivalence classes of segments. These
are not geometric notions and the objects are not in the model but are what model
theorist now call ‘imaginary [32] elements’22. This objection is somewhat reduced by
Heyting’s proof. Heyting still defines a field, but its elements are points of the given
plane. Even if we have the fields as the points on a line, the construction of the three
dimensional model goes far afield from geometry. These new objects do not have ‘geo-
metric interpretations’. The modern geometry of homogenous quadruples is employed
in the construction. This is essentially a metamathematical argument constructing a
three-space out of whole cloth and embedding the original plane in it. This seems to
be a really new method introduced by Hilbert23. It is very different from Hilbert’s ge-
ometric construction of counterexamples to Desargues or the geometric argument for
Theorem 4.0.9 given by Levi [29] or in the appendix. At the least it is a precursor of the
modern notion of the interpretation of one theory in another. Moreover, Hilbert’s proof
of Desargues in an affine plane (Proposition 2.3.9.2) with congruence also goes through
this metamathematical trick of embedding in three-space and deducing the result from
the known proof of Desargues in 3-space. In fact, as pointed out in [3], Desargues
gave a geometric proof of his theorem (in three dimensions) in the affine case using the
theorem of Menelaus.

Consideration of some of the standard texts in projective geometry of the last half
century [4, 11, 24] reveals an interesting phenomena. The proof of Desargues propo-
sition is at best barely mentioned24. The crux is the understanding of the Desargues
proposition in terms of the properties of the group of collineations and in terms of the
properties of the coordinatizing ternary ring.

21A skew field or division ring is a structure for the vocabulary (+,×, 0, 1) which satisfies all the axioms
for a field except commutativity of multiplication.

22This is a deliberate decision of Hilbert so as to study the geometry of segments. Already in his 1893-
1894 lectures he had established a correspondence between the points on a line and numbers. See pages
68-69 of [21].

23This was remarked by Hallett[17].
24Hartshorne, [18], is an exception.
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Our use of ‘metamathematical’ in the previous paragraph has two senses.
Metaphorically, Hilbert is constructing a model and so this is a precursor of model
theory. But he has also given a ‘formalism-free’ proof of Theorem 4.0.9.2. (I.e. with
the conclusion expressed as in the quotation before Theorem 4.0.9.) But as we noted
in proving Theorem 4.0.9.2, this formalism-free proof translates to the existence of a
formal proof by the extended completeness theorem. (Of course, this translation was
not available to Hilbert in 1900.)

As we noted in Remark 2.4.5 and Proposition 2.3.4, the Desargues proposition
does not imply there are non-coplanar points. Thus, it is not true that the Desargues
proposition implies there is a third dimension. Rather, Hilbert showed, by a funda-
mentally non-geometric construction, one can embed the given plane in three-space.
But there is a ‘geometric’ construction of this embedding, which we present in the
appendix. Thus we have an example where an impure proof provides very significant
information. Indeed the very impurity of Hilbert’s argument is crucial for the 20th
century development of the theory of plane projective geometry. In fact, this may be
mathematical impact of a proof of impurity. It focusses attention on the proposition in
question as an axiom for selecting a new field of study. For example, the fact that there
is no pure proof of the Desargues proposition in the plane calls attention to the impor-
tance of studying Desarguesian planes. In fact, the crucial property, as Hilbert saw, is
not the geometric configuration itself but the associated algebraic structure; it was later
codified in terms of transitivity properties of the automorphism group (Lenz-Barlotti
classification).

In contrast, I claim that the argument for Theorem 4.0.9.1 in the appendix is top-
ically pure. The crucial point is that Hilbert’s argument introduces the notions of co-
ordinatization and field which are foreign to synthetic geometry. In the Appendix, we
reinterpret the words, point, line, and plane in terms of certain planar configurations to
interpret a 3-space containing π in a Desarguesian plane π but don’t introduce signifi-
cantly new concepts.

Since Hilbert’s proof is impure, we conclude.

Fact 2.4.6 The assertion that every Desarguesian plane is embedded in three-space
has both topically pure and topically impure proofs from the axioms PP of projective
planes.

Corollary 2.4.7 The notions of strong logical purity and topical logical purity differ.

The Desarguesian proposition is a dividing line in the sense of Shelah (e.g. intro-
duction to [41]). Its truth implies strong coordinatization properties; its failure implies
planarity (in an axiom system that is agnostic on dimension). Specifically, the asso-
ciativity of the coordinatizing field is used to prove that the relation of tuples from the
field: x ∼ y if there is a ‘number’ c with y = cx by coordinate-wise multiplica-
tion (used to introduce homogenous coordinates) is transitive and thus an equivalence
relation. Thus we have:

Fact 2.4.8 The following are equivalent: A projective plane is

1. coordinatized by an associative skew field.
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2. satisfies the Desargues property;

3. can be embedded in three-space.

There is another connection between spatial axioms and associativity. In three-
dimensional Euclidean geometry the volume of a cube can be computed. Interpreting
XI.32 of [15] in modern language yields the formula V = `wh. (He proves that the
volume of a parallelpiped is determined by the area of the base and the height.) The
fact that the geometric notion is independent of which side is chosen as the base of the
parallepiped implies the associative law for the coordinatizing field 25.

Finding the associative field is, in modern terms, an interpretation of the ‘field’
into the geometry. It proceeds by a sequence of explicit definitions. The proof of
the algebraic axioms follows from the geometry. And then the plane is interpreted
back into the 3-space over the field. Thus if there is any distinction between algebra
and geometry this fails to be a topically pure proof. But this conclusion cannot be
established by a characterization of purity such as strong logical purity which concerns
the mere existence of proof. The failure of topical purity is seen by consideration of the
meaning of concepts introduced in the proof: the introduction of the notion of a skew
field which is not a geometric notion is decisive.

This illustrates Tait’s maxim: The notion of formal proof was invented to study the
the existence of proofs, not methods of proof. Or as Burgess [9] puts it, ‘For formal
provability to be a good model of informal provability it is not necessary that formal
proof should be a good model of informal proof.’

We should not ignore the virtues of a demonstration that there is no pure proof.
It shows that additional resources are needed for a particular claim. The Desargues
proposition is particulary instructive in showing the value of the searching for the con-
tent of those additional resources. Hilbert isolated the ability to coordinatize in terms
of the Desargues configuration and its connections with the interpretability of division
rings. A significant part of 20th-century mathematics, the further development of pro-
jective planes, particularly finite projective planes, relied both on the algebraization
and on the discovery of the underlying properties of the group of perspectivities of the
plane.

Hilbert succeeded in showing a deep connection between algebraic and geometric
conceptions by identifying both the algebraic (associativity) and geometric (Desargues
proposition) conditions necessary and sufficient for Descartes coordinatization to suc-
ceed.

3 Distinguishing Algebraic and Geometric proof
This section is a commentary on the Appendix, arguing that it provides a pure geo-
metric proof of the embedability theorem while Hilbert’s proof is manifestly not pure.
For this we need some distinction between algebra and geometry. Algebra deals with
numbers (of various sorts); geometry deals with magnitudes. Geometric arguments

25Serendipitously, this argument was given by Ken Gross in a professional development program for
elementary school teachers while I was working on this paper.
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admit and (as the writing of the appendix demonstrated) often demand pictures. The
distinction is clearly made in the quotation from Newton in [12]; there should be no
arithmetical computations except of ‘Quantities truly geometrical’. The essence of co-
ordinatization, fundamental to Hilbert’s proof of the embedding theorem, is to reject
this notion.

Thus in the appendix the crucial vocabulary remains points, lines, and planes. There
is no introduction of multiplication and addition and no reliance on the development of
coordinate geometry. Crucially, however, lines are introduced as a set of triangles and
certain equivalence relations play a significant role. This is a more complex argument
than models of non-Desarguesian planes that interpret (pieces) of curves as lines. This
level of complexity is implicit in Hilbert.

The number of special cases that appear in the proof below are characteristic of ge-
ometric arguments. Algebraic methods (as is clear in the developments of 20th century
algebraic geometry) can clarify the notion of a ‘generic configuration’. Thus, the coor-
dinatization of a Desargesuian plane requires a not-quite arbitrary choice of coordinate
points. In contrast Claim 4.3.12 requires a delicate argument to replace ‘arbitrary’
points by ones that are in general position.

Our argument makes clear the geometric picture that motivates the coding of points
in three-space by triples in the plane. Levi does not bring this out and it is unclear if
he had the same picture in mind. In particular, he gave the proof in the affine case and
then extended to projective planes on general grounds as in Remark 2.2.3.

4 Appendix: A geometric proof that Desargues implies
embeddability
with William Howard

Theorem 4.0.9 A Desarguesian projective plane π can be embedded in a three dimen-
sional geometry.

Levi’s first ‘geometric’ proof of Theorem 4.0.9 appeared in [29] in 1939. The sec-
ond author remembers reading a version of the proof but not where 26. The argument
here stems mostly from the second author’s reanalysis and differs from Levi by pre-
senting the motivation more clearly and by a quite different application of Desargues.
It differs from both Hilbert and Levi in being purely projective with no reference to
affine geometry. The crux is that either this argument or Levi’s differ from Hilbert’s
as there is no mention of coordinatization by a skew field. For concreteness, we view
projective geometry as axiomatized in [39] and recite the exact axioms later.

4.1 Some plane projective geometry
The following key property of a Desarguesian projective plane drives the main work.

26Victor Pambuccian pointed us to an exact reference, [29].
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Definition 4.1.1 Fix a point P and let SP denote the set of pairs â = 〈a1, a2〉 such
that P lies on the line a1a2. For any ` ∈ π, and â, b̂ ∈ SP such that â and b̂ do not lie
on the same line through P , define R` by

âR`b̂ if and only a1, a2 and b1, b2 are centrally perspective by a point on `.

Lemma 4.1.2 For any ` ∈ π,

1. If â, b̂, ĉ ∈ SP lie on distinct lines through P then âR`b̂ and ĉR`b̂ imply âR`ĉ

2. R` is an equivalence relation on any set of pairs which determine distinct lines
through P .

Proof. Suppose â, b̂, ĉ determine distinct lines through P . Suppose âR`b̂ and
ĉR`b̂. Note that the result holds trivially if either a1b1c1 or a2b2c2 are collinear.
So we may assume the triangles a1b1c1 and a2b2c2 are proper; by definition of SP
they are centrally perspective through P . Note that the points of central perspectivity
Oâ,b̂, Oâ,ĉ, Oĉ,b̂ are the intersections of the sides of a1b1c1 and a2b2c2. By Desargues’
theorem Oâ,b̂, Oâ,ĉ, Oĉ,b̂ are collinear. By the definition of R` the first and third are on
` so all three are. Applying the first part of the lemma multiple times yields the result.

�4.1.2

4.2 Motivation
The goal here is a direct construction: Given a Desarguesian plane π, we construct a
three dimensional projective space containing π. We will describe incidence in π in
English; incidence in the new structure will be given by ‘element of’. We use capital
Roman letters for the points in a general projective plane, lower case Roman letters
for points in the new space (i.e. ‘triangles’ in π3) and list the points on the triangle a
as a1, a2, a3 in π. Points in π may be labeled by capital Roman letter or subscripted
lower-case Roman letters depending on the context. Planes are labeled by Greek letters
and lines by lower case Roman letters.

The basic idea is to reverse the following operation. Fix a plane π in three-space.
Then map the three-space onto π by fixing a triangle M1M2M3 in a plane α not equal
to π and mapping each P to the triangle, say 〈a1, a2, a3〉 that P projects M1M2M3

onto in π. A little thought shows there are certain subtleties in this idea. Let ω denote
the line where α and π meet and let H denote M1M2 ∧ ω, V denote M1M3 ∧ ω and
D denote M2M3 ∧ ω. Any point not in α ∪ π will project to a proper triangle in π.
Points on α have various special forms which are precisely defined as the sets Ωi in
Definition 4.3.1. If P is on α but not colinear with one of the edges of M1M2M3 it
projects to three distinct points on ω (in Ω0). If P is on M1M2 but not M1 or M2 it
projects to 〈H,H, s〉 for some s ∈ ω − {H,V,D} (in Ω1). The cases of M1,M2,M3

are even more special. Each of them projects to a pair from {H,V,D} (into Ω2). A line
` in three-space not in αwill project to a ‘line’ of triangles in π which are in perspective
from ` ∧ π.
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4.3 The Construction
With a little care for special cases and appropriate use of the Desargues theorem we can
reverse the map in Section 4.2 and code the three-space. While, especially in footnotes,
we return to the picture of the previous paragraph for motivation, formally, we are now
defining a three-space by defining in π a set of points (certain triangles) and the notions
of line, incidence and eventually plane on those points.

Definition 4.3.1 (The Model: I) Fix a line ω in the Desarguesian plane π and distinct
points H,V,D, called the coordinate points, on ω. S is a collection of ordered triples
from π.

1. The set of regular points Sr in the new three space consists of the proper triangles
a = a1a2a3 in π such that H is on a1a2, D is on a2a3, and V is on a1a3. We
call them regular triangles.

S also contains several exceptional cases.

(a) degenerate triangles: a1 = a2 = a3. That is, a ∈ π.

(b) ‘triangles’ on ω: 27:

i. Ω0 denotes the set of special triangles, ordered triples 〈a1, a2, a3〉, of
distinct points on ω 28.

ii. Ω1 is the set of very special triangles, triples of points from ω of the
form 〈H,H, x〉, 〈V, x, V 〉, 〈x,D,D〉 with x ∈ π − {H,V,D}29.

iii. Ω2 denotes the three ‘triples’ 〈∗, H, V 〉, 〈H, ∗, D〉, 〈V,D, ∗〉 where ∗
indicates that one coordinate is undefined30.

Ω = Ω0 ∪ Ω1 ∪ Ω2 ∪ ω is called the plane at infinity.

2. A regular line m in the three-space is a set of a ∈ S such that for some fixed
0m ∈ π any a, b ∈ m are centrally perspective31 with center Om. Note that Om
is a degenerate point in S of type 1a) and Om ∈ m.

L denotes the set of all lines including those entirely contained in Ω and Lr
denotes the set of regular lines (those which contain a regular triangle).

The lines on Ω are described in Definition 4.4.5.

We will say a special triangle b is centrally perspective with a regular triangle a if
the lines aibi (for i ≤ 3) meet in a point. We write Oa,b for the point on π of central
perspectivity of a and b. We say two or more points in S are regularly collinear if
there is a regular line through them. Suppose a, b, c ∈ S are three points that are not

27These points corresponding to the images of elements of the plane α.
28These points are in central perspective with a regular triangle and are discussed in Remark 4.3.3.
29These are also in perspective with a regular triangle; see Remark 4.3.2.
30In our prototype, M1 7→ 〈∗, H, V 〉, M2 7→ 〈H, ∗, D〉, M3 7→ 〈V,D, ∗〉. These points lie on the type

3 lines in Remark 4.3.2.
31More precisely, a1a2a3 and b1b2b3 are centrally perspective at a1b1 ∧a2b2 ∧a3b3 = Om. There are

three special cases, e.g. when a1a2 and b1b2 are the same line through H in π. In this case, letting s denote
a3b3 ∧ ω, the very special point 〈H,H, s〉 is on the line.
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regularly collinear and that a is a regular triangle. Then ab and ac are two distinct
regular lines.

We begin by observing a natural classification of regular lines in S.

Remark 4.3.2 (Classifying regular lines) Each regular line r ∈ Lr (i.e. not on Ω) is
given by a triple (r1, r2, r3) of lines in π. (In case 3a below one of the ri is not defined;
all triangles on the line share a point.) ri goes through the xi coordinate of the triangles
in r. The intersection of the ri is Or, the vertex.

type 1 None of the coordinates H,V,D is on any ri; the ri are distinct.

type 2 Two of the ri agree and go through a coordinate point, H , V , or D32.

r1 ∧ ω r2 ∧ ω r3 ∧ ω
2a) r1 = r2 H H ω − {V,D}
2b) r1 = r3 V ω − {H,D} V
2c) r2 = r3 ω − {H,V } D D

type 3 One of the ri is undefined and so has no intersection with ω. Or is a vertex of
every regular triangle in r.

r1 ∧ ω r2 ∧ ω r3 ∧ ω
3a) undefined H V
3b) H undefined D
3c) V D undefined

Remark 4.3.3 (Special triangles) Specifying two points on a regular triangle b deter-
mines the third and the labeling is determined by e.g. b1 is the vertex that is the inter-
section of lines through Hb2 and V b3. We establish the analogous claim for special
triangles in Lemma 4.3.4.

Lemma 4.3.4 Let s1, s2 be two points in ω − {H,V,D}. Then there is a unique point
s3 on ω so that s = s1s2s3 is in central perspectivity with a regular triangle a1a2a3.
Thus, s ∈ Ω0.

Proof. Choose any regular triangle a1a2a3. Let P on π be the intersection of s1a1
and s2a2. Since the si are not in {H,V,D}, P is not on a line extending a side of
a1a2a3. Choose s3 as Pa3 intersect ω. We show that s3 does not depend on the choice
of a1a2a3. Let b1b2b3 be another regular triangle and by the same procedure choose
a point of perspectivity Q and an s′3 = Qb3 ∧ ω so that s1s2s′3 and b1b2b3 are in
perspective from Q. By the converse of Desargues, the regular triangles a1a2a3 and
b1b2b3 are centrally perspective through some point R. Further,

1. a1b1s1 and a2b2s2 are centrally perspective by H and

32If one thinks of the affine part of the plane the lines in this class are horizontal, vertical, and diagonal in
that order. Note the special case when, e.g. in 2a), the intersection point is 〈H,H,H〉; this is the image of a
triangle whose plane contains M1M2. Lines of this form contain no special triangles.
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2. a2b2s2 and a3b3s3 are centrally perspective by a2a3 ∧ ω = D.

Applying Desargues, 1) yields a1b1∧a2b2 = R, b1s1∧b2s2 = Q, and a1s1∧a2s2 = P
are collinear. And 2) implies a2b2 ∧ a3b3 = R, a2s2 ∧ a3s3 = P are collinear with
b2s2 ∧ b3s3. That is b2s2 ∧ b3s3 lies on PR and so must equal Q. But then Qb3 ∧ω =
b3s3 ∧ ω and s3 = s′3. �4.3.4

We make two crucial observations.

Fact 4.3.5 If a and b are in S and at most one of them is on Ω, Oa,b is well-defined.
Every regular line meets Ω.

Proof. The first sentence is clear from Lemma 4.3.4 when a ∈ Sr and b ∈ Ω0 has
two coordinates from ω − {H,V,D}. But even in case b ∈ Ω1 ∪ Ω2, there are two
lines aibi and ajbj (for some i, j among 1, 2, 3) which are distinct; their intersection is
Oa,b. If a ∈ π then for any b, Oa,b = a. The second sentence is easy to check. �4.3.5

We now give an external definition using the tools of our construction of the plane
generated by three points, where one is regular. We will show that in (S,L, ε) it de-
scribes the same notion as the intrinsic Definition 4.3.13.

Definition 4.3.6 (The Model: II) If a, b, c ∈ S are three points that are not regularly
collinear and a is a regular triangle, the plane α = 〈a, b, c〉 generated by abc is the
union of all lines `x ∈ S that pass through a and some point x on the line `α =
Oa,bOa,c (called the trace of `α) in π. Formally

α =
⋃
x∈`α

`x.

Remark 4.3.7 Since the 7 element Fano plane is the only projective plane with exactly
three points on a line and it is coordinatized by the 2 element field, we can assume that
each line in π has at least 4 elements. Consequently each regular line in S contains at
least two regular points.

We want to apply Desargues’s theorem to study planes containing regular points.
The difficulty is that applications of Desargues theorem to establish the transitivity of
the relations R` from Definition 4.1.1 require that certain triangles not have sides on
a common line. From now though Lemma 4.3.12 we see how to adjust situations to
avoid this problem.

Definition 4.3.8 By a direction of a regular triangle b we mean any of the lines that
extend a side of b to one of {H,V,D} (E.g. the line b1b2H; to specify the direction we
write X-direction for some X ∈ {H,V,D}.).

Definition 4.3.9 Suppose a, b, c ∈ S. We say a pair of regular triangles a, b are aligned
if they share a direction.

No regular triangle is aligned with a special triangle. Any pair of elements of Ω is
aligned.

We say three triangles a, b, c are askew if there is a direction in which no pair of
them is aligned.
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We will need some stronger variants on Lemma 4.1.2. First we extend the relation
R` from pairs to triangles.

Definition 4.3.10 For any ` ∈ π, and a, b ∈ S such that Oa,b exists define R` by aR`b
if and only Oa,b ∈ `.

Lemma 4.3.11 Suppose a, b, c ∈ S, and at most one is in Ω, then R` is transitive on
{a, b, c}. R` is transitive on any finite set of elements in S with at most one on Ω and
the rest in Sr.

Proof. Suppose a, b, c are all aligned in a direction, say D for simplicity. Then
a1, a3, b1, b3, c1, c3 lie on a line ` and each of Oa,b, Oa,c, Ob,c must lie on that line.
Assuming this case does not occur, we prove.

Claim 4.3.12 We can choose d such that

1. for two of the triangles (say a, c) Oa,d = Oc,d = Oa,c;

2. a, d, b and b, c, d are askew.

Proof of Claim: If one of the points is in Ω, a, b, c are automatically askew. So we
consider the case where all are regular. There are two cases.

First suppose that two of the triangles are aligned in two directions. Fix these as b, c
and suppose they both D-aligned and V -aligned. (The choice of names of the triangles
in the statement of Claim 4.3.12 depend on the choice made here.) Then c3 = b3 and
since the three are not X-aligned for any X , if there is any alignment with a, it is along
H . Suppose a and c are H-aligned. Choose d3 on c3a3 not equal to either of them.
Then let d1 = d3D ∧ a1c1 and d2 = d3V ∧ a2c2. Now neither d, b, a nor d, b, c is
D-aligned.

The second case is when no pair is aligned in two directions but perhaps each pair is
aligned. Suppose for example, that a1, a2 and b1, b2 are collinear. By our case analysis,
we may suppose that a, c are not both D and V aligned. For concreteness, say they are
D aligned. And we may also assume that a2 6= c2 as equality would imply that a and c
areH-aligned. If they were, c1 would be on both a1a3D and a1b1H so a1 = c1 and we
would have all three H-aligned contrary to the first line of the proof of Lemma 4.3.11.
Thus, a3 6= c3 and a2 6= c2. Choose regular d1 on a1c1Oa,c but not among a1, c1 or
Oa,c. Now let d2 beHd1∧a2c2 and d3 beDd2∧a3c3. Both of these points are defined

The construction guarantees that c, b, d are notH-aligned and b, a, d are not aligned
in the D (i.e. a2a3) direction. �4.3.12

This implies that R` is transitive on any triple of elements in S with at most one
on Ω and the rest in Sr. For a, b, c ∈ Sr, the result follows from Lemma 4.1.2 applied
to the two triples in 2) along the non-aligned direction. That is, suppose aR`c and
bR`c. We have Oc,d = Oa,d and Ob,c are both on ` so applying Lemma 4.1.2 in the
H -direction to c, b, d Ob,d ∈ `, i.e bR`d. We have bR`d and by construction aR`d, so
applying the Lemma 4.1.2 in the D-direction on a, b, d, we deduce aR`b. If one of the
points is on Ω, the result is easier as we don’t have to do so much adjustment to apply
Lemma 4.1.2.
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For the second sentence, suppose we are given a set A of n regular triangles
a1, . . . an ∈ Sr and an+1 ∈ Ω. It suffices to show R` is transitive on each three
element subset of A. We can establish this by applying part 1) independently to each
such triple. �4.3.11

Robinson [39], whose axiomatization we are using, unlike Hilbert, does not take
plane as a primitive but makes the following intrinsic definition.

Definition 4.3.13 The plane generated by a, b, c is the collection of all points on lines
that contain a and intersect bc.

We show in Lemma 4.3.18 that our external notion of plane, Definition 4.3.6, co-
incides with the intrinsic definition in the language of the geometry that we give now.
For this, we need the consequences of Desargues we have just developed and work ex-
tensively with the extrinsic definition until proving the equivalence in Lemma 4.3.18.

Lemma 4.3.14 Suppose a, b, c are distinct points in S and a is a regular triangle. If
d is a regular triangle on the plane α generated by abc (`α and a) in the sense of
Definition 4.3.6, then α is also generated by dbc (by `α and d) in the same sense.

Proof. Suppose the trace of α on π is ` = `α. If b, c ∈ Ω, each of the triples
a, b, d and a, c, d is askew. In particular there is a direction X such that the three lines
through X extending sides of a, b, d are distinct. If at most one point is in Ω we apply
Lemma 4.3.11 to guarantee the triangles are askew. For any of these points u in S, let
û denote the restriction to the relevant pair in SX . We have d̂R`â and b̂R`â. Hence
we can apply the Lemma 4.1.2.1 for SX , to conclude d̂R`b̂. Similarly, d̂R`â and ĉR`â
imply by Lemma 4.1.2.1, d̂R`ĉ. So Od,bOd,c = `α so α = 〈d, b, c〉 and α is generated
by `α and d. �4.3.14

Lemma 4.3.15 If α = 〈a, b, c〉 is generated by abc, where a is regular, then there is a
k ∈ {1, 2, 3} such that

1. For every regular point d = 〈d1, d2, d3〉 in α, dk is not on `α.

2. sk ∧ ω is defined for the line through bc, which is given by s = 〈s1, s2, s3〉.

3. For every regular line s = 〈s1, s2, s3〉 in α, sk is defined.

Proof. Note first that some coordinate ai of a, must not be on `α since a is proper
triangle in π. We will show that in this case no regular triangle d in α has di on α. For
simplicity, suppose i = 1. Suppose for contradiction some d ∈ α has d1 on `α. Then
d1 = Oa,d so d1d2H , d1a2d2 and thus d1d2a2H are collinear in π. But then since
a1a2H is a line, a1 is also on this line. Similarly d1d3a3a1V is also a line. But they
meet in both a1 and d1. So a1 = d1 contrary to a1 not on `α.

For the second claim, continue with the case k = 1. Suppose the line s =
〈s1, s2, s3〉 ∈ α is through b, c, but s1 is not defined. Then b1 = c1. But Oa,b lies
on a1b1 and Oa,c lies on a1c1, so b1 = c1 is on `α contradicting part 1.

By Lemma 4.3.14, we can choose any d on s and assume α is generated by d and
bc, yielding iii) from ii). �4.3.15

We need a bit more information about the composition of lines.
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Lemma 4.3.16 Let r = 〈r1, r2, r3〉 be a line with rk ∧ ω defined, say k = 1. For any
point b1 on π, there is a unique triple 〈b1, b2, b3〉 on r.

Proof. By the inventory of lines, Remark 4.3.2, we can choose a k, (say 2 for
concreteness) so that r2 6= r1. Consider first the case that r is of type 1 or type 2.
Then, again by Remark 4.3.2, H is not on r1 nor r2. Let b2 = b1H ∧ r2. If b1 is not
on ω then neither is b2 and b3 = r3 ∧ b2D. Then H is not on either r1 or r2. If b1 is
on ω then so is b2. But r2 ∧ Hb1 = b2 so neither b1 nor b2 is H . By Lemma 4.3.3,
we can choose b3 as required. If r is of type 3, we are in case Remark 4.3.2.3c and
〈b1, b2, b3〉 = 〈V,D, ∗〉. �4.3.16

Lemma 4.3.17 If a, b, c are regular, any two regular lines in the plane α generated by
abc in sense of Definition 4.3.6 intersect.

Proof. Let r and s = 〈s1, s2, s3〉 be two such lines. Lemma 4.3.14 allows us to
assume a is on r and so r has the form y′a for some y′ on `α. We need to show that
y′a ∧ s is non-empty. By Lemma 4.3.15.2, there is a k such that sk is defined. For
simplicity, assume k = 1. Let d1 = y′a1 ∧ s1. By Lemma 4.3.16 there is a unique
triple d = 〈d1, d2, d3〉 on s. We claim d is also on y′a. By the definition of α, Oda lies
on `α. But d1 is on a1y′ so Oda = y′. Thus d = y′a ∧ bc as required. �4.3.17

Lemma 4.3.18 If a, b, c are regular, the plane α generated by abc in sense of Defini-
tion 4.3.6 is the same as that given by Definition 4.3.13:

α =
⋃
x∈bc

`xa

where `xa ∈ L is through the regular triangles x and a.

Proof. Let d be a regular triangle on bc. We must show Oa,d lies on `α =
Oa,cOa,b ∈ π. By Lemma 4.3.11, Ob,c is on `α. Since d is on bc, Ob,d = Ob,c ∈ `α.
By Lemma 4.3.11 again, Oa,d is on `α as required.

For the converse, let y ∈ α. Then y is on a line y′ay with y′ on `α and we need to
show that y′a ∧ bc is non-empty. Apply Lemma 4.3.17 with r = y′a and s = bc.

�4.3.18

4.4 The plane at infinity
The points of Ω are a very special plane in S. In this subsection, we study the lines
on this plane and conclude with Lemma 4.4.7 verifying that Ω is in fact a plane in the
sense of Definition 4.3.13.

Remark 4.4.1 Note that if b, c are regular triangles, the point Ob,c ∈ π is on every
plane containing b, c. Moreover if b, c are in each of two planes α and β the line
through b, c is the intersection of α and β. As, if there were some regular d in the
intersection but not on that line, Lemma 4.3.14 and the argument in the first paragraph
of Lemma 4.4.2 shows α = β.
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We need to describe the line through two points on Ω: some effort is needed to
define these lines. The key is to establish Remark 4.4.1 for special triangles.

Lemma 4.4.2 Suppose b, c ∈ Ω. There is a point t on ω such that t is in every plane α
that contains a regular point of S and b, c.

If α is not contained in Ω, {t} = α ∧ ω.

Proof. Consider two distinct planes α and β which both contain b, c. Say α =
〈a1, b, c〉 and β = 〈a2, b, c〉. Then `α∧ `β = t is a point (degenerate triangle) on π. If t
is not on ω, choose a regular triangle t′ on tb in S. By two applications of Lemma 4.3.14
(replacing either a1 or a2 by t′), α = 〈a1, b, c〉 = 〈t′, b, c〉 = 〈a2, b, c〉 = β. So any
plane γ containing b, c meets α in `α ∧ `γ = {t}.

If α is not contained in Ω, we can generate α as 〈a, b, c〉 for any regular a ∈ α.
But then neither Oab nor Oac is on ω so ω ∩ α must be singleton (otherwise α would
contain all of π). �4.4.2

Since t = Oat ∈ `α = OabOac, we have:

Corollary 4.4.3 Suppose b, c ∈ Ω and α is a plane containing b, c. Then for any
regular point a on α, α = 〈a, b, c〉 = 〈a, c, t〉 = 〈a, b, t〉 where t = `α ∧ ω.

Now we show that the intersection of a plane with Ω is determined by any pair of
points in that intersection.

Lemma 4.4.4 Suppose α, β are planes that are not contained in Ω and b, c ∈ Ω,
b, c ∈ α ∩ β. If d ∈ Ω ∩ α, then d ∈ Ω ∩ β.

Proof. By Lemma 4.4.2, α and β intersect in a point t ∈ ω. Choose any regular
point a ∈ β, so β = 〈a, b, c〉. By Lemma 4.4.2, t ∈ β since b, c ∈ α ∧ β. Applying
Corollary 4.4.3, β = 〈a, b, c〉 = 〈a, c, t〉.

Let γ be the plane generated by a, d, c. Then t ∈ γ since α and γ are planes
containing a and d. Again by Corollary 4.4.3, γ = 〈a, d, c〉 = 〈a, t, c〉 = β. So γ = β
and d ∈ β as required. �4.4.4

Lemma 4.4.4 justifies the following Definition 4.4.5 of a line through two points in
Ω.

Definition 4.4.5 For a, b ∈ Ω the line through a, b is the intersection of some (any)
regular plane that contains a and b with Ω. Note this line includes the point t from
Lemma 4.4.2.

Lemma 4.4.6 Any two regular planes in S intersect in a line.

Proof. Let α and β be two regular planes. If there are two points b, c in their
intersection the intersection is the line through b, c by Remark 4.4.1. In particular we
are finished if `α = `β .

So we must show two regular planes α, β intersect in at least two points. One point
is e = `α ∧ `β . To find a second, let r be a regular line in β. We will prove that r
intersects α is a point different from e. For this, choose a ∈ α but not on `α. Let γ
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be the plane generated by r and a. Then γ contains both r and the line s = ae. By
Lemma 4.3.17, r and s meet in a point, which since s lies on α, must be in α. Thus,
r ∧ s is our second point.

�4.4.6

Lemma 4.4.7 Ω is a plane.

Proof. Let a, b, c lie on Ω. Let α, β, γ three planes, each containing a regular
point and containing ab, bc, ac respectively. For any d ∈ Ω, Definition 4.3.13 shows it
suffices to that ad ∧ c¬∅. Let δ be a regular plane which intersects Ω in the line ad.
By Lemma 4.4.6 or Definition 4.4.5 δ and β intersect in a line m. Then m and bc are
both in β. So by Lemma 4.3.18 and Lemma 4.3.17, m ∧ bc is the required point of
intersection. �4.4.7

4.5 Verifying the axioms
For concreteness, we specify the axioms as formulated in [39]. The term plane is not
primitive.

Definition 4.5.1 (Basic axioms) Axiom 1 There are at least two distinct points.

Axiom 2 Two distinct points A and B determine one and only one line on both A and
B.

Axiom 3 If A and B are distinct points, there is at least one point distinct from A and
B on the line M1M2.

Axiom 4 If A and B are distinct points, there is at least one point not on the line AB.

First we verify the basic axioms.

Lemma 4.5.2 (S,L, ε) satisfies the basic axioms.

Proof.

Axiom 1 Any two distinct points a1, a2 in π − ω determine a unique regular triangle
a1a2a3 ∈ S by drawing the required lines through V and D.

Axiom 2 Clearly the converse of Desargues implies any two triangles in S with at most
one on Ω are centrally perspective by some point. The lines of perspectivity have
a unique intersection so there is a single point of perspectivity which indexes
the line. The axiom holds for pairs of points in Ω using Definition 4.4.5 and
Lemma 4.4.4.

Axiom 3 Given two regular triangles a, b which are in perspective from a point O and
so are on a line in S, choose any c1 on `1 = 0a1b1 and let c2 be the intersection
of c1K and `2 = 0a2b2; now the converse of Desargues theorem shows, since
the triangle c1c2c3 generated from c1c2 by the procedure in the proof of Axiom
2 is axially perspective with a1a2a3, they are centrally perspective. So O is on
c1a1.
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Axiom 4 Modify the proof for Axiom 3. Given two regular triangles a, b which are in
perspective from a point O, choose P 6= O and draw `1, `2, `3 through O and
each of the ai. Now repeat the rest of the argument for Axiom 3, using the new
choices for `1, `2 to find c not on the line ab ∈ S.

�4.5.2

Two more axioms in [39] relate to the 3 dimensionality. For convenience in the
proofs, we label the points in Pasch’s axiom with lower case letters.

Definition 4.5.3 (Pasch’s axiom:)

Axiom 5 Suppose A,B,C are three non-collinear points, D is a distinct point on BC
and E is a distinct point on CA. Then there is a point F on the intersection of
AB and DE.

Lemma 4.5.4 (S,L, ε) satisfies Pasch’s axiom.

Proof. Fix a, b, c as in Pasch’s axiom and suppose they generate the plane α. If
these three points are in Ω, then α = Ω and we must show two lines r, s in Ω intersect.
For some regular planes α and β, α ∧ Ω = r and β ∧ Ω = s. By Lemma 4.5.7 α ∧ β
intersect in a line q and q ∧ Ω is the required intersection of r and s.

So we may assume a is regular. And in fact, if b or c is in Ω by replacing b by b′

a regular point on ab (or c′ a regular point on ac), we generate the same plane since
`α = Oa,bOa,c = Oa,b′Oa,c′ . But then by Lemma 4.3.18, the plane α is also the plane
generated by a, b, c in sense of Robinson. By Lemma 4.3.17, we have Pasch’s axiom
except if d and e are in Ω. But consider the regular line ab. Note by Fact 4.3.5 that
every regular line intersects Ω and we finish by Definition 4.4.5. �4.5.4

To specify the geometry is three dimensional, De Robinson adds:

Definition 4.5.5 (3-space axioms)

Axiom 6 IfA,B,C are three non-collinear points, there is at least one pointD not on
the plane ABC.

Axiom 7 Any two distinct planes have a line in common.

Remark 4.5.6 Axiom 6, the assertion that there is a point off each plane, is easily
checked by considering the cases by which a plane is generated.

Lemma 4.5.7 Axiom 7: Any two planes in S intersect in a line.

Proof. Let α and β be arbitrary planes. For regular planes this is Lemma 4.4.6. If
there are two points b, c in their intersection the intersection is the line through b, c by
Remark 4.4.1 and Lemma 4.4.4 (in the case one of the planes is Ω). For the β = Ω
case, choose any a on α and two distinct lines through a. By Fact 4.3.5 they intersect
in (necessarily distinct) points.

�4.5.7
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