Learning Seminar: Categoricity of Canonical Structures and Fucshian groups

John T. Baldwin // University of Illinois at Chicago

2nd seminar: Sept 23, 2022

Returning to the axiomatization

Zilber's program: The role of model theory

Э

Formalization

Anachronistically, *full formalization* involves the following components. [Bal18, Chapter 1]

- **O** *Choose* Vocabulary τ : specification of primitive notions.
- **2** Choose a Logic \mathcal{L} :
 - a Specify a class $\mathcal{L}(\tau)$ of well formed formulas.
 - b Specify truth of a formula from this class in a structure.
 - c Specify the notion of a formal deduction for these sentences.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Axioms: specify the basic properties of the situation in question by sentences of the logic.

A model theoretic description of ${\cal H}$

Use Hilbert's two sorted axiomatization of neutral geometry (e.g. in modern form see [Bal18, §9]). The vocabulary η includes predicates for betweenness, congruence (of segment, triangles ...), etc. Add Hilbert's axiom *L* [Har00, p 374],which implies the geometry is hyperbolic and limiting parallels exist to get a theory [Har00, p 374] that is bi-interpretable with the theory of ordered fields [Har00, Thm 43.1].

Each model of $T_{\mathcal{H}}$ defines a coordinatizing field.

Adding axioms specifying the field is real closed yields a complete first order η -theory. As an η -structure $\mathcal{H} \models T_{\mathcal{H}}$ and its automorphism group in the vocabulary η is $PSL_2(\Re)$.

But can be no theory in $L_{\omega_1,\omega}$ is categorical in (all) uncountable powers and that this structure satisfies. There is an order.

(日)

Find the vocabulary and axioms for categoricity.

key references: [Har14] [DH17]

Group Action

For the hyperbolic space \mathcal{H} , $G = PSL_2(\Re)$. *G* acts on \mathcal{H} by fractional linear transformations.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = \frac{a\tau + b}{c\tau + d},$$

Vocabulary

Let τ_{cov} contain two sorts *H* and *F*, a projection *q* from *H* onto *F* and function symbols f_g for *g* in a group *G*, field structure on *F*, and constants.

イロト イポト イラト イラト

Special points

Just as the covering space in the C case had only addition, the group action is now encoded using only **unary** function symbols.

Consider the upper half plane $H = \{\gamma \in C : im(\gamma) > 0\}$ with the group $G = GL^+(\mathbb{Q})/Z(GL^+(\mathbb{Q}))$ (+ means positive determinant) acting on it via fractional linear translations.

Why not $PSL_2(\mathbb{Z})$?

Fact: Each $a \in H$ is either special or non-special.

where

1 non-special: No $g \in G$ fixes a.

Special: There is a g_a ∈ G with exactly one fixed point a in H. (The quadratic equation derived from gz = z has two complex conjugate roots.)
So there are countably many special points and they are each in quadratic extensions of Q.
Note that for every g ∈ G either ∀xf_g(x) ≠ x or ∃xf_g(x) = x in the theory of ⟨H, f_g : g ∈ G.

The 'covering sort' $\langle H, \{f_g; g \in G\} \rangle$

The universe is partitioned into *countable* orbits under *G*.

- non-special orbit O: Every pair of points in $a, b \in O$ satisfy $f_{a,b}(a) = b$ and $f_{a,b}^{-1}(b) = a$ *G* acts strictly 2-transitively on non-special orbits.
- special orbit *O* of special point *a*: Like a non-special orbit but each element of the orbit is fixed by a conjugate of *g_a*. Note that if *g* fixes *a*, the conjugate of *g* by *f_{a,b}* fixes *b*.

Thus the structure $\langle H, \{f_g; g \in G\} \rangle$ is *strongly minimal* with trivial geometry.

i.e. $\operatorname{cl}(X) = \bigcup_{x \in X} \operatorname{cl}(x)$.

< ロ > < 同 > < 回 > < 回 >

Congruence Subgroups, and Shimura Varieties

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Э

Fuchsian groups, Congruence Subgroups, and Shimura Varieties

Definition

A Fuchsian group is a discrete subgroup of $PSL_2(\Re)$.

Central Example: Congruence Subgroups

For $\Gamma \subseteq SL_2(Z)$, let Fix N > 0. Let

$$\Gamma(N) = \Gamma_N = \left\{ \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \right\}.$$

< ロ > < 同 > < 回 > < 回 >

Shimura Curves I

Notation

- Let B be a quaternion algebra over a totally real number field F such that ℜ ⊗_F B is isomorphic to M₂(ℜ) for exactly one embedding of F into ℜ.
- It G = G(R) be the algebraic group over Q whose R-points for any Q-algebra R are the elements of ℜ ⊗ B of norm 1; when R = ℜ, G = GL₂(ℜ) [DH17, p 2].
- **③** there is a surjective homomorphism ϕ : *G*(ℜ) → aut(\mathcal{H}) with compact kernel.
- A Shimura curve is the quotient, $S(\mathcal{C})$, of \mathcal{H} by (the image in $\operatorname{aut}(\mathcal{H})$ of a congruence subgroup of $G(\mathbb{Q})$), say $p : \mathcal{H} \to S(\mathcal{C})$.

[Mil12] is a splendid summary which includes higher dimensional Shimura varieties.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Shimura Curves II

[DH17] give a more abstract definition replacing \mathcal{H} by a Hermitian symmetric domain X^+ which has a canonical model over a finite abelian extension E, E^{ab} is a maximal abelian extension of E, and $E^{ab}(\Sigma)$ is the field obtained by adjoining Σ , the images in $S(\mathcal{C})$ of the special points.

They replace $GL_2(\Re)$ by the *countable* group:

Definition-Lemma

- In general G^{ad} denotes G/Z(G). G^+ means elements of G with positive determinant.
- ② $G^{ad}(\mathbb{Q}^+) = G^{ad}(\mathbb{Q}) \cap G^{ad}(\Re)^+$ For $\mathbf{g} \in G^{ad}(\mathbb{Q}^+)$, $Z_{\mathbf{g}}$ is the image of the map $f : X^+ \to S(\mathcal{C})^n$ by $x \mapsto \langle p(g_1 x), \dots p(g_n x) \rangle$.

Lemma: Z_{g} is an algebraic variety defined on E^{ab} .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Returning to the axiomatization

æ

General Scheme

- The domain and the range are both algebraically (first order) as given next.
- Prove that the theory T' (with infinitary axioms) of the two sorted structure is quasiminimal and so categorical in power.
- Replace the domain of the cover sort by an 'analytically given object' Examples:
 - In the covers of multiplicative group the universal covering space with all its analytic structure
 - *i* function and Shimura case: certain inverse limits.

But with the structure on the domain still given by the $\{f_g; g \in G\}$.

イロト イポト イラト イラト

9 Prove the new 'cover' with a appropriate projection still satisfies T'.

The image (field) sort

Definition

the structure (C, +, ×, ; Q(j(S))).
 Q(j(S)) means a constant for each element of this field.

2 the first order theory

 $\operatorname{Th}(\langle H, \{f_g; g \in G\}\rangle) \cup \operatorname{Th}(\langle \mathcal{C}, +, \times; \mathbb{Q}(j(\mathcal{S}))\rangle)$

By Th($\langle C, +, \times; \mathbb{Q}(j(S)) \rangle$) is meant in a vocabulary containing a relation for each Zariski closed set of C defined over $\mathbb{Q}(j(S))$.

In the standard model, the projection map q (e.g. j) takes (finite sequences of) elements G to a variety Z_g subset of C that is definable over the constants. [DH17, p 14] Z_g is biholomorphic with $\Gamma_g \mathcal{H}$, where $\Gamma_g = \Gamma \cap \Gamma^{g_1} \cap \ldots \Gamma^{g_n}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Connecting the sorts

The connection axioms

• first order axioms: recall $q: H \to F$.

modularity axioms:

 $(\forall x \in H)(q(g_1x), \dots, q(g_n(x)) \in Z_g$ $(\forall z \in Z_g(\exists x \in H)q((g_1x), \dots, q(g_n(x)) = z$

2 A first order scheme called 'special points axiom'. In [DH17]

$$SP_x := (\forall y \in H)[g_x y = y \Rightarrow q(y) = p(y)]$$

Clearly a typo; perhaps q(x) = q(y) as this connects the sorts. But unnecessay since hypothesis implies x = y, as x is the unique fixed point of g_x .

Infinitary standard fiber axiom:

$$\forall x \forall y [j(x) = j(y) \rightarrow \bigvee_{q \in G} x = f_g(y)]$$

< ロ > < 同 > < 回 > < 回 >

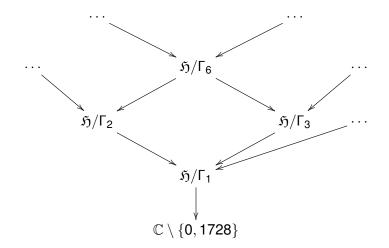
Fuchsian Groups and DCF₀

<ロ> <回> <回> <回> < 回</p>

æ

The Modular 'tower'

Note that N|M implies Γ_M projects to Γ_N . Yielding:



Getting back to ${\mathcal C}$

Fix $\Gamma = \Gamma_N$ or some subgroup of $SL_2(\mathbb{Q})$ contained in *some* Γ_N . Then \mathfrak{H}/Γ is a Riemann surface. We may embed \mathfrak{H}/Γ (as an affine variety over \mathbb{C}) into $\mathcal{H} \cup \mathbb{Q} \cup \{\infty\} / \Gamma$ (as a projective variety over \mathbb{C}). Fix the notation $Z_N := \mathcal{H}/\Gamma_N$.

く 伺 と く き と く き と

Transcendence properties

Casales, Freitag, Nagloo, Sanz, Scanlon etc.

consider transcendence properties of solutions of Schwartzian equations (including *j*) and Fuchsian groups.

The key insight is that the solution set of certain Schwartzian differential equations are strongly minimal subsets of models of DCF_0 so have a natural geometry.

- Important and old mathematical questions are resolved by using when the combinatorial geometry is trivial and \aleph_0 -categorical.
- Strongly minimal means every first order definable set is finite or cofinite; acl is a combinatorial geometry on any strongly minimal set.

イロト イポト イラト イラト

Questions

- Is the strategy described above used by Daw-Harris [DH17], Daw-Zilber [ZD21]?
- O the three papers Harris thesis [Har14] Daw-Harris [DH17], and Daw-Zilber [ZD21] have the same notion of analytic cover?
- The word 'étale is central in [ZD21] and [Har14]; I can't find it in [DH17].
- How does one distinguish the aims and applications of the infinitary and DCF approach to facilitate interaction?

イロト イポト イラト イラト

References I

John T. Baldwin.

Model Theory and the Philosophy of Mathematical Practice: Formalization without Foundationalism. Cambridge University Press, 2018.

Christopher Daw and Adam Harris. Categoricity of modular and shimura curves. Journal of the Institute of Mathematics of Jussieu, 66:1075–1101, 2017. math arxiv https://arxiv.org/pdf/1304.4797.pdf.

Robin Hartshorne.

Geometry: Euclid and Beyond. Springer-Verlag, 2000.

• = • • =

References II

Adam Harris.

Categoricity and covering spaces.

PhD thesis, Oxford, 2014.

https://arxiv.org/pdf/1412.3484.pdf.

James S. Milne.

What is a S himura variety.

Notices of the American Mathematical Society, 59:2560–1561, 2012.

B.I. Zilber and C. Daw.

Modular curves and their pseudo-analytic cover.

math arxiv: https://arxiv.org/pdf/2107.11110.pdf, 2021.

A B > < B</p>