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Abstract

Suppose T = (T, T1, p) is a triple of two countable theories in vocabularies
τ ⊂ τ1 and a τ1-type p over the empty set. We show the Hanf number for the
property: There is a model M1 of T1 which omits p, but M1 � τ is saturated is
essentially equal to the Löwenheim number of second order logic.

Newelski [3] asked to calculate the Hanf number of the following property PN . In
accordance with the original question, we state the definition for countable vocabular-
ies. We deal with extensions to larger vocabularies in Section 4

Definition 0.1 We say M1 |= T where T = (T, T1, p) is a triple of two countable
theories in vocabularies τ ⊂ τ1, T ⊆ T1 and p is a τ1-type over the empty set if M1

is a model of T1 which omits p, but M1 � τ is saturated. Let KT denote the class of
models M1 which satisfy T .

For K = KT for some T in a countable vocabulary let P cN (KT , λ) hold if |τ1| ≤
ℵ0 and for some M1 with |M1| = λ, M1 |= T . P fN (KT , λ) is the same property
restricted to triples where T1 and T are finitely axiomatizable in finite vocabularies
and p is definable in second order logic.

Recall Hanf’s observation [1] that for any such property P (K, λ), where K is
ranges over a set of classes of models, there is a cardinal κ = H(P ) such that κ is the
least cardinal satisfying: if P (K, λ) holds for some λ ≥ κ then P (K, λ) holds for
arbitrarily large λ. H(P ) is called the Hanf number of P . E.g. P (K, λ) might be the
property that K has a model of power λ. Similarly the Löwenheim number `(P ) of a
set P of classes is the least cardinal µ such that any class K ∈ P that has a model has
one of cardinal ≤ µ.
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Theorem 0.2 Assume the collection of λ with λ<λ = λ is a proper class. H(P fN ) =
`(LII) where LII denotes the collection of sentences of second order logic.

Since H(P cN ) ≥ H(P fN ), this shows that that the Hanf number in the abstract
is at least `(LII), as asserted. In Section 1 we introduce a variant `2(LII) on the
Löwenheim number of second order logic which is ‘essentially equal’ to `(LII) (i.e.
equal modulo a mild set theoretic hypothesis: Assumption 0.3). It is fairly easy to
show (Claim 2.9) `2(LII) ≥ H(P fN ) giving ‘essentially equal’. We will replace this
‘essential equality’ with an exact computation and deal with uncountable languages in
the last section.

Jouko Vaananen provided the following summary of the effect of this result by
indicating the size of `(LII). `(LII) is bigger than the first (second, third, etc) fixed
point of any normal function on cardinals that itself can be described in second order
logic. For example it is bigger than the first κ such that κ = iκ, bigger than the
first κ such that there are κ cardinals λ below κ such that λ = iλ, etc. It is easy
to see that if there are measurable (inaccessible, Mahlo, weakly compact, Ramsey,
huge) cardinals, then the Lowenheim number of second order logic exceeds the first
of them (respectively, the first inaccessible, Mahlo, weakly compact, Ramsey, huge)
(and second, third, etc). So even under V = L, the Löwenheim number is bigger than
any ‘large’ cardinal that is second order definable and consistent with V = L. Such
results are discussed in Vaananen’s paper “Hanf numbers of unbounded logics”[4]. A
result of Magidor [2] shows the Lowenheim number of second order logic is always
below the first supercompact. Vaananen’s paper “Abstract logic and set theory II: Large
cardinals” gives lower bounds for the Lowenheim number of equicardinality quantifiers
and thus a fortiori for second order logic [5]. In simple terms, if E(κ) is the statement
that 2κ ≥ κ++ then the first κ cardinals (if any) such that E(κ) holds is less than the
Lowenheim number of second order logic. This shows that by forcing we can push the
Lowenheim number up at will.

We make the following assumption throughout.

Assumption 0.3 Assume the collection of λ with λ<λ = λ is a proper class.

This assumption follows from GCH, but if GCH fails badly the only such cardinals
are strongly inaccessible. The key point for our use of the condition is that λ<λ =
λ > |τT | + ℵ0 is a sufficient condition for the existence of a saturated model in λ of
a complete theory T ; if T is unstable λ<λ = λ is also necessary. We will explore this
issue for stable theories, in the absence of this condition, elsewhere. In Section 1 we
review some properties of second order logic and show the equality of two ‘Löwenheim
numbers’ in our context. In Section 2, we state two technical results, prove one, and
deduce Theorem 0.2 from them. In Section 3, we prove the more difficult technical
result. In Section 4, we code syntax more carefully and obtain a uniform equivalence
for vocabularies of all cardinalities.

Newelski’s question arose in the study of the model theory of groups and the ex-
istence of groups with bounded orbits. The authors acknowledge very fruitful discus-
sions with Jouko Väänänen and Tapani Hyttinen concerning the material.

2



1 Some Second Order Logic
By (pure) second order logic, LII , we mean the logic with individual variables and
variables for relations of all arities but no non-logical constants. The atomic formulas
are equalities between variables and expressions X(x) where X is an n-ary relation
variable and x is an n-tuple of individual variables. Note that a structure A for this
logic is simply a set so is determined entirely by its cardinality. But we use the full
semantics; the n-ary relation variables range over all n-ary relations on A.

We put our restriction to λ = λ<λ in a more general setting. In general for any
class K of models write spec(K) for the collection of λ such that there is a model in
K with cardinality λ. We describe some technical variants for the second order case
that are relevant here.

Definition 1.1 Let ψ be a sentence of second order logic.

1. spec1(ψ) = {λ : λ |= ψ}.

2. spec2(ψ) = {λ : λ = λ<λ ∧ λ |= ψ}

Note that there is a sentence χ in second order logic which has a model of size λ
if and only if λ<λ = λ. Namely, let χ assert there is an extensional relation R on sets
such that each element denotes, viaR, a set of smaller cardinality than the universe and
each such set is coded by R. We will generally write λ<λ = λ to denote this sentence.

Definition 1.2 Define H2 and `2 to the be Hanf and Lowenheim numbers with respect
to spec2.

We’ll write `1 for ` and H1 for H where it is convenient for comparison. Note that
H(LII) and `(LII) are strong limit cardinals. Using Assumption 0.3 we can show:

Lemma 1.3 H(LII) = H2(LII), `(LII) = `2(LII).and these cardinals are strong
limit cardinals.

Proof. One direction is easy. For every sentence ψ of second order logic, there is a
sentence ψ∗ such that:

spec2(ψ) = spec1(ψ∗).

ψ∗ just expresses the conjunction of ψ with λ<λ = λ. Recall that for either spectrum
`i(LII) = sup{min{speci(φ)} : φ ∈ LII has a model } and similarly Hi(LII) =
sup{sup{speci(φ)} : φ ∈ LII is bounded }. Since every 2-spectrum is a 1-spectrum
`2(LII) ≤ `1(LII) and H2(LII) ≤ H1(LII).

But the opposite inequality also holds. Let φ be a sentence with a non-empty 2-
spectrum. Let f(λ) denote the least µ > λ with µ<µ = µ. It is easy to construct for
each second order sentence φ a sentence φ∗ such that

spec(φ∗) = spec2(φ∗) = {f(λ) : λ ∈ spec(φ)}.

Clearly the map φ 7→ φ∗ shows `2(LII) ≥ `1(LII) and H2(LII) ≥ H1(LII).
�1.3
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2 The main result
Recall our notation from Definition 0.1.

Notation 2.1 We will write T (possibly with subscripts) for a triple (T, T1, p). The
expression ‘T has a model in λ’ means there is a model of T1 with cardinality λ that
omits p and whose reduct to L(T ) = τ is saturated.

Convention 2.2 When τ1 is finite we consider it to be a subset of ω. Thus the set of
first order τ1-sentences is recursive and we can code them as natural numbers.

We concentrate first on P fN (KT , λ) from Definition 0.1. We need some additional
coding to handle non-finitely axiomatizable theories and consider this generalization in
Section 4. We prove Theorem 2.5 in Section 3. We begin by clarifying a notion from
Definition 0.1.

Definition 2.3 A type p in a vocabulary satisfying Convention 2.2 is definable in sec-
ond order logic if we can code the type as a subset Ap of ω so that in the vocabulary
with 0 and successor relation there is a second order sentence ψ and second order
formula ϕ(x) such that for the first cardinal λ which satisfies ψ letting M be (λ, 0, S)
as above, wlog 0 is interpreted as 0 , S as successor on the natural numbers and
Ap = {n :M |= ϕ(n)}.

Now for convenience we restrict our triples to those satisfying the convention. For-
mally:

Notation 2.4 T f denotes the set of triples T as in Definition 2.1 such that τ1 satisfies
Convention 2.2, T is finitely axiomatizable and p is second order definable.

Theorem 2.5 For every second order sentence φ, there is a triple T φ ∈ T f such that
if λ<λ = λ, then the following are equivalent:

1. T φ has a model in λ.

2. φ has a model in every cardinal strictly less than λ.

Lemma 2.6 For every T ∈ T f there is a second order φT , such that φT has a model
in λ if and only if T has a model in λ.

Proof. Recalling the restrictions involved in T f , it is easy to write a second order
sentence θ such thatM |= θ if and only ifM |= T1, M omits p andM � τ is saturated.
�2.6

We now deduce Theorem 0.2 from Theorem 2.5 and Lemma 2.6. We use the fol-
lowing notation.

Notation 2.7 Spec(T ) is the collection of cardinals λ such that there is an M1 satis-
fying T with |M1| = λ.
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Claim 2.8 H(P fN ) ≤ `2(LII) where LII denotes second order logic.

Proof. Lemma 2.6 shows that for any T ∈ T f , there is a φT ∈ T
f with spec(T ) =

spec(φT ). Suppose for contradiction that H(P fN ) > `2(LII). Then there is a triple
T ∈ T f such that sup(spec(T)) ≥ `2(LII) .

Let C = {µ : µ = µ<µ}. Choose ψT ∈ LII so that µ |= ψT iff for every infinite
cardinal κ ∈ C ∩ µ there is θ ∈ [κ, µ) ∩ spec(T).

Let λT be the minimal element of C ∩ spec(T)c. Then λT ≥ `2(LII). For
any T , the definition of P fN guarantees that if λ<λ = λ, µ > λ and some M |= T
has cardinality µ then some N |= T has cardinality λ (take a saturated elementary
submodel). Thus, µ |= ψT if and only if every κ ∈ C ∩ µ belongs to spec(T).

Now spec(ψT) is exactly {µ :µ ≤ λT}, whence spec(¬ψT) is {µ :µ > λT}. So
the Löwenheim number of ¬ψT is (λT)+ > `2(LII) and this contradiction completes
the proof.

�2.8

Lemma 2.9 H(P fN ) ≥ `2(LII) where LII denotes second order logic.

Proof. Suppose for contradiction that there is a second order sentence ψ such that
λ0 = min(spec2(ψ)) ≥ H(P fN ). By the definition of spec2, λ<λ0

0 = λ0. Let ψ̂
express (∃U)(ψU ∧ |U ||U | = |U |). We apply Theorem 2.5 to ¬(ψ̂). Note that ψ̂ is
true on all cardinals ≥ λ0 and false on all µ < λ0. By Theorem 2.5, λ0 |= T¬(ψ̂) and

λ0 ≥ H(P fN ). So T¬(ψ̂) and therefore ¬(ψ̂) has arbitrarily large models. But ¬(ψ̂)
has no models larger than λ0. This contradiction yields the theorem. �2.9

In the next section we prove the crucial Theorem 2.5. In the last section we remove
the restriction to finitely axiomatizable theories.

3 Essential Lemmas
Now we prove Theorem 2.5. For convenience, we list here the two vocabularies. We
describe the axioms of T and T1 below.

Notation 3.1 1. τ contains unary predicates Q1, Q2, a binary relation R and par-
tial binary functions F and F2. It contains two constant symbols c0, cω and a
unary function symbol g.

2. τ1 adds a unary predicate Q0 and a binary relation <1.

Remark 3.2 (Proof Sketch) For each second order φ, we construct a triple T φ. But
most of the construction is independent of the particular φ and so we first construct a
theory T1 which does not depend on φ. The vocabulary τ will contain unary predicates
Q1, Q2. The axioms will assert that Q1, Q2 partition the universe. Q0 is in τ1. Omis-
sion of the type p will guarantee that Q0 ⊂ Q1 is countable. Omission of the type in
a model M of T1 whose τ -reduct ℵ1-saturated and some coding involving the partial
order<0 in τ will guarantee thatQ1(M) is well-ordered by a relation symbol<1 in τ1.
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A relation symbol R in τ will code subsets of Q1 by elements of Q2. Thus first order
quantification on Q2 will encode second order quantification on Q1. In particular, we
can code a given second order sentence φ and thus extend T1 to Tφ. But the encoding
will be ‘correct’ only on subsets whose every subset is coded in Q2. But if µ < λ and
M is λ-saturated, µ is a <1-initial segment Q1. Since µ < λ each subset of µ is coded
by a type of size µ so the encoded semantics is correct and µ is a model of φ.

Proof of Theorem 2.5. We gradually introduce the vocabulary and theory explain-
ing the use of various predicates as they are introduced; we repeat a bit of the proof
sketch. Below we say certain conditions hold to mean they hold in any model of T . We
first describe τ and T . In particular, τ contains unary predicates Q1, Q2 that partition
the universe.

There is a binary relation <0, which is a partial order of Q1. There is a partial
function F mapping Q1 × Q1 into Q1. We write Fa for the partial function from Q1

into Q1 indexed by a. The partial order <0 satisfies: a ≤0 b implies Fa ⊂ Fb.
We have two further properties of F . Fc0 is the empty function. For every a ∈ Q1

and every e ∈ Q1, if e 6∈ domFa, then there are b, d ∈ Q1 with a <0 b and Fb =
Fa ∪ {〈e, d〉}.

Further there is a pairing function F2 on Q1 and an extensional relation R between
Q1 and Q2 so that each element of Q2 codes a subset of Q1 via R. We write Ub for
{a :R(b, a)} (for a ∈ Q1 and b ∈ Q2).

T asserts that Q1 is preserved by g, that g is a permutation, and Q1(c0).
The set of {Ua : a ∈ Q2} is closed under Boolean operations and if Ub is such

a set so is Fa(Ub) for any a ∈ Q1. For each a ∈ Q1, there is b ∈ Q2 such that
Ub = {c :c <1 a}.

Secondly, we turn to the description of τ1 and T1. In τ1, there is a unary relation
Q0 such that Q0 ⊂ Q1 and T1 asserts Q0 is preserved by g and c0, cω are in Q0.
Thus, each gi(c0) ∈ Q0. Further, there is a binary τ1-relation <1, which is a linear
order of Q1 and such that on Q1, x <1 g(x) and x < cω implies g(x) < cω . Thus,
〈gi(c0) : i < ω〉 ∪ {cω} name countably many elements of Q1 which are <1- ordered
in order type ω + 1. T1 further asserts (Q1, <1) is ‘internally well-ordered’ in the
following sense. For every a ∈ Q2, if Ua is non-empty, it has a <1-least element.

The type p asserts Q0(x) and x is not a gi(c0) for any i < ω.

Claim 3.3 If a model M of T1 is such that its reduct to τ is an ℵ1-saturated model of
T but M omits p, (Q1, <1) is a well-ordering in M .

Proof. Suppose there is a countable <1-descending chain B = {bi : i < ω} in
(Q1, <1). Using the properties of F , we can define a <0-increasing chain of an in
Q1 such that Fan = {〈c1, b1〉, . . . 〈gn(c0), bn〉}, where the gi(c0) are images of c0
by iterating g. Since the model is ℵ1-saturated there is an aω ∈ Q1 such that each
Fan ⊂ Faω . But then B = Faω ({gi(c0) : i < ω}). Note that while the choice of bi
involved the τ1-symbol <1, the existence of aω is by the consistency of a τ -type so the
use of saturation is legitimate.

Since M omits p, {gi(c0) : i < ω} = {a : a <1 cω} and therefore is coded by an
element of Q2. By the closure properties of the coded sets, B = Ud for some d ∈ Q2.
This contradicts the internal well-ordering of Q1. �3.3
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Now translate φ to the first order formula φ∗(v) by translating each bound second
order variable X to a first order formula in x and v. Replace each occurrence ofX(z) by
R(z, v)∧R(z, x). This translation has the following consequence. (This is immediate
for monadic second order but we included a pairing function F2 on Q1 so it extends to
arbitrary sentences.)

Fact 3.4 If M |= T , a ∈ Q2(M) and each subset of Ua is coded by an element of
Q2(M), then M |= φ∗(a) if and only Ua(M) |= φ.

Add the following axiom to T1 to obtain Tφ

(∀u)(∀w)[((∀z)R(z, w)↔ z <1 u)→ φ∗(w)].

Claim 3.5 If µ < λ = λ<λ and M is model of φ with cardinality λ that omits p but
whose reduct to τ is saturated then µ |= φ.

Conversely, if φ is true on all µ < λ = λ<λ, there is a model M1 of Tφ with
cardinality λ that omits p but whose reduct to τ is saturated.

Proof. Since µ < λ, µ is an initial segment of Q1 so µ = {a ∈ Q1 : R(y, d)} for
some d ∈ Q2. But then each subset Y of µ gives rise to a type qY (x):

{R(y, d)} ∪ {R(y, x) : y ∈ Y } ∪ {¬R(y, x) : y 6∈ Y }.

For each Y the τ -type qY (x) has cardinality less than λ and so is realized by saturation.
We finish by Fact 3.4.

For the converse, well-order Q1 by <1 in order type λ. Add in Q2 a code for
each subset of cardinality < λ. Let the Fa list the partial functions of cardinality less
than λ from Q1 to Q1 and let <0 denote the natural partial ordering on Q1 induced by
inclusion of the named functions. Since φ is true below λ, each infinite initial segment
in λ defines a model of φ and the definition of Tφ shows that we have a saturated model
of T when we take the reduct to τ . Finally, let Q0 include exactly the first ω elements
of Q1.

�3.5

Letting T φ be the triple (T, Tφ, p) we have a triple satisfying Theorem 2.5. �2.5

4 The exact strength
In this section we remove the restriction to finitely axiomatizable theories and prove
actual equality of the Hanf number studied here (for any theory) with a Löwenheim
number of second order logic; the cost is that we must move into infinitary second
order logic and allow relation constants in the second order sentence.

Instead of Theorem 2.5 we could slightly more easily prove

H(P fN ) ≤ `2(LII) ≤ H(P cN ),

which gives our answer to Newelski’s question but is not quite as sharp. That is, if we
had just required T φ in Theorem 2.5 to be in a countable language rather than finitely
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axiomatizable, this would have no effect on the proof of Lemma 2.9 and it would have
simplified the proof of Theorem 2.5 since we could have worked with countably many
constants and omitted the function g. Similarly the arguments of Sections 2 and 3 ex-
tend from finitely axiomatizable to ‘arithmetic’ by coding a model of arithmetic in the
second order sentence. And it is easy to see that the theory constructed in Theorem 2.5
is recursive.

This observation is generalized in Theorem 4.8 to remove the restrictions on ax-
iomatizability. The key idea is to see that we can use the same ideas as in Section 3 to
code the syntax of infinitary second order logic by a triple T .

We extend our notion of second order logic in two ways. First we allow infinite
conjunctions and strings of quantifiers. Secondly we now allow some relation constants
instead of dealing with ‘pure’ second order logic.

Definition 4.1 1. We write Lθ for the θ stage in the construction of the inner model
L.

2. Let Lθ+,κ(II) denote second order logic allowing strings of second order quan-
tifiers of cardinality < κ and conjunctions and disjunctions of cardinality ≤ θ.

3. T θ denotes the set of triples T as in Definition 2.1 (except allowing |τ1| ≤ θ)
such that τ1 satisfies τ1 ⊂ Lθ, T is finitely axiomatizable and p is second order
definable.

Remark 4.2 Again using Assumption 0.3, note that the Löwenheim number of
Lθ+,κ(II) is a strong limit cardinal of cofinality > θ and is an accumulation point
of {µ : µ = µ<µ}.

Notation 4.3 We denote by L(II, τ) the second order logic in the vocabulary τ con-
sisting of unary predicates P and Q and a binary relation <.

Notation 4.4 For K = KT for some T in a vocabulary with cardinality κ, let
PκN (KT , λ) hold if |τ1| ≤ κ and for some M1 with |M1| = λ, M1 |= T .

We now show how to code the Löwenheim number of sentences φ of Lθ+,κ(II) by
using a sentence in ψ ∈ L(II, τ) and a set Aφ of ordinals.

In the following H(µ) denotes the set of all sets whose transitive closure has car-
dinality less than µ. We use implicitly that µ<µ = µ implies that µ is regular and so
(H(µ), ε) satisfies all axioms of ZFC except power set.

Definition 4.5 1. We define a sentence in ψ ∈ L(II, τ) to assert the following:

(a) (PM , <M ) is a well ordering with QM ⊆ PM

(b) There is a binary relation ε such that (M, ε) ≈ (H(µ), ε) for some µ with
µ<µ = µ.

(c) There is a function G which defines truth on subsets b of M of sentences of
Lθ+,κ(II).

(d) If under this codingQM represents a sentence φ thenM satisfies ‘b |= ¬φ’
if M |= |b| < |M |.
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2. for every sentence φ ∈ Lθ+,κ(II) we define a set Aφ ⊆ θ as the set of codes for
subformulas of φ in a standard coding of Lθ+,κ(II) in Lθ.

The goal of the following lemma is to compute the Löwenheim number of
Lθ+,κ(II). Since it is certainly greater than θ, we may assume λ<λ > θ.

Lemma 4.6 Fix κ ≤ θ+, φ ∈ Lθ+,κ(II) and Aφ, ψ ∈ L(II, τ) satisfying Defini-
tion 4.5. For any cardinal λ = λ<λ > θ, the following are equivalent.

1. φ has no model of card < λ.

2. There is a model (M,PM , QM ) of ψ with cardinality λ such that (PM , <M )
has order type θ and

Aφ = {α < κ : for some a ∈ QM ⊆ PM , α = otp({b ∈ PM : b <M a}, <M )}.

Proof. Suppose 2). Then |M | = λ, (PM , <M ) has order type θ, and Aφ is the
image of QM under an isomorphism from (PM , <M ) to θ. Thus the coding in M
correctly represents truth of φ and φ fails on all subsets of M with cardinality < λ.
Thus 2) implies 1). Clearly if 1) holds we can construct a model M satisfying 2).

�4.6

Definition 4.7 For ψ defined as in Lemma 4.6, spec(ψ, θ,Aφ) is the set of the cardi-
nalities of models M of ψ with (PM , <M , QM ) ≈ (θ,<,Aφ).

Theorem 4.8 For any cardinal θ, the following four cardinals are equal.

1. λ1 is the Hanf number of P θN .

2. λ2 is the Löwenheim number of Lθ+,ω(II).

3. λ3 is the Löwenheim number of Lθ+,θ+(II).

4. λ4 = sup{spec(ψ, θ,Aφ) : ψ ∈ L(II, τ), φ ∈ Lθ+,θ+(II), and Aφ ⊂ θ
such that spec(ψ, θ,Aφ) is bounded}.

Proof. We chose the logic Lθ+,ω precisely so λ1 ≤ λ2 (by a proof like that of
Lemma 2.6 but now we have conjunctions of cardinality θ) and clearly λ2 ≤ λ3.
Lemma 4.6 yields:

{min(spec2(φ)) : φ ∈ Lθ+,θ+} ⊆ {sup(spec2(θ, ψ,Aφ)) : φ ∈ Lθ+,θ+ is bounded}.

(We can replace φ by a φ∗ whose only model is the model of φ with minimum cardi-
nality to guarantee the containment.) Thus, λ3 ≤ λ4.

The proof that λ4 ≤ λ1 is obtained by modifying the proof of Theorem 2.5. Add to
the vocabulary in the Tφ from the proof in section 3 of Theorem 2.5, symbols P,Q′, <1

1The construction in already has a unary predicate Q; Q′ will replace the Q in the vocabulary τ of this
section.
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and use the same coding ideas to guarantee that Q′ ⊆ P and both are well-ordered by
<. Thus, for φ ∈ Lθ+,θ+(II) we can construct T φ, encoding the second order sentence
ψ ∈ L(II, τ) defined in Definition 4.5 and where the type p also codes thatQ′M ≈ Aφ
so that the two spectra are related as in Theorem 2.5. This yields λ4 ≤ λ1 by slightly
modifying the argument for Lemma 2.9.

�4.8
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