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Abstract

Suppose t = (T, T1, p) is a triple of two countable theories T ⊆ T1 in vocab-
ularies τ ⊂ τ1 and a τ1-type p over the empty set. We show the Hanf number for
the property: There is a model M1 of T1 which omits p, but M1 � τ is saturated
is essentially equal to the Löwenheim number of second order logic. In Section 4
we make exact computations of these Hanf numbers and note some distinctions
between ‘first order’ and ‘second order quantification’. In particular, we show that
if κ is uncountable, h3(Lω,ω(Q), κ) = h3(Lω1,ω, κ), where h3 is the ‘normal’
notion of Hanf function (Definition 4.12.)

Newelski asked in [New] whether it is possible to calculate the Hanf number of the
following property PN . In a sense made precise in Theorem 0.2, we show the answer
is no. In accordance with the original question, we focus on countable vocabularies for
the first three sections. We deal with extensions to larger vocabularies in Section 4.

Definition 0.1 We say M1 |= t where t = (T, T1, p) is a triple of two theories in
vocabularies τ ⊂ τ1, respectively, T ⊆ T1 and p is a τ1-type over the empty set if M1

is a model of T1 which omits p, but M1 � τ is saturated. Let Kt denote the class of
models M1 which satisfy t.

For K = Kt, with t in a countable vocabulary, let P cN (Kt, λ) hold if |τ1| ≤ ℵ0
and for some M1 with |M1| = λ, M1 |= t. P fN (Kt, λ) is the same property restricted
to triples where T1 and T are finitely axiomatizable in finite vocabularies and p is
definable in second order logic.

Recall Hanf’s observation [Han60] that for any such property P (K, λ), where K
ranges over a set of classes of models, there is a cardinal κ = H(P ) such that κ is the
least cardinal satisfying: if P (K, λ) holds for some λ ≥ κ then P (K, λ) holds for
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arbitrarily large λ. H(P ) is called the Hanf number of P . E.g. P (K, λ) might be the
property that K has a model of power λ. Similarly the Löwenheim number `(P ) of a
set P of classes is the least cardinal µ such that any class K ∈ P that has a model has
one of cardinality ≤ µ.

Theorem 0.2 Assume the collection of λ with λ<λ = λ is a proper class. H(P fN ) =
`(LII) where LII denotes the collection of sentences of second order logic.

Since H(P cN ) ≥ H(P fN ), this shows that the Hanf number in the abstract is at least
`(LII), as asserted. In Section 1 we introduce a variant `2(LII) on the Löwenheim
number of second order logic which is ‘essentially equal’ to `(LII) (i.e.equal modulo
a mild set theoretic hypothesis: Assumption 0.3). It is fairly easy to show (Claim 2.9)
`2(LII) ≥ H(P fN ) giving the ‘essentially equal’ of the abstract. We will replace this
‘essential equality’ with an exact computation and deal with uncountable languages in
Section 4.

Jouko Vaananen provided the following summary of the effect of this result by
indicating the size of `(LII). `(LII) is bigger than the first (second, third, etc) fixed
point of any normal function on cardinals that itself can be described in second order
logic. For example it is bigger than the first κ such that κ = iκ, bigger than the
first κ such that there are κ cardinals λ below κ such that λ = iλ, etc. It is easy
to see that if there are measurable (inaccessible, Mahlo, weakly compact, Ramsey,
huge) cardinals, then the Lowenheim number of second order logic exceeds the first of
them (respectively, the first inaccessible, Mahlo, weakly compact, Ramsey, huge) (and
second, third, etc). So even under V = L, the Löwenheim number is bigger than any
‘large’ cardinal that is second order definable and consistent with V = L. Such results
are discussed in Vaananen’s paper “Hanf numbers of unbounded logics”[Vaa79]. A
result of Magidor [Mag71] shows the Lowenheim number of second order logic is
always below the first supercompact. Vaananen’s paper “Abstract logic and set theory
II: Large cardinals” gives lower bounds for the Lowenheim number of equicardinality
quantifiers and thus a fortiori for second order logic [Vaa82]. In simple terms, if E(κ)
is the statement that 2κ ≥ κ++ then the first κ cardinals (if any) such that E(κ) holds
is less than the Lowenheim number of second order logic. This shows that by forcing
we can push the Lowenheim number up at will.

We make the following assumption throughout.

Assumption 0.3 Assume the collection of λ with λ<λ = λ is a proper class.

This assumption follows from GCH, but if GCH fails badly the only such cardinals
are strongly inaccessible. The key point for our use of the condition is that λ<λ =
λ > |τT | + ℵ0 is a sufficient condition for the existence of a saturated model in λ of
a complete theory T ; if T is unstable λ<λ = λ is also necessary. We will explore this
issue for stable theories, in the absence of Assumption 0.3, elsewhere. In Section 1 we
review some properties of second order logic and show the equality of two ‘Löwenheim
numbers’ in our context. In Section 2, we state two technical results, prove one, and
deduce Theorem 0.2 from them. In Section 3, we prove the more difficult technical
result. In Section 4, we code syntax more carefully and obtain a uniform equivalence
for vocabularies of all cardinalities.
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Newelski’s question arose in the study of the model theory of groups and the ex-
istence of groups with bounded orbits. The authors acknowledge very fruitful discus-
sions with Jouko Väänänen and Tapani Hyttinen concerning the material of this paper.
We also thank the referee for an unusually detailed and helpful series of reports.

1 Some Second Order Logic
By (pure) second order logic, LII , we mean the logic with individual variables and
variables for relations of all arities but no non-logical constants. The atomic formulas
are equalities between variables and expressions X(x) where X is an n-ary relation
variable and x is an n-tuple of individual variables. Note that a structure A for this
logic is simply a set so is determined entirely by its cardinality. But we use the full
semantics; the n-ary relation variables range over all n-ary relations on A.

We explain the connection of our restriction to λ with λ = λ<λ to the computation
of some variants on the Hanf and Löwenheim numbers.. In general for any class K
of models write spec(K) for the collection of λ such that there is a model in K with
cardinality λ.

Definition 1.1 Let ψ be a sentence of second order logic.

1. spec1(ψ) = {λ : λ |= ψ}.

2. spec2(ψ) = {λ : λ = λ<λ ∧ λ |= ψ}.

Note that there is a sentence χ in second order logic which has a model of size λ
if and only if λ<λ = λ. Namely, let χ assert there is an extensional relation R on sets
such that each element denotes, viaR, a set of smaller cardinality than the universe and
each such set is coded by R. We will generally write λ<λ = λ to denote this sentence.

Definition 1.2 Define H2 and `2 to be the Hanf and Lowenheim numbers with respect
to spec2.

We’ll write `1 for ` and H1 for H where it is convenient for comparison. Note the
following easy transformations in second order logic.

Fact 1.3 Fix φ ∈ LII .

1. spec1(φ):

(a) There is a φ1 ∈ LII with min(spec(φ)) < min(spec(φ1)).

(b) If spec(φ) is bounded and nonempty there is a φ2 ∈ LII with spec(φ2)
bounded and nonempty and sup(spec(φ)) < sup(spec(φ2)).

2. spec2(φ):

(a) There is a φ3 ∈ LII with min(spec(φ)) < min(spec(φ3)) and if λ |= φ3,
λ<λ = λ.
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(b) If spec2(φ) is bounded and nonempty there is a φ4 ∈ LII with spec2(φ4)
bounded and nonempty and sup(spec2(φ4)) < sup(spec2(φ4)).

These transformations imply:

Fact 1.4 1. H1(LII), H2(LII), `1(LII), `2(LII) are strong limit cardinals.

2. There is no sentence attaining any of these values exactly. (E.g., there is no
φ ∈ LII with sup(spec(φ)) = H1(LII).)

3. For either spectrum, `i(LII) = sup{min{speci(φ)} : φ ∈ LII has a model}
and similarly Hi(LII) = sup{sup{speci(φ)} :φ ∈ LII is bounded}.

Note that any logic satisfying Fact 1.3 will also satisfy Fact 1.4. We use this obser-
vation without comment in studying infinitary second order logics in Section 4.

Using Assumption 0.3 we can show:

Lemma 1.5 H(LII) = H2(LII), `(LII) = `2(LII)

Proof. One direction is easy. For every sentence ψ of second order logic, there is a
sentence ψ∗ such that:

spec2(ψ) = spec1(ψ∗).

ψ∗ just expresses the conjunction of ψ with λ<λ = λ. Recall Fact 1.4.3 Since every
2-spectrum is a 1-spectrum `2(LII) ≤ `1(LII) and H2(LII) ≤ H1(LII).

But the opposite inequality also holds. Let φ be a sentence with a non-empty 2-
spectrum. Let f(λ) denote the least µ > λ with µ<µ = µ. It is easy to construct for
each second order sentence φ a sentence φ∗ such that

spec(φ∗) = spec2(φ∗) = {f(λ) : λ ∈ spec(φ)}.

Clearly the map φ 7→ φ∗ shows `2(LII) ≥ `1(LII) and H2(LII) ≥ H1(LII).
�1.5

2 The main result
Recall our notation from Definition 0.1.

Notation 2.1 We will write t (possibly with subscripts) for a triple (T, T1, p). The
expression ‘t has a model in λ’ means there is a model of T1 with cardinality λ that
omits p and whose reduct to L(T ) = τ is saturated.

Convention 2.2 When τ1 is finite we consider it to be a subset of ω. Thus the set of
first order τ1-sentences is recursive and we can code them as natural numbers.

We concentrate first on P fN (Kt, λ) from Definition 0.1. We need some additional
coding to handle non-finitely axiomatizable theories and consider this generalization
in Section 4. We begin by clarifying a notion from Definition 0.1.
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Definition 2.3 A type p in a vocabulary satisfying Convention 2.2 is definable in sec-
ond order logic if we can code the type as a subset Ap of ω so that in the vocabulary
with constant symbol 0 and relation symbol S there is a second order sentence ψ and
second order formula ϕ(x) satisfying the following condition. For the first cardinal λ
which satisfies ψ if M is (λ, 0, S), with 0 interpreted as 0 and S as successor on the
natural numbers, then Ap = {n :M |= ϕ(n)}.

Now for convenience we restrict our triples to those satisfying the convention. For-
mally:

Notation 2.4 T f denotes the set of triples t such that T is finitely axiomatizable and
p is second order definable.

Theorem 2.5 For every second order sentence φ, there is a triple tφ ∈ T f such that if
λ<λ = λ, then the following are equivalent:

1. tφ has a model in λ.

2. φ has a model in every cardinal strictly less than λ.

We prove Theorem 2.5 in Section 3.

Lemma 2.6 For every t ∈ T f there is a second order φt, such that φt has a model in
λ if and only if t has a model in λ.

Proof. Recalling the restrictions involved in T f , it is easy to write a second order
sentence θ such that M |= θ if and only if M |= T1, M omits p and M�τ is saturated.
�2.6

We could strengthen Lemma 2.6 by restricting the second order quantification to
sets of size strictly less than the size of the model, but that is not important here. We
now deduce Theorem 0.2 from Theorem 2.5 and Lemma 2.6. We use the following
notation.

Notation 2.7 Spec(t) is the collection of cardinals λ such that there is an M1 satisfy-
ing t with |M1| = λ.

We have not established that the Hanf and Lowenheim numbers for the PN satisfy
Fact 1.4. This complicates the argument for the following two results.

Claim 2.8 H(P fN ) ≤ `2(LII) where LII denotes second order logic.

Proof. Lemma 2.6 shows that for any t ∈ T f , there is a φt ∈ LII with spec(t) =

spec(φt). Suppose for contradiction that H(P fN ) > `2(LII). Then there is a triple
t ∈ T f such that sup(spec(t)) ≥ `2(LII) .

Let C = {µ : µ = µ<µ}. Choose ψt ∈ LII so that µ |= ψt iff for every infinite
cardinal κ ∈ C ∩ µ there is θ ∈ [κ, µ) ∩ spec(t).

Let λt be the minimal element of C∩ spec(t)c. Then λt ≥ `2(LII). For any t, the
definition of P fN guarantees that if λ<λ = λ, µ > λ and some M |= t has cardinality
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µ then some N |= t has cardinality λ (take a saturated elementary submodel). Thus,
µ |= ψt if and only if every κ ∈ C ∩ µ belongs to spec(t).

Now spec(ψt) is exactly {µ :µ ≤ λt}, whence spec(¬ψt) is {µ :µ > λt}. So the
Löwenheim number of ¬ψt is (λt)

+ > `2(LII) and this contradiction completes the
proof.

�2.8

Lemma 2.9 H(P fN ) ≥ `2(LII) where LII denotes second order logic.

Proof. Suppose for contradiction that there is a second order sentence ψ such that
λ0 = min(spec2(ψ)) ≥ H(P fN ). By the definition of spec2, λ<λ0

0 = λ0. Let ψ̂
express (∃U)(ψU ∧ |U |<|U | = |U |). We apply Theorem 2.5 to ¬(ψ̂). Note that ψ̂ is
true on all cardinals ≥ λ0 and false on all µ < λ0. By Theorem 2.5, λ0 |= t¬(ψ̂) and

λ0 ≥ H(P fN ). So t¬(ψ̂) and therefore ¬(ψ̂) has arbitrarily large models. But ¬(ψ̂) has
no models larger than λ0. This contradiction yields the theorem. �2.9

In the next section we prove the crucial Theorem 2.5. In the last section we remove
the restrictions to finitely axiomatizable theories and countable languages.

3 Essential Lemmas
Now we prove Theorem 2.5. For convenience, we list here the two vocabularies. We
describe the axioms of T and T1 below.

Notation 3.1 1. τ contains unary predicates Q1, Q2, a binary relation R and par-
tial binary functions F and F2. It contains two constant symbols c0, cω and a
unary function symbol g.

2. τ1 adds a unary predicate Q0 and a binary relation <1.

Remark 3.2 (Proof Sketch) For each second order φ, we construct a triple tφ. But
most of the construction is independent of the particular φ and so we first construct a
theory T1 which does not depend on φ. The vocabulary τ will contain unary predicates
Q1, Q2. The axioms will assert that Q1, Q2 partition the universe. Q0 is in τ1. Omis-
sion of the type p will guarantee that Q0 ⊂ Q1 is countable. Omission of the type in a
model M of T1 whose τ -reduct is ℵ1-saturated and some coding involving the partial
order<0 in τ will guarantee thatQ1(M) is well-ordered by a relation symbol<1 in τ1.
A relation symbol R in τ will code subsets of Q1 by elements of Q2. Thus first order
quantification on Q2 will encode second order quantification on Q1. In particular, we
can code a given second order sentence φ and thus extend T1 to Tφ. But the encod-
ing guarantees ‘correctness’ only on subsets whose every subset is coded in Q2. The
construction will guarantee that if µ < λ and M is λ-saturated, then µ is a <1-initial
segment Q1. Since µ < λ each subset of µ is coded by a type of size µ so the encoded
semantics is correct and µ is a model of φ.

Beginning the Proof of Theorem 2.5. We gradually introduce the vocabulary and
theory explaining the use of various predicates as they are introduced; we repeat a bit
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of the proof sketch. Below we say certain conditions hold to mean they hold in any
model of T . We first describe τ and T . In particular, τ contains unary predicates
Q1, Q2 that partition the universe.

There is a binary relation <0, which is a partial order of Q1. There is a partial
function F mapping Q1 × Q1 into Q1. We write Fa for the partial function from Q1

into Q1 indexed by a. Any model of T satisfies: a ≤0 b implies Fa ⊂ Fb.
We have two further properties of F . Fc0 is the empty function. For every a ∈ Q1

and every e ∈ Q1, if e 6∈ domFa, then there are b, d ∈ Q1 with a <0 b and Fb =
Fa ∪ {〈e, d〉}.

Further there is a pairing function F2 on Q1 and an extensional relation R between
Q1 and Q2 so that each element of Q2 codes a subset of Q1 via R. We write Ub for
{a :R(b, a)} (for a ∈ Q1 and b ∈ Q2).

T asserts that Q1 is preserved by g, that g is a permutation, and Q1(c0).
The set of {Ua : a ∈ Q2} is closed under Boolean operations and if Ub is such

a set so is Fa(Ub) for any a ∈ Q1. For each a ∈ Q1, there is b ∈ Q2 such that
Ub = {c :c <1 a}.

Secondly, we turn to the description of τ1 and T1. In τ1, there is a binary τ1-
relation <1, which is a linear order of Q1 and such that Q1(x) implies x <1 g(x) and
no element of Q1 lies between x and g(x). Moreover, there are elements c0, c1 of q1
such that c0 is the <1-least element of Q1 and x <1 cω implies g(x) <1 cω . T1 further
asserts (Q1, <1) is ‘internally well-ordered’ in the following sense. For every a ∈ Q2,
if Ua is non-empty, it has a <1-least element. Finally, there is a unary relation Q0 such
that Q0 ⊂ Q1 and T1 asserts c0 ≤1 x <1 cω if and only if Q0(x). (Q0 is just an
abbreviation and <1 is the crucial symbol added to create τ1.) Thus, each gi(c0) ∈ Q0

and {gi(c0) : i < ω} name countably many elements of Q0 which are <1- ordered in
order type ω.

The type p asserts Q0(x) and x is not a gi(c0) for any i < ω. Thus if p is omitted
in a model M , Q0(M) = {gi(c0) : i < ω}.

Claim 3.3 If a model M of T1 is such that its reduct to τ is an ℵ1-saturated model of
T but M omits p, (Q1, <1) is a well-ordering in M .

Proof. Suppose there is a countable <1-descending chain B = {bi : i < ω} in
(Q1, <1). Using the properties of F , we can define a <0-increasing chain of an in
Q1 such that Fan = {〈c0, b0〉, . . . , 〈gn(c0), bn〉}, where the gi(c0) are images of c0
by iterating g. Since the model is ℵ1-saturated there is an aω ∈ Q1 such that each
Fan ⊂ Faω . But then B = Faω ({gi(c0) : i < ω}). Note that while the choice of bi
involved the τ1-symbol <1, the existence of aω is by the consistency of a τ -type so the
use of saturation is legitimate.

Since M omits p, {gi(c0) : i < ω} = Q0(M) = {a : c0 ≤ a <1 cω} and therefore
is coded by an element of Q2. By the closure properties of the coded sets, B = Ud for
some d ∈ Q2. This contradicts the internal well-ordering of Q1. �3.3

Now translate φ to the first order formula φ∗(v) by translating each bound second
order variable X to a first order formula in x and v. Replace each occurrence ofX(z) by
R(z, v)∧R(z, x). This translation has the following consequence. (This is immediate
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for monadic second order but we included a pairing function F2 on Q1 so it extends to
arbitrary sentences.)

Fact 3.4 If M |= T , a ∈ Q2(M) and each subset of Ua is coded by an element of
Q2(M), then M |= φ∗(a) if and only Ua(M) |= φ.

Add the following axiom to T1 to obtain the theory Tφ:

(∀u)(∀w)[((∀z)R(z, w)↔ z <1 u)→ φ∗(w)].

This completes tφ as 〈T, Tφ, p〉.

Claim 3.5 If µ < λ = λ<λ and M is a model of Tφ with cardinality λ that omits p but
whose reduct to τ is saturated then µ |= φ.

Conversely, if φ is true on all µ < λ = λ<λ, there is a model M1 of Tφ with
cardinality λ that omits p but whose reduct to τ is saturated.

Proof. Since µ < λ, µ is an initial segment of Q1 so µ = {a ∈ Q1 :R(y, d)} for
some d ∈ Q2. But then each subset Y of µ gives rise to a type:

qY (x) = {R(y, d)} ∪ {R(y, x) : y ∈ Y } ∪ {¬R(y, x) : y 6∈ Y }.

For each Y the τ -type qY (x) has cardinality less than λ and so is realized by saturation.
We finish by Fact 3.4.

For the converse, well-order Q1 by <1 in order type λ. Add in Q2 a code for
each subset of cardinality < λ. Let the Fa list the partial functions of cardinality less
than λ from Q1 to Q1 and let <0 denote the natural partial ordering on Q1 induced by
inclusion of the named functions. Since φ is true below λ, each infinite initial segment
in λ defines a model of φ and the definition of Tφ shows that we have a saturated model
of T when we take the reduct to τ . Finally, let Q0 include exactly the first ω elements
of Q1.

�3.5

Concluding the Proof of Theorem 2.5.
Letting tφ be the triple (T, Tφ, p) we have a triple satisfying Theorem 2.5. �2.5

4 The exact strength
In this section we remove the restrictions to finitely axiomatizable theories and count-
able languages. In Theorem 4.11 we prove actual equality of the Hanf number studied
here (for any triple of theories and types of any cardinality) with a Löwenheim number
of second order logic; the cost is that we must move into infinitary second order logic
and (in the proof) allow relation constants (i.e. predicate symbols other than equality)
in the vocabulary of the second order sentence.

Instead of Theorem 2.5 we could slightly more easily prove

H(P fN ) ≤ `2(LII) ≤ H(P cN ),
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which gives our answer to Newelski’s question but is not quite as sharp. That is, if we
had just required tφ in Theorem 2.5 to be in a countable language rather than finitely
axiomatizable, this would have no effect on the proof of Lemma 2.9 and it would have
simplified the proof of Theorem 2.5 since we could have worked with countably many
constants and omitted the function g. Similarly the arguments of Sections 2 and 3 ex-
tend from finitely axiomatizable to ‘arithmetic’ by coding a model of arithmetic in the
second order sentence. And it is easy to see that the theory constructed in Theorem 2.5
is recursive. This observation is generalized in Theorem 4.11 to remove the restric-
tions on axiomatizability. The key idea is to see that we can use the same ideas as in
Section 3 to code the syntax of infinitary second order logic by a triple t.

We extend our notion of second order logic in two ways. First we allow infinite
conjunctions and strings of quantifiers. Secondly we now allow some relation constants
instead of dealing with ‘pure’ second order logic.

Definition 4.1 1. Lθ denotes the θ stage in the construction of the inner model L.

2. Let Lθ+,κ(II) denote second order logic allowing strings of second order quan-
tifiers of cardinality < κ ≤ θ+ and conjunctions and disjunctions of cardinality
≤ θ.

Remark 4.2 Again using Assumption 0.3, note that as in Fact 1.3 the Löwenheim num-
ber of Lθ+,κ(II) is a strong limit cardinal of cofinality > θ and is an accumulation
point of {µ : µ = µ<µ}.

Notation 4.3 We denote by L(II, τ∗) second order logic in the vocabulary τ∗ con-
sisting of constant symbols cκ, cθ, cτ , cφ, a unary predicate Q, and a binary relation
R1.

Notation 4.4 Let K = Kt, where the set of triples t is as in Notation 2.1 but requiring
that τ1 ⊂ Lθ and omitting the requirement that p is second order definable. Then,
PκN (Kt, λ) holds if |τ1| ≤ κ and for some M1 with |M1| = λ, M1 |= t.

In the following H(µ) denotes the set of all sets whose transitive closure has car-
dinality less than µ. We use implicitly that µ<µ = µ implies that µ is regular and so
(H(µ), ε) satisfies all axioms of ZFC except power set.

We now construct a sentence ψ ∈ L(II, τ∗) and for every τ ⊂ Lθ and every φ in
Lθ+,κ(II)(τ) a set Aτ,φ of ordinals so that ψ and Aτ,φ codes φ.

Definition 4.5 Let X be a transitive subset of H(θ+) with cardinality θ. We say that
X is coded by A ⊆ θ if there is an injection f from X into θ such that:

A = {pr(f(a), f(b)) :a ∈ b ∈ X}.

Here pr is the standard pairing function on ordinals.

Now we show that the coding of X by A does not depend on the choice of f .

Lemma 4.6 If A ⊆ θ codes X1 by f1 and X2 by f2 then X1 = X2.
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Proof. We first note that for any X,A if A codes X by f then f is a bijection
between X and B = {α : pr(α, β) ∈ A ∨ pr(β, α) ∈ A}. Applying this remark to
f1, f2, we see g = f−12 f1 is a bijection fromX1 ontoX2. But then g is an isomorphism
with respect to ε as it is easy to check (from the definition of coding) that for any
y1, z1 ∈ X1 with y2 = g(y1) and z2 = g(z1), y1 ∈ z1 if and only if y2 ∈ z2. That is,
y1 ∈ z1 if and only pr(f1(y1), f1(z1)) ∈ A if and only pr(f2(y2), f2(z2)) ∈ A if and
only y2 ∈ z2. But then since ∅ ∈ X1 ∩X2, ε-induction yields that X1 = X2. �4.6

We first define certain set of ordinals Aτ,φ ⊆ θ in V that codes τ and φ ∈
Lθ+,κ(II)(τ). Here tc(X) denotes the transitive closure of X .

Definition 4.7 For every vocabulary τ ⊆ Lθ and every sentence φ ∈ Lθ+,κ(II)(τ)
we define Aτ,φ ⊆ θ to be a set which codes tc({φ, τ}) ∪ {φ, τ} in the sense of Defini-
tion 4.5.

Such a code exists since the standard construction of φ ∈ Lθ+,κ(II)(τ) yields
that each formula is in H(θ+), each subformula of φ ∈ tc(φ), and φ has at most θ
subformulas.

Now we define the sentence ψ ∈ L(II, τ∗), which does not depend on φ or τ , so
that the interpretation of a predicate Q as Aτ,φ in a model M of ψ will identify φ as
the sentence under consideration. The functionG in Definition 4.8.3 simply formalizes
the normal definition of truth.

Definition 4.8 We define a sentence ψ ∈ L(II, τ∗) M |= ψ if and only if M satisfies:

1. (M,RM1 ) ≈ (H(µ), ε) for some µ with µ<µ = µ and

2. the following τ∗-axioms.

(a) cκ and cθ are cardinals in the sense of M .

(b) cτ is a vocabulary of cardinality cθ contained in Lθ.

(c) The set of formulas of Lc+θ ,cκ(II)(cτ ) are given their usual inductive defi-
nition in M by a formula µ(x, cθ, cκ, cτ ) ∈ L(II)(τ∗).

(d) cφ ∈ Lc+θ ,cκ(II)(cτ ), i.e. M |= µ(cφ, cθ, cκ, cτ ).

(e) Q(x)→ xR1cθ.

(f) Q is a set of codes (in the sense of M ) of tc({cφ, cτ}) ∪ {cφ, cτ}, where tc
is with respect to R1.

3. There is a definable function G which defines truth of sentences of Lθ+,κ(II, cτ )
on cτ -structures b∗ ∈M :

(a) for every sentence χ, M |= G(b∗, χ∗) = 1 if and only if

b |= χ.

(Here χ is an actual sentence, b is a cτ -structure in H(µ), and χ∗ re-
spectively, b∗ is the member of M mapped to χ, respectively b under the
isomorphism in Definition 4.8.1. )

10



(b) GM (b∗, cφ) = 0 for every cτ -structure b∗ ∈M .

The goal of the following lemma is to compute the Löwenheim number of
Lθ+,κ(II). Since it is certainly greater than θ, we may assume λ<λ > θ.

Lemma 4.9 Fix κ ≤ θ+, a vocabulary τ ⊆ Lθ and φ ∈ Lθ+,κ(II)(τ). Choose Aτ,φ
and ψ ∈ L(II, τ∗) satisfying Definitions 4.7 and 4.8, respectively. For any cardinal
λ = λ<λ > θ, the following are equivalent.

1. φ has no model of cardinality < λ.

2. There is a model (M,RM1 , Q
M , cMθ , c

M
κ , c

M
φ , c

M
τ ) with cardinality λ of the sen-

tence ψ defined in Definition 4.8 such that letting PM denote

{b :M |= ‘b is an ordinal’ ∧ bRM1 cθ}

and PM1 denote

{b :M |= ‘b is an ordinal’ ∧ bRM1 cκ};

(a) (PM , RM1 ) has order type θ;

(b) (PM1 , RM1 ) has order type κ;

(c)

Aτ,φ = {α < θ : for some a ∈ QM , α = otp({bR1cθ :bRM1 a}, RM1 )}.

Proof. Suppose 2). Without loss of generality, we identify (M,RM1 ) with H(λ, ε).
τ ∈ H(λ) since τ ⊂ Lθ. Then |M | = λ, (PM , RM1 ) has order type θ, and Aτ,φ is
the image of QM under an isomorphism from (PM , RM1 ) to θ. By the choice of Aτ,φ
, the model M correctly recognizes the vocabulary τ and the formula φ. The function
GM correctly represents truth in M by Definition 4.8.3a. So φ fails on all subsets of
M with cardinality < λ by Definition 4.8.3b. Thus 2) implies 1). Clearly if 1) holds
we can construct a model M satisfying 2).

�4.9

We continue to use the conventions regarding PM , PM1 from the proof of
Lemma 4.9.

Definition 4.10 For ψ as in Definition 4.9, spec(ψ, θ, κ,Aτ,φ) is the set of the cardi-
nalities of models M of ψ with (PM , PM1 , Q,RM1 ) ≈ (θ,Aτ,φ, <).

Theorem 4.11 For any cardinals θ, κ the following four cardinals are equal.

1. λ1 is the Hanf number of P θN .

2. λ2 is the Löwenheim number of Lθ+,ω(II) = `2(Lθ+,κ(II)).

3. λ3 is the Löwenheim number of Lθ+,θ+(II) = `2(Lθ+,θ+(II)).

4. λ4 = sup{spec(ψ, θ, κ,Aτ,φ) :ψ ∈ L(II, τ∗), φ ∈ Lθ+,θ+(II), and Aτ,φ ⊂ θ
such that spec(ψ, θ, κ,Aτ,φ) is bounded}.
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Proof. We chose the logic Lθ+,ω precisely so λ1 ≤ λ2 (by a proof like that of
Lemma 2.6 but now we have conjunctions of cardinality θ). So in fact the demand
that ‘a model omits the type p’ becomes ‘the model satisfies the sentence in Lθ+,ω ,
¬(∃x)

∧
p’ so the worries in the first sections about the second order definability of p

disappear. Clearly λ2 ≤ λ3.
With ψ from Lemma 4.9 and applying that lemma with τ as {=} and with κ = θ+)

yields:

{min(spec2(φ)) : φ ∈ Lθ+,θ+} ⊆ {sup(spec2(θ, ψ,Aτ,φ)) : φ ∈ Lθ+,θ+ is bounded}.

(We can replace φ by a φ∗ whose only model is the model of φ with minimum cardi-
nality to guarantee the containment.) Thus, λ3 ≤ λ4.

The proof that λ4 ≤ λ1 is obtained by modifying the proof of Theorem 2.5.
Add to the vocabulary in the Tφ from the proof in section 3 of Theorem 2.5, sym-
bols P, P1, Q,R1 and symbols cα for each α ∈ Aτ,φ and use the same coding ideas
to guarantee that P1, Q are contained in P and all three are well-ordered by R1.
Thus, for φ ∈ Lθ+,θ+(II) we can construct tφ, encoding the second order sen-
tence ψ ∈ L(II, τ∗) defined in Definition 4.8 and where the type p also codes that
QM ≈ Aτ,φ so that the two spectra are related as in Theorem 2.5. The type p is just
{Q(x)} ∪ {x 6= cα : α ∈ Aτ,φ}. This yields λ4 ≤ λ1 by slightly modifying the
argument for Lemma 2.9.

�4.11

Our discussion of the Hanf and Löwenheim numbers of second order logic fo-
cused on two vocabularies: {=} and τ∗. In contrast, in many studies of the Hanf and
Löwenheim numbers of logics the number is taken as the supremum for a given logic
over all vocabularies of a bounded cardinality. That is, a Löwenheim or Hanf function
(with argument the cardinality of the vocabulary) is defined:

Definition 4.12 For any logic L and any cardinal θ.

1. Let the Löwenheim function `3(L, θ) be the least cardinal µ such that for any
vocabulary τ of cardinality ≤ θ and any φ ∈ L(τ), if φ has a model it has one
of cardinality less than or equal µ.

2. Let the Hanf function h3(L, θ) be the least cardinal µ such that for any vocabu-
lary τ of cardinality ≤ θ and any φ ∈ L(τ), if φ has a model of cardinality µ, it
has arbitrarily large models.

The cardinalities of the vocabularies play a significant role. A trivial example is
that both the Löwenheim function and Hanf function in the sense of Definition 4.12
of first order logic map the cardinality of the vocabulary to itself. A more interesting
example is that for the logic L(Q) (with Q interpreted as ‘there exists uncountably
many)’, the Löwenheim number in τ = {=} is ℵ1, while for an arbitrary vocabulary
τ it is ℵ1 + |τ |. The Hanf number of L(Q) for countable vocabularies is iω (See e.g.
3.3.12 of [Sch85]). Thus,

iω = h3(Lω,ω(Q),ℵ0) < h3(Lω1,ω,ℵ0) = iω1
.
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Computing the Hanf function of L(Q) for vocabularies of cardinality µ ≥ ℵ1 is
considerably more complicated. The key point is the following observation which
does not depend on Assumption 0.3. Since we have not been able to find it in print we
describe the key innovation here.

Theorem 4.13 If κ is uncountable, h3(Lω,ω(Q), κ) = h3(Lω1,ω, κ).

Proof. Lopez-Escobar and Chang (e.g. [Cha68] showed how to code sentences of
Lω1,ω as first order theories omitting types. Since each sentence will have only count-
ably many subformulas, each sentence regardless of the cardinality of the vocabulary
can be coded by a first order sentence omitting countably many types. And it is known
(e.g. by the proof of Theorem 5.1.4 of [She78]) that this omitting types problem can be
reduced to omitting one type p of the form P (x) ∪ {x 6= cn : n < ω}. More precisely,
we can find for any pair (T,Γ) in a vocabulary τ (where Γ is a countable collection of
types) a pair (T1, {p}) in an expanded vocabulary τ1 such that each τ -structure omitting
Γ can be expanded to a τ1-structure omitting p and each model of T1 omitting p also
omits each type in Γ. This translation can be done for τ of any cardinality. The crux
of the current extension is that with an uncountable language one can further reduce
the omission of the type p to the assertion ¬(Qx)P (x). For this, add to the language
unary function symbols Fα for α < ℵ1 and a binary relation symbol <. Fix a family
〈ηα : α < ω1〉 of distinct functions from ω to 2. Now add axioms asserting

1. < linear orders P ;

2. cn+1 is the <-successor of cn and c0 is <-minimal;

3. Each Fα maps P onto P ;

4. For α < β < ℵ1, if (ηα�n 6= ηβ�n) then (∀x)(cn < x→ Fα(x) 6= Fβ(x)).

Now in any model of these axioms if the type p is realized by some c, the Fα(c) for
α < ℵ1 are uncountably many elements of P . This establishes the reduction. �4.13

Remark 4.14 This result can extended substantially; we could have replaced the study
of sentences of Lω1,ω by theories of cardinality ℵ1 without loss. Basic facts con-
cerning the Hanf number of Lµ+,ℵ0 for vocabularies of cardinality µ ≥ ℵ1 appear
in VII.5 of [She78] and Chapter 4 of [Bal09]. General sufficient conditions to show
h3(Lω1,ω, κ) = h3(Lκ+,ω, κ) are studied in [GS05].

However, the dependence on the size of the vocabulary disappears for the
Löwenheim number of infinitary second order logic.Without loss of generality we re-
strict to relational languages. There is no loss in our restriction to vocabularies of
cardinality at most θ since no sentence of Lθ+,κ(II) can contain more than θ relation
symbols.

Note that just by existentially quantifying out the relation symbols, for any κ ≤ θ+:

`3(Lθ+,κ(II), θ) ≤ `2(Lθ+,θ+(II)).

Combining this observation with λ2 = λ3 in Theorem 4.11, we have:
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Corollary 4.15 `3(Lθ+,κ(II), θ) = `2(Lθ+,κ(II)).

We arrived at this result using our analysis of the Hanf number of P θN . But a variant
of Corollary 4.15 can be obtained, using the same ideas of coding syntax, without
the detour through P θN . It shows that with only a finite vocabulary one can code any
reasonable similarity type.

Notation 4.16 τ∗∗ is the vocabulary containing one unary predicate P , one binary
relation symbol < and a ternary predicate R.

Theorem 4.17 `3(Lθ+,κ(II), θ) = `2(Lθ+,κ(II)(τ∗∗)).

Proof. Instead of considering an arbitrary vocabulary of size θ we can consider
a ‘universal’ vocabulary σ of θ binary relations. (It is easy to code the first in the
second.) So the claim is that for any sentence φ ∈ Lθ+,κ(II)(σ) there is a sentence φ∗

of Lθ+,κ(II)(τ∗∗) such that spec(φ) = spec(φ∗). (The converse is obvious.)
Let φ∗ assert

1. (P,<) is a well-order.

2. the formula obtained by replacing each occurence of Ri(σ1, σ2) in φ by the
formula (where z does not occur in φ):

(∃z)[P (z) ∧ otp({y :P (y) ∧ y < z}) = i ∧R(z, σ1, σ2)].

(Here σ1, σ2 are arbitrary terms from φ ∈ Lθ+,κ(II)(σ), i.e. individual vari-
ables.)

Now there is a model N with cardinality λ ≥ θ of φ∗ where PN has order type θ,
such that N |= φ∗ if and only if there is a σ-structure M with cardinality λ satisfying
φ. �4.17.
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