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Abstract

Suppose T = (T, T1, p) is a triple of two countable theories in languages
τ ⊂ τ1 and a τ1-type p over the empty set. We show the Hanf number for the
property: There is a model M1 of T1 which omits p, but M1 � τ is saturated is at
least the Löwenheim number of second order logic.

Newelski [3] asked to calculate the Hanf number of the following property PN .

Definition 0.1 We say M1 |= T where T = (T, T1, p) is a triple of two countable
theories in vocabularies τ ⊂ τ1 and p is a τ1-type over the empty set if M1 is a model
of T1 which omits p, but M1 � τ is saturated. Let KT denote the M1 which satisfy T .

For K = KT for some T in a countable vocabulary, let P cN (KT , λ) hold if
τ1 is countable and for some M1 with |M1| = λ, M1 |= T . P fN (KT , λ) is the
same property restricted to triples where T1 and T are finitely axiomatizable in finite
vocabularies.

spec(T ) is the collection of cardinals λ such that there is an M1 satisfying T with
|M1| = λ,

Recall Hanf’s observation [1] that for any such property P (K, λ), where K is
ranges over a set of classes of models, there is a cardinal κ = H(P ) such that: if
P (K, λ) holds for some λ ≥ κ then P (K, λ) holds for arbitrarily large λ. H(P ) is
called the Hanf number of P . E.g. P (K, λ) might be the property that K has a model
of power λ. Similarly the Löwenheim number `(P ) of a set P of classes is the least
cardinal µ such that any class K ∈ P that has a model has one of cardinal ≤ µ.

Theorem 0.2 H(P fN ) = `(LII) where LII denotes the collection of sentences of sec-
ond order logic.

∗We give special thanks to the Mittag-Leffler Institute where this research was conducted. This is pa-
per F995 in Shelah’s bibliography. Baldwin was partially supported by NSF-0500841. Shelah thanks the
Binational Science Foundation for partial support of this research.
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Since H(P cN ) ≥ H(P fN ), this shows that that the Hanf number in the abstract is at
least `(LII), as asserted.

Jouko Vaananen provided the following summary of the effect of this result by
indicating the size of `(LII). `(LII) is bigger than the first (second, third, etc) fixed
point of any normal function on cardinals that itself can be described in second order
logic. For example it is bigger than the first κ such that κ = iκ, bigger than the
first κ such that there are κ cardinals λ below κ such that λ = iλ, etc. It is easy
to see that if there are measurable (inaccessible, Mahlo, weakly compact, Ramsey)
cardinals, then the Lowenheim number of second order logic exceeds the first of them
(respectively, the first inaccessible, Mahlo, weakly compact, Ramsey) (and second,
third, etc). So even under V = L, the Löwenheim number is bigger than any ‘large’
cardinal that is second order definable and consistent with V = L. Such results are
discussed in Vaananen’s paper “Hanf numbers of unbounded logics”[4]. A result of
Magidor [2] shows the Lowenheim number of second order logic is always below the
first supercompact. Vaananen’s paper “Abstract logic and set theory II: Large cardinals”
gives lower bounds for the Lowenheim number of equicardinality quantifiers and thus
a fortiori for second order logic [5]. In simple terms, if E(κ) is the statement that
2κ ≥ κ++ then the first κ cardinals (if any) such that E(κ) holds is less than the
Lowenheim number of second order logic. This shows that by forcing we can push the
Lowenheim number up at will.

We make the following assumption throughout.

Assumption 0.3 Assume the set of λ with λ<λ = λ is a proper class.

This assumption follows from GCH, but if GCH fails badly the only such cardinals
are strongly inaccessible. The key point for our use of the condition is that λ<λ = λ
is a sufficient condition for the existence of a saturated model in λ. In Section 1 we
review some properties of second order logic and show the equality of two ‘Löwenheim
numbers’; this equality demonstrates the assumption is harmless in our context. In
Section 2, we state two technical results, prove one, and deduce Theorem 0.2 from
them. In Section 3, we prove the more difficult technical result. Newelski’s question
arose in the study of the model theory of groups and the existence of groups of bounded
order.

The authors acknowledge very fruitful discussions with Jouko Väänänen and
Tapani Hyttinen concerning the material.

1 Some Second Order Logic
By (pure) second order logic, we mean the logic with individual variables and variables
for relations of all arities. The atomic formulas are equalities between variables and
expressions X(x) where X is an n-ary relation and x is an n-tuple of variables. Note
that a structureA for this logic is simply a set so is determined entirely by its cardinality.
But we use the full semantics; the n-ary relation variables range over all n-ary relations
on A.

We put our restriction to λ = λ<λ in a more general setting. In general for any
class K of models write spec(K) for the collection of λ such that there is a model in
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K with cardinality λ. We describe some technical variants for the second order case
that are relevant here.

Definition 1.1 Let ψ be a sentence of second order logic.

1. spec1(ψ) = {λ : λ |= ψ}.

2. spec2(ψ) = {λ : λ = λ<λ ∧ λ |= ψ}

Note that there is a sentence χ in second order logic which has a model size λ if
and only if λ<λ = λ. Namely, let χ assert there is an extensional relation R on sets
such that each element denotes, viaR, a set of smaller cardinality than the universe and
each such set is coded by R. We will generally write λ<λ = λ to denote this sentence.

Definition 1.2 Define H2 and `2 to the be Hanf and Lowenheim numbers with respect
to spec2.

We can show

Lemma 1.3 H(LII) = H2(LII) and `(LII) = `2(LII)

Proof. We prove the Lówenheim number assertion. One direction is easy. For
every sentence ψ of second order logic, there is a sentence ψ∗ such that:

spec2(ψ) = spec1(ψ∗).

ψ∗ just expresses the conjunction of ψ with λ<λ = λ. Recalling that for either spec-
trum `i(LII) = sup{min{speci(φ)} : φ ∈ (LII}, since every 2-spectrum is a 1-
spectrum `2(LII) ≤ `1(LII).

But the opposite inequality also holds. Let φ be a sentence with a non-empty 2-
spectrum. Then let φ∗ express (∃U)(φU ∧ λ<λ = λ). Now φ∗ has a non-empty
2-spectrum so it has a model M with cardinality |M | = κ ≤ `2(LII). But then φ has
a model with cardinality |UM | ≤ κ ≤ `2(LII). So `1(LII) ≤ `2(LII).

A similar argument works for Hanf numbers. �1.3

2 The main result
We prove Theorem 2.2 in Section 3. Recall our notation from Definition 0.1.

Notation 2.1 We will write T (possibly with subscripts) for a triple (T, T1, p). The
expression ‘T has a model in λ’ means there is a model of T1 with cardinality λ that
omits p and whose reduct to L(T ) = τ is saturated

Theorem 2.2 For every second order sentence φ, there is a triple T φ in a finite vocab-
ulary such that if λ<λ = λ, then the following are equivalent:

1. T φ has a model in λ.

2. φ has a model in every cardinal less than λ.
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Note that the following extends from finitely axiomatizable to ‘arithmetic’ by cod-
ing a model of arithmetic in the second order sentence. And it easy to see that the
theory constructed in Theorem 2.2 is recursive.

Lemma 2.3 For every T , with finitely axiomatizable T1, there is a second order φT ,
such that φT has a model in λ if and only if T has a model in λ.

Since T1 is finitely axiomatizable, it is easy to write second order sentence θ such
that if M |= θ, M |= T1, M omits p and M � τ is saturated. �2.3

We now deduce Theorem 0.2 from these two results.

Claim 2.4 H(P fN ) ≤ `2(LII) where LII denotes second order logic.

Proof. Lemma 2.3 shows that for any T , there is a φT with spec(T ) = spec(φT ).
Suppose for contradiction that H(P fN ) > `2(LII). Then there is a triple T with a
bounded spectrum and the bound is greater than `2(LII). But then, ¬φT has a model
and min spec(¬φT ) > `2(LII).This contradicts the definition of the Löwenheim num-
ber.

�2.4

Lemma 2.5 H(P fN ) ≥ `2(LII) where LII denotes second order logic.

Proof. Suppose for contradiction that there is a second order sentence ψ such that
λ0 = min(spec2(ψ)) > H(P fN ). We apply Theorem 2.2 to ¬ψ∗ (as defined the proof
of Lemma 1.3). On the one hand ψ∗ has a model in cardinality λ0 where λ<λ0

0 = λ0

and ¬ψ is true on all µ < λ1. By Theorem 2.2, λ0 |= T¬ψ and λ0 ≥ H(P fN ). So T¬ψ
and therefore ¬ψ∗ has arbitrarily large models. But ¬ψ has no models larger than λ0.
This contradiction yields the theorem. �2.5

Remark 2.6 We could slightly more easily prove

H(P fN ) ≤ `2(LII) ≤ H(P cN ),

which gives our answer to Newelski’s question but is not quite as sharp. That is, if we
had just required T φ in Theorem 2.2 to be in a countable language rather than finitely
axiomatizable, this would have no effect on the proof of Lemma 2.5 and it would have
simplified the proof of Theorem 2.2 since we could have worked with countably many
constants and omitted the function g.

3 Essential Lemmas
Now we prove Theorem 2.2. For convenience, we list here the two vocabularies. We
describe the axioms of T and T1 below.

Notation 3.1 1. τ contains unary predicates Q1, Q2, a binary relation R and par-
tial binary functions F and F2. It contains two constant symbols c0, cω and a
unary function symbol g.
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2. τ1 adds a unary predicate Q0 and a binary relation <1.

Remark 3.2 (Proof Sketch) For each second order φ, we construct a triple T φ. But
most of the construction is independent of the particular φ and so we first construct a
theory T1 which does not depend on φ. The vocabulary τ will contain unary predicates
Q1, Q2. The axioms will assert that Q1, Q2 partition the universe. Q0 is in τ1. Omis-
sion of the type p will guarantee that Q0 ⊂ Q1 is countable. Omission of the type in
a model M of T1 whose τ -reduct ℵ1-saturated and some coding involving the partial
order <0 in τ will guarantee that in Q1(M) is well-ordered by a relation symbol <1

in τ1. A relation symbol R in τ will code subsets of Q1 by elements of Q2. Thus first
order quantification on Q2 will encode second order quantification on Q1. In partic-
ular, we can code a given second order sentence φ and thus extend T1 to Tφ. But the
encoding will be ‘correct’ only on subsets whose every subset is coded in Q2. But if
µ < λ and M is λ-saturated, µ is a <1-initial segment Q1. Since µ < λ each subset of
µ is coded by a type of size µ so the encoded semantics is correct and µ is a model of
φ.

Proof of Theorem 2.2. We gradually introduce the vocabulary and theory explain-
ing the use of various predicates as they are introduced; we repeat a bit of the proof
sketch. Below we say certain conditions hold to mean they hold in any model of T . In
particular, τ contains unary predicates Q1, Q2 that partition the universe.

There is a binary relation <0, which is a partial order of Q1. There is a partial
function F mapping Q1 × Q1 into Q1. We write Fa for the partial function from Q1

into Q1 indexed by a. The partial order <0 satisfies: a ≤0 b implies Fa ⊂ Fb.
We have two further properties of F . Fc0 is the empty function. For every a ∈ Q1

and every c ∈ Q1, if c 6∈ domFa, then there are b, d ∈ Q1 with a <0 b and Fb =
Fa ∪ {〈c, d〉}.

Further there is a pairing function F2 on Q1 and an extensional relation R between
Q1 and Q2 so that each element of Q2 codes a subset of Q1 via R. We write Ub for
{a :R(b, a)} (for a ∈ Q1 and b ∈ Q2).

T asserts that Q1 is preserved by g, that g is a permutation, and Q1(c0).
The set of {Ua : a ∈ Q2} is closed under Boolean operations and if Ub is such

a set so is Fa(Ub) for any a ∈ Q1. For each a ∈ Q1, there is b ∈ Q2 such that
Ub = {c :c <1 a}.

Now we turn to the description of τ1 and T1. In τ1, there is a unary relation Q0

such that Q0 ⊂ Q1 and T1 asserts Q0 is preserved by g and c0, cω are in Q0. Thus,
each gi(c0) ∈ Q0. Further, there is a binary τ1-relation <1, which is a linear order of
Q1 and such that on Q1, x <1 g(x) and x < cω implies g(x) < cω . Thus, 〈gi(c0) : i <
ω〉 ∪ {cω} name countably many elements of Q1 which are <1- ordered in order type
ω+1. T1 further asserts (Q1, <1) is ‘pseudo-well-ordered’ in the following sense. For
every a ∈ Q2, if Ua is non-empty, it has a <1-least element.

The type p asserts Q0(x) and x is not a gi(c0).

Claim 3.3 If a model M of T1 is such that its reduct to τ is an ℵ1-saturated model of
T but M omits p, (Q1, <1) is a well-ordering in M .
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Proof. Suppose there is a countable <1-descending chain B = {bi : i < ω} in
(Q1, <1). Using the properties of F , we can define a <0-increasing chain of an in
Q1 such that Fan

= {〈c1, b1〉, . . . 〈gn(c0), bn〉}, where the gi(c0) are images of c0
by iterating g. Since the model is ℵ1-saturated there is an aω ∈ Q1 such that each
Fan

⊂ Faω
. But then B = Faω

({gi(c0) : i < ω}). Note that while the choice of bi
involved the τ1-symbol <1, the existence of aω is by the consistency of a τ -type so the
use of saturation is legitimate.

Since M omits p, {gi(c0) : i < ω} = {a : a <1 cω} and therefore is coded by an
element of Q2. By the closure properties of the coded sets, B = Ud for some d ∈ Q2.
This contradicts the pseudo-well-ordering of Q1. �3.3

Now translate φ to the first order formula φ∗(v) by translating each second bound
order variable X to a first order formula in x and v. Replace each occurrence ofX(z) by
R(z, v)∧R(z, x). This translation has the following consequence. (This is immediate
for monadic second order but we included a pairing function F2 on Q1 so it extends to
arbitrary sentences.)

Fact 3.4 If M |= T , c ∈ Q2(M) and each subset of Uc is coded by an element of
Q2(M), then M |= φ∗(c) if and only Uc(M) |= φ.

Add the following axiom to T1 to obtain Tφ

(∀u)(∀w)[((∀z)R(z, w)↔ z <1 u)→ φ∗(w)].

Claim 3.5 If µ < λ = λ<λ and M is model of Tφ with cardinality λ that omits p but
whose reduct to τ is saturated then µ |= φ.

Conversely, if φ is true on all µ < λ = λ<λ, there is a model M1 of Tφ with
cardinality λ that omits p but whose reduct to τ is saturated.

Proof. Since µ < λ, µ is an initial segment of Q1 so µ = {a ∈ Q1 : R(y, d)} for
some d ∈ Q2. But then each subset Y of µ gives rise to a type qY (x):

{R(y, d)} ∪ {R(y, x) : y ∈ Y } ∪ {¬R(y, x) : y 6∈ Y }.

For each Ym the τ -type qY (x) has cardinality less than λ and so us realized by satura-
tion. We finish by Fact 3.4.

For the converse, well-order Q1 by <1 in order type λ. Add in Q2 a code for
each subset of cardinality < λ. Let the Fa list the partial functions of cardinality less
than λ from Q1 to Q1 and let <0 denote the natural partial ordering on Q1 induced by
inclusion of the named functions. Since φ is true below λ, each infinite initial segment
in λ defines a model of φ and the definition of Tφ shows that we have a saturated model
of T when we take the reduct to τ . Finally, let Q0 include exactly the first ω elements
of Q1.

�3.5

Letting T φ be the triple (T, Tφ, p) we have a triple satisfying Theorem 2.2.
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