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Abstract

We describe progress on determining the categoricity spectrum of infinitary
sentences. We expound the connections with first order logic and specify several
set theoretic problems which arise. We provide a simple example of the failure
of amalgamation for a complete sentence of Lω1,ω and we sketch some folklore
results concerning the absoluteness of basic model theoretic notions in infinitary
logic.

1 The Universe is Wide or Deep
Shelah made the following rough conjecture: Let K be a reasonable class of models.

Either for some λ, there are many models of cardinality λ or there are models of
arbitrarily large cardinality.

Our metaphor requires some explanation. ‘The universe’ should perhaps be ‘each
universe’; universe refers to all models in a specific class. It turns out that this question
depends very much on the choice of ‘reasonable’. It also seems to be sensitive to the
choice of axioms of set theory. In order to give a precise formulation of the conjecture
we have to specify ‘many’ and the notion of a ‘reasonable class’. In general ‘many’
should mean 2λ; but in important cases that have been proved, it is slightly smaller.

As is often the case there are some simplifying assumptions in this area that have
been internalized by specialists but obscure the issues for other logicians. We try to
explain a few of these simplifications and sketch some of the major results.

Some historical background will help clarify the issues. Much model theoretic re-
search in the 60’s focussed on general properties of first order and infinitary logic. A
number of results seemed to depend heavily on extensions of ZFC. For example, both
Keisler’s proof that two structures are elementarily equivalent if and only if they have
isomorphic ultrapowers and Chang’s proof of two cardinal transfer required GCH. In
general, even the existence of saturated models depends on the GCH. Shelah removed

∗This article is a synthesis of the paper given in Singapore with later talks in 2009, including the Mittag-
Leffler Institute and reflects discussions with set theorists during my stay there. Baldwin was partially sup-
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the set-theoretic hypothesis from Keisler’s theorem. But various versions of two car-
dinal transfer were proven to require GCH and even large cardinal hypotheses. See
[CK73].

The invention of stability theory radically recast the subject of model theory. E.g.,
for various classes in the stability hierarchy, it is straightforward to characterize in ZFC
exactly in which cardinals there are saturated models. And for the best behaved theories
the answers is: all cardinals. Further, for countable stable theories Shelah and Lachlan
independently showed that two cardinal transfer between any pair of cardinalities is true
in ZFC. Moreover, the fundamental notions of first order stability theory are absolute.

For first order logic, our guiding question is trivial1. If a theory has an infinite
model then it has arbitrarily large models. The question is interesting for theories in
logics which fail the upward Löwenheim-Skolem theorem. The notion of an Abstract
Elementary Class (AEC) provides a general framework for analyzing such classes. But
as we show in the next section the conjecture is trivially false in that case. It is not
too difficult to find in ZFC examples (Example 2.1) of AEC that have no model above
ℵ1 but that are ℵ1-categorical [She09a, Bal09]. And in Lω1,ω(Q), it is consistent (via
Martin’s axiom) that are ℵ1-categorical sentences with no model of cardinality greater
than 2ℵ0 . But those sentences have many models in 2ℵ0 . In this note we describe how
for Lω1,ω , there are major advances on the target problem. They use extensions of ZFC
but rather mild ones; the initials below refer to the ‘ Weak Continuum Hypothesis’ and
the ‘Very Weak Continuum Hypothesis’:

WGCH: Cardinal exponentiation is an increasing function.
VWGCH: Cardinal exponentiation is an increasing function below ℵω.
This leaves us with two more precise questions.

1. Does the proof of the conjecture for Lω1,ω (see Section 4) really need VWGCH?

2. Is the conjecture ‘eventually true’ for AEC’s2

Much of core mathematics studies either properties of particular structures of size
at most the continuum or makes assertions that are totally cardinal independent. E.g.,
if every element of a group has order two then the group is abelian. Model theory
and even more clearly infinitary model theory allows the investigation of ‘structural
properties’ that are cardinal dependent such as: existence of models, spectra of stability,
and number of models and existence of decompositions. Often these properties can be
tied to global conditions such as the existence of a ‘good’ notion of dependence.

2 Abstract Elementary Classes
We begin by discussing the notion of an abstract elementary class. The examples show
that this is too broad a class to be ‘reasonable’ for our target problem. But some positive

1The main gap theorem, every first order theory either eventually has the maximal number of models or
the number of models is bounded by a small function, has the same flavor. And in fact the argument for this
result arose after Shelah’s consideration of the infinitary problems.

2For much positive work in this direction see [She09a].

2



results can be proved in this general setting; this generality exposes more clearly what
is needed for the argument by avoiding dependence on accidental syntactic features.

An abstract elementary class (K,≺K ) is a collection of structures for a fixed
vocabulary τ that satisfy, where A ≺K B means in particular A is a substructure of
B,

1. If A,B,C ∈ K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B;

2. Closure under direct limits of ≺K -embeddings;

3. Downward Löwenheim-Skolem. If A ⊂ B and B ∈ K there is an A′ with
A ⊆ A′ ≺K B and |A|′ ≤ |A| = LS(K).

The invariant LS(K), is a crucial property of the class. The class of well-orderings
satisfies the other axioms (under end extension) but is not an AEC.

Two easy examples are: First order and Lω1,ω-classes; L(Q) classes have
Löwenheim-Skolem number ℵ1. For the second case one has to be careful about the
definition of ≺K – being an L(Q)-elementary submodel does not work ( a union of a
chain can make (Qx)φ(x) become true even if it is false along the chain).

The notion of AEC has been reinterpreted in terms of category theory by Kirby:
”Abstract Elementary Categories” [Kir08] and by Lieberman: ”AECs as accessible
categories” [Lie].

It is easy to see that just AEC is too weak a condition for the general conjecture.

Example 2.1 The set K = {α :α ≤ ℵ1} with ≺K as initial segment is an AEC with
ℵ1 countable models. It is ℵ1-categorical and satisfies both amalgamation and joint
embedding but is not ω-Galois stable [Kue08]. And in fact there is no model of ℵ2. So
this universe is neither wide nor deep.

Let’s clarify the specific meaning of the amalgamation property in this context.

Definition 2.2 The class K satisfies the amalgamation property if for any situation
with A,M,N ∈ K:

A

M

N
��3

QQs

there exists an N1 such that

A

M

N1

N
��3 QQs

QQs ��3
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Note that we have required the base structure A to be in K; this is sometimes
referred to as ‘model amalgamation’. Requiring amalgamation over arbitrary substruc-
turesA is a much stronger condition, which fails for important natural examples such as
Zilber’s pseudo-exponential field [Zil04]. There is much work in homogenous model
theory where the stronger homogeneity condition is assumed.

The existence of amalgamations is an absolutely fundamental problem for AEC and
for any study of infinitary logic. In first order logic it is easy to show that for complete
theories amalgamation always holds over models with ≺ as elementary extension. And
it holds over arbitrary subsets of models if T admits elimination of quantifiers. Here is
a basic example of failure for a complete sentence of Lω1,ω .

Example 2.3 Let T be the first order theory in a language with binary relation symbols
〈Ei : i < ω〉 that asserts the Ei are infinitely many refining equivalence relations with
binary splitting.

Using Lω1,ω the equivalence relation E∞,the intersection of the given equivalence
realations, is definable. Add two unary predicates (blue and red) and the infinitary
axioms

1. Each E∞-class contains infinitely many elements.

2. Every element of an E∞-class is red or every element is blue.

3. Blue and red divide the E∞-classes into dense and codense sets.

Now it is easy to check that these axioms are ℵ0-categorical but fail amalgamation
(since a new path may be either red or blue).

We introduced the notion of abstract elementary class in this paper in order to state
One Completely General Result [She83b, Bal09].

Theorem 2.4 [WGCH] Suppose λ ≥ LS(K) and K is λ-categorical. If amalgama-
tion fails in λ there are 2λ

+
models in K of cardinality κ = λ+.

The argument uses weak diamond and is primarily combinatorial; it proceeds di-
rectly from the definition of an AEC. The result fails under MA + ¬CH . The same
example is presented in both [She09a, Bal09]. It is an AEC (even given by a theory
in L(Q)) which fails amalgamation in ℵ0, but becomes ℵ1-categorical in a forcing
extension. But it remains open whether there are such examples in Lω1,ω .

3 From Lω1,ω to first order
We begin by translating the problem from infinitary logic into the study of specific
subclasses of models of first order theories. This removes the distraction of developing
new notions of each syntactic idea (e.g. type) for every each fragment of Lω1,ω . More
subtly, for technical reasons we need to restrict to complete sentences in Lω1,ω . (This
restriction to complete sentences is automatic in the first order case but its legitimacy
is only proved in certain cases for infinitary logic).
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Definition 3.1 For ∆ a fragment of Lω1,ω , a ∆-theory T is ∆-complete if for every
∆-sentence φ, T |= φ or T |= ¬φ. We may write complete when ∆ = Lω1,ω .

Definition 3.2 A model M of a first order theory is called atomic if each finite se-
quence fromM realizes a principal type over the empty set – one generated by a single
formula.

A set A ⊂M is atomic if the analogous condition holds: each finite sequence from
A realizes a principal type over the empty set -generated by a single formula.

The study of categoricity (at least from ℵ1 upwards), in Lω1,ω can be translated to
the study of atomic models of a first order theory. This is non-trivial. The argument
begins with a fundamental result from the early 60’s.

Theorem 3.3 (Chang/Lopez-Escobar) Let ψ be a sentence in Lω1,ω in a countable
vocabulary τ . Then there is a countable vocabulary τ ′ extending τ , a first order τ ′-
theory T , and a countable collection of τ ′-types Γ such that reduct is a 1-1 map from
the models of T which omit Γ onto the models of ψ.

The proof is straightforward. E.g., for any formula ψ of the form
∧
i<ω φi, add to

the language a new predicate symbol Rψ(x). Add to T the axioms

(∀x)Rψ(x) → φi(x)

for i < ω and omit the type p = {¬Rψ(x)} ∪ {φi : i < ω}.
Thus we have restricted to the models of a theory that omit a family Γ of types,

but it may realize some non-principal types. Shelah observed that if T had only count-
ably many types then applying the same argument again gives a T ′ in an expanded
language such that the required interpretation is obtained by omitting all non-principal
types. That is, the object of study is the atomic models of T ′. This further reduction is
technically important. In particular it implies ω-categoricity.

But why can we assume that the T associated with φ has only countably many
types over the empty set? We need a few definitions to give an explanation.

Definition 3.4 Fix a sentence φ ∈ ∆ω1,ω and let ∆ be a countable fragment of Lω1,ω

containing φ.

1. A τ -structure M is ∆-small if M realizes only countably many ∆-types (over
the empty set).

2. AnLω1,ω-sentence φ is ∆-small if there is a setX countable of complete ∆-types
over the empty set and each model realizes some subset of X .

‘small’ means ∆ = Lω1,ω

It is easy to see that if M is small then M satisfies a complete sentence. If φ is
small then Scott’s argument for countable models generalizes and there is a complete
sentence ψφ such that: φ∧ψφ has a countable model. So ψφ implies φ. But ψφ is not in
general unique. For example φ might be just the axioms for algebraically closed fields.
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Two choices for ψφ are the Scott sentence of the prime field and the Scott sentence for
the model of transcendence degree ℵ0. Only the second has an uncountable model.

We can make an appropriate choice of ψφ if φ is ℵ1-categorical. There are two
ingredients in the choice.

Theorem 3.5 (Shelah) If φ has an uncountable model M that is ∆-small for every
countable ∆ and φ is κ-categorical then φ is implied by a complete sentence ψ with a
model of cardinality κ.

This result appears first in [She83a]. It is retold in [Bal09]; in [Bal07], we adapt the
argument to give a model theoretic proof of a result of Makkai (obtained by admissible
set theory) that a counterexample to Vaught’s conjecture is not ℵ1-categorical. The
crux of Shelah’s argument is an appeal to the non-definability of well-order in Lω1,ω .

The second step is to require that for each countable fragment ∆ there are only
countably many ∆-types over the empty set. If φ has arbitrarily large models this is
easy by using Ehrenfeucht-Mostowski models. But if not, the only known argument is
from few models in ℵ1 and depends on a subtle argument of Keisler [Kei71] (See also
Appendix C of [Bal09].)

Theorem 3.6 (Keisler) If φ has < 2ℵ1 models of cardinality ℵ1, then each model of φ
is ∆-small for every countable ∆.

Now Theorem’s 3.5 and 3.6 immediately yield.

Theorem 3.7 (Shelah) If φ has < 2ℵ1 models of cardinality ℵ1, then there is a com-
plete sentence ψ such that ψ implies φ and ψ has an uncountable model. In particular,
if φ is ℵ1-categorical there is a Scott sentence for the model in ℵ1.

But we have the following question, which is open if κ > ℵ1.

Question 3.8 If φ is a κ-categorical must there be a Scott sentence for the model in κ.

Thus for technical work we will consider the class of atomic models of first order
theories. Our notion of type will be the usual first order one - but we will want to focus
on a subset of the Stone space.

Definition 3.9 Let A be an atomic set; Sat(A) is the collection of p ∈ S(A) such that
if a ∈ M realizes p, Aa is atomic.

Here M is the monster model for the ambient theory T ; in interesting cases it is not
atomic. And the existence of a monster model for the atomic class is a major project
(It follows from excellence.).

Definition 3.10 K is λ-stable if for every model M in K (thus necessarily atomic)
with cardinality λ, |Sat(M)| = λ.

The insistence that M be a model is essential. The interesting examples of pseudo-
exponential field, covers of Abelian varieties and the basic examples of Marcus and
Julia Knight all are ω-stable but have countable sets A with |Sat(A)| > ℵ0.

With somewhat more difficulty than the first order case, one obtains:
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Theorem 3.11 For a class K of atomic models, ω-stable implies stable in κ for all κ.

A fundamental result in model theory is Morley’s proof that an ℵ1-categorical first
order theory is ω-stable. This argument depends on the compactness theorem in a
number of ways. The key idea is to construct an Ehrenfeucht-Mostowski model over a
well-order of cardinality ℵ1. Such a model realizes only countably many types over any
countable submodel. But the existence of the model depends a compactness argument
in the proof of the Ehrenfeucht-Mostowski theorem. Further, this only contradicts ω-
stability because amalgamation allows the construction from a modelM0 in ℵ0 that has
uncountably many types over it an elementary extension M1 of M0 with power ℵ1 that
realizes all of them. And again amalgamation in the first order case is a consequence of
compactness. In Lω1,ω , the work of Keisler and Shelah evades the use of compactness
– but at the cost of set theoretic hypotheses.

Theorem 3.12 (Keisler-Shelah) Let K be the atomic models of a countable first order
theory. If K is ℵ1-categorical and 2ℵ0 < 2ℵ1 then K is ω-stable.

This proof uses WCH directly and weak diamond via ‘The Only Completely Gen-
eral Result’. That is, from amalgamation failure of ω-stability yields a model of car-
dinality ℵ1 that realizes uncountably many types from Sat(M) for a countable model
M . Naming the elements ofM yields a theory which has uncountably many types over
the empty set. Thus by Theorem 3.6 the new theory has 2ℵ1 models in ℵ1 and (since
2ℵ0 < 2ℵ1) so does the original theory.

Is CH is necessary? More precisely, does MA + ¬ CH imply there is a sentence of
Lω1,ω that is ℵ1-categorical but

a) is not ω-stable

b) does not satisfy amalgamation even for countable models.

There is such an example in Lω1,ω(Q) but Laskowski (unpublished) showed the
example proposed for Lω1,ω by Shelah[She87, She09a] fails. The previous question is
a specific strategy for answering the next question.

Question 3.13 Is categoricity in ℵ1 of a sentence of Lω1,ω absolute (with respect suit-
able forcings)?

By suitable, I mean that, e.g., it is natural to demand cardinal preserving. This
result has resisted a number of attempts although as we lay out in Section 5, many
other fundamental notions of the model theory of Lω1,ω are absolute.

4 The Conjecture for Lω1,ω

Using the notion of splitting, a nice theory of independence can be defined for ω-stable
atomic classes [She83a, She83b, Bal09]. This allows the formulation of the crucial
notion of excellence and the proof of a version of Morley’s theorem. We won’t discuss
the details but sketch the most important application. These results are non-trivial but
the exposition of the entire situation in [Bal09] occupies less than 100 pages.

7



Definition 4.1 Let K be the class of models of a sentence of Lω1,ω . K is excellent if
K is ω-stable and any of the following equivalent conditions hold.

For any finite independent system of countable models with union C:

1. Sat(C) is countable.

2. There is a unique primary model over C.

3. The isolated types are dense in Sat(C).

See [Bal09] for details of the notation. A primary model is a particulary strong
way of choosing a prime model over C. Note excellence is a condition on countable
models. It has the following consequence for models in all cardinalities.

Theorem 4.2 ( Shelah (ZFC)) If an atomic class K is excellent and has an uncount-
able model then

1. K has models of arbitrarily large cardinality;

2. Categoricity in one uncountable power implies categoricity in all uncountable
powers.

This result is in ZFC but extensions of set theory are used to obtain excellence.
Recall that by VWGCH we mean the assertion: 2ℵn < 2ℵn+1 for n < ω.

Theorem 4.3 ( Shelah (VWGCH)) An atomic class K that has at least one uncount-
able model and is categorical in ℵn for each n < ω is excellent.

The requirement of categoricity below ℵω is essential. Baldwin-Kolesnikov
[BK09] (refining [HS90]) show:

Theorem 4.4 For each 2 ≤ k < ω there is an Lω1,ω-sentence φk such that:

1. φk has an atomic model in every cardinal.

2. φk is categorical in µ if µ ≤ ℵk−2;

3. φk is not categorical in any µ with µ > ℵk−2;

4. φk has the (disjoint) amalgamation property;

There is one further refinement on the ‘wide’ vrs ‘deep’ metaphor. How wide?

Definition 4.5 We say

1. K has few models in power λ if I(K, λ) < 2λ.

2. K has very few models in power ℵn if I(K,ℵn) ≤ 2ℵn−1 .

These are equivalent under GCH. And Shelah argues on the last couple of pages
of [She83b] (see also [She0x]) that they are equivalent under ¬O+. But in general we
have a theorem and a conjecture[She83a, She83b].
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Theorem 4.6 (Shelah) (For n < ω, 2ℵn < 2ℵn+1 .) An atomic class K that has at
least one uncountable model and that has very few models in ℵn for each n < ω is
excellent.

Conjecture 4.7 (Shelah) (For n < ω, 2ℵn < 2ℵn+1 .) An atomic class K that has at
least one uncountable model and that has few models in ℵn for each n < ω is excellent.

5 Absoluteness
As remarked in the introduction, one of the significant attributes of first order stability
theory is that the basic notions: stable, ω-stable, superstable, ℵ1-categoricity can be
seen absolute in the strongest way. We sketch proofs of similar results, except the open
ℵ1-categoricity, for Lω1,ω . The results in this section are folklore; we are indebted
for discussions with Alf Dolich, Paul Larson, Chris Laskowski, and Dave Marker for
clarifying the issues. One of the few places these issues have been addressed in print is
[She09b].

For example a first order theory T is unstable just if there is a formula φ(x,y) such
for every n

T |= (∃x1, . . .xn∃y1, . . .yn)
∧
i<j

φ(xi,yj) ∧
∧
i≥j

¬φ(xi,yj)

This is an arithmetic statement and so is absolute by basic properties of absolute-
ness [Kun80, Jec87]. Similarly, the existence of a countable structure that satisfies a
condition (such as being a model or being atomic) given by a conjunction of first order
properties is Σ1

1-property.
In first order logic, ω-stability is Π1

1; there is no consistent tree3 {φσ(i)
i (xσ,aσ �

n) : σ ∈ 2ω, i < ω}. For the class of atomic models the definition is slightly more
complicated. And we need the full strength of the Shoenfield absoluteness lemma.

Theorem 5.1 (Shoenfield absoluteness Lemma) If

1. V ⊂ V ′ are models of ZF with the same ordinals and

2. φ is a lightface Π1
2 predicate of a set of natural numbers

then for any A ⊂ N , V |= φ(A) iff V ′ |= φ(A).

Note that this trivially gives the same absoluteness criteria for Σ1
2-predicates.

Lemma 5.2 Let T be a countable first order theory. The property that a class of atomic
models of T is ω-stable is given by a Σ1

2 formula of set theory and so the property is
absolute.

Proof. The class of atomic models of T is ω-stable if and only if

1. the isolated types are dense in S(∅);
3We use the convention that φσ(i)φ(x) denotes φ(x) or ¬φ(x) depending on whether σ(i) is 0 or 1.
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2. there is a countable atomic model M of T and there is a list 〈pn :n ∈ ω〉 of the
(first order) types over M such that

(*) for any b realizing pi and any a ∈M , tp(a, b) is isolated in S(T )

and for any p ∈ S(M) satisfying (*) there is an n such that pn = p

The second version has the form (∃M)(∃pn)(∀p). This is a Σ1
2 formula of set

theory. �5.2

Similarly we show excellence is a Π1
2-property. Independent families of models

[She83b, Bal09] are indexed by subsets of n with strictly less than n elements; we
denote this partial order by P−(n). We list the crucial definitions for excellence.

Definition 5.3 1. A complete type p overA splits overB ⊂ A if there are b, c ∈ A
which realize the same type over B and a formula φ(x,y) with φ(x,b) ∈ p and
¬φ(x, c) ∈ p.

2. Let ABC be atomic. We write A^
C
B and say A is free or independent from B

over C if for any finite sequence a from A, tp(a/B) does not split over some
finite subset of C.

Lemma 5.4 Let T be a countable first order theory. The class of atomic models of T
is excellent if and only if for any finite set of models {As : s ∈ P−(n)} that form an
independent system, there is a countable atomic model M of T that is primary over
C =

⋃
{As :s ∈ P−(n)}.

Proof. Here we have universal quantifiers over finite sequences of models (using a
pairing function, this is quantifying over a single real) and then an existential quantifier
for the required additional model. The stipulation that the diagram is independent
requires repeated use of the statement A^

C
B, where A,B,C are finite unions of the

models in the independent system. This requires quantification over finite sequences
from the Mi; thus, it is arithmetic. The assertion that M is primary over C is a second
existential quantifier enumerating elements of M . �5.4

The following remark is implicit in [GS86].

Lemma 5.5 The property that a complete sentence of Lω1,ω has arbitrarily large mod-
els is absolute.

Proof. A complete sentence in Lω1,ω has arbitrarily large models if and only if
the associated countable Skolem theory T has an Ehrenfeucht-Mostowski model over
a countable set of order indiscernibles, which omits each of a countable (from the
completeness of φ) set of types Γ. We can rewrite this as:

There exists a countable sequence C of constants, that are indiscernible and for
each finite sequence c from C, each Skolem term τ of appropriate arity, and each type
p ∈ Γ there is a formula φ(x) ∈ p with ¬φ(τ(c)). This is a Σ1

1 formula, which proves
the result. �5.5

Finally, following Lessmann [Les05, Bal09], we prove that the absolute ‘Baldwin-
Lachlan’-characterization of first order ℵ1-categoricity has a natural translation to the
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Lω1,ω situation; this translation is absolute and in ZFC it implies ℵ1-categoricity. But
we do not see how to derive it from ℵ1-categoricity without using the Continuum hy-
pothesis. We need some definitions. To be a bit more specific we speak of Vaughtian
triples instead of Vaughtian pairs.

Definition 5.6 The formula φ(x, c) with c ∈ M ∈ K, is big if for any M ′ ⊇ A with
M ′ ∈ K there exists an N ′ with M ′ ≺K N ′ and with a realization of φ(x, c) in
N ′ −M ′.

This definition has no requirements on the cardinality of M,M ′, N ′ so it is saying
that φ(x, c) has as many solutions as the size of the largest models in K. This condition
is equivalent to one on countable models. A translation of Lemma 25.2 of [Bal09]
gives:

Lemma 5.7 Let A ⊆M and φ(x, c) be over A. The following are equivalent.

1. There is an N with M ≺ N and c ∈ N −M satisfying φ(x, c);

2. φ(x, c) is big.

The significance of this remark is that it makes ‘φ(x, c) is big’ a Σ1
1 predicate.

Definition 5.8 1. A triple (M,N, φ) where M ≺ N ∈ K with M 6= N , φ defined
over M , φ big, and φ(M) = φ(N) is called a Vaughtian triple.

2. We say K admits (κ, λ), witnessed by φ, if there is a modelN ∈ K with |N | = κ
and |φ(N)| = λ and φ is big.

Now we have the partial characterization.

Lemma 5.9 Let K be a class of atomic models. If K is ω-stable and has no Vaughtian
triples then K is ℵ1-categorical. The hypothesis of this statement is Σ1

2.

Proof. The sufficiciency of the condition is found by tracing results in [Bal09].
ω-stability gives the existence of a quasiminimal formula φ. Note from the proof of
Theorem 24.1 that ω-stability is sufficient to show that there are prime models over
independent subsets of cardinality ℵ1. (The point of excellence is that higher dimen-
sional amalgamation is needed to extend this result to larger sets.) So if |M | = ℵ1,
there is an N ≺K M which is prime over a basis for φ(M). As noted in Chapter 2 of
[Bal09], this determines N up to isomorphism (again without heavy use of excellence
because we are in ℵ1). So we are done unless N � M . But then Löwenheim-Skolem
gives us a countable Vaughtian triple, contrary to hypothesis. �5.9

Consequence 5.10 Let ψ be a complete sentence of Lω1,ω and K the associated class
of atomic models. Suppose either:

1. K has arbitrarily large members and K has amalgamation in ℵ0, or

2. 2ℵ0 < 2ℵ1 .
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Then ℵ1-categoricity of ψ is absolute.

Proof. Each hypothesis implies the characterization in Lemma 5.9. �5.10

Note, the hypothesis of condition 1) is absolute. It seems unlikely that ℵ1-
categoricity implies the existence of arbitrarily large models in K; but no counterex-
ample has yet been constructed. The use of the continuum hypothesis is central to
proving that ℵ1-categoricity implies amalgamation and ω-stability. But [FK0x] have
shown (employing standard forcings) that for each AEC K that fails amalgamation in
ℵ0, there is a model of set theory such that in that model 2ℵ0 = 2ℵ1 , K continues to
fail amalgamation in ℵ0, and K has 2ℵ1 models in ℵ1.

6 Conclusion
The spectrum problem for first order theories motivated many technical developments
that eventually had significant algebraic consequences. A similar possibility for infini-
tary logics is suggested by Zilber’s program [Zil06, Zil04]. But the basic development
is far more difficult and less advanced. The notion of excellence provides one use-
ful context. And others are being developed under the guise of abstract elementary
classes and metric abstract elementary classes. But while first order stability theory is
developed in ZFC, the current development of the model theory of Lω1,ω uses a (rather
weak) extension of set theory: the VWGCH. This raises both model theoretic and set
theoretic questions. The proof of the ‘one completely general result’ Theorem 2.4 is a
fundamentally combinatorial argument using no sophisticated model theoretic lemmas.
The current proof uses 2λ < 2λ

+
. Can this hypothesis be removed?

Like first order logic such fundamental definitions of Lω1,ω as satisfaction, ω-
stablity, and excellence are absolute. But while ℵ1-categoricity is seen (by a model
theoretic argument) to be absolute in the first order case, this issue remains open for
Lω1,ω .
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