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Abstract

We prove two results on the stability spectrum for Lω1,ω . Here Sm
i (M) de-

notes an appropriate notion (at or mod) of Stone space of m-types over M . The-
orem A. Suppose that for some positive integer m and for every α < δ(T ), there
is an M ∈ K with |Sm

i (M)| > |M |iα(|T |). Then for every λ ≥ |T |, there is
an M with |Sm

i (M)| > |M |. Theorem B. Suppose that for every α < δ(T ),
there is Mα ∈ K such that λα = |Mα| ≥ iα and |Sm

i (Mα)| > λα. Then for
any µ with µℵ0 > µ, K is not i-stable in µ. These results provide a new kind
of sufficient condition for the unstable case and shed some light on the spectrum
of strictly stable theories in this context. The methods avoid the use of compact-
ness in the theory under study. In the Section 4, we expound the construction of
tree indiscernibles for sentences of Lω1,ω . Further we provide some context for a
number of variants on the Ehrenfeucht-Mostowski construction.

1 Context
For many purposes, e.g., the study of categoricity in power, the class of models of a
sentence φ of Lω1,ω can be profitably translated to the study of the class of models of
a first order theory T that omit a collection Γ of first order types over the empty set.
In particular, if φ is complete (i.e. a Scott sentence) Γ can be taken as the collection
of all non-principal types and the study is of the atomic models of T . This translation
dates from the 60’s; it is described in detail in Chapter 6 of [Bal09]. The study of finite
diagrams (see below) is equivalent to studying sentences of Lω1,ω; the study of atomic
models of a first order theory is equivalent to studying complete sentences of Lω1,ω .

∗We give special thanks to the Mittag-Leffler Institute where this research was conducted. This is pa-
per F997 in Shelah’s bibliography. Baldwin was partially supported by NSF-0500841. Shelah thanks the
Binational Science Foundation for partial support of this research.
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The stability hierarchy provides a crucial tool for first order model theory. She-
lah [She78] and Keisler [Kei76] show the function fT (λ) = sup{|S(M)| : |M | =
λ,M |= T} has essentially only six possible behaviors (four under GCH). In [She70],
Shelah establishes a similar result for homogeneous finite diagrams. The homogene-
ity assumption is tantamount to assuming amalgamation over all sets. This is a strong
hypothesis that is avoided in Shelah’s further investigation of categoricity in Lω1,ω

([She83a, She83b]), which is expounded as Part IV of [Bal09]. Important examples,
due to Marcus and Zilber, which do not satisfy the homogeneity hypothesis are also
described in [Bal09]. As we explain below, this investigation begins by identifying the
appropriate notion of type over a set (and thus of ω-stability). Shelah [She83a, Bal09]
showed that ω-stability implies stability in all powers. And assuming 2ℵ0 < 2ℵ1 ,
ω-stability was deduced from ℵ1-categoricity. But further questions concerning the
stability hierarchy for this notion of type for arbitrary sentences of Lω1,ω had not been
investigated. We do so now. In fact our results hold for arbitrary finite diagrams, the
class of models of first order theory that omit a given set of types over the empty set.
But our results are by no means as complete as in homogeneous case.

There are (at least) two a priori reasonable notions of Stone space for studying
atomic models of a first order theory. (As noted, we could more generally replace
‘atomic’ by ‘finite diagram’.) Recall that for a first order theory T (with a monster
model M) A ⊂ M is an atomic set if each finite sequence from A realizes a principal
type over the empty set. An atomic set is an atomic model if is also a model of the
theory T .

Definition 1.1 Let K be the class of atomic models of a complete first order theory.

1. Let A be an atomic set; Sat(A) is the collection of p ∈ S(A) such that if a ∈ M
realizes p, Aa is atomic.

2. Let A be an atomic set; Smod(A) is the collection of p ∈ S(A) such that p is
realized in some M ∈ K with A ⊆M .

In [Bal09] we write S∗ for the notion called Smod here. The latter notation is more
evocative. We will simultaneously develop the results for both notions of Stone space
and indicate the changes required to deal with the two cases. We will write Si(M)
where i can be either at or mod.

We sometimes write |T | for |τ | where τ is the vocabulary of T . K = KT is the
class of atomic models of T . We write H = H(µ) for the Hanf number for atomic
models of all theories with |T | = µ. By [She78] H equals iδ(T ), where δ(T ), the
well-ordering number of the class of models of a theory T omitting a family of types,
is defined in VII.5 of [She78]. It is also shown there that if T is countable, H evaluates
as iω1 while for uncountable T H = i(2|T |)+ . Fix µα = iα(|T |).

Remark 1.2 In [She70], Shelah’s definition of stability makes a stronger requirement;
it implies by definition the existence of homogeneous models in certain cardinals. We
do not make that assumption here so we are considering a larger class of theories.

Definition 1.3 1. K is i-stable in λ (for i = at or mod) if for every m < ω, and
M ∈ K with |M | = λ, |Sm

i (M)| = λ.
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2. Stability classes. For either i = at or mod,

(a) K is i-stable if it is i-stable in some λ.

(b) K is i-superstable if it is i-stable in all λ ≥ H .

(c) K is strictly i-stable if it is i-stable but not i-superstable.

For any M , Sat(M) contains Smod(M) so at-stability in λ implies mod-stability
in λ. Thus for both notions ω-stability implies stability in all powers by results of
[She83a, She83b], expounded in [Bal09].

We prove Theorem A in Section 2 and Theorem B in Section 3. The proof of
Theorem B uses an application of omitting types in Ehrenfeucht-Mostowski models
generated by trees of the form <ωλ. This is by no means new technology but we weren’t
able to locate an explicit statement of the result so we include a proof in Section 4.

We acknowledge helpful discussions with Tapani Hyttinen, Ali Enayat and Lynn
Scow.

2 Unstable K

We first show that if there are cardinals λα in which K is ‘sufficiently unstable’, then
K is not stable in any cardinal.

Theorem 2.1 Suppose that for some positive integer m and for every α < δ(T ), there
is an Mα ∈ K with |Sm

i (Mα)| > |Mα|iα(|T |). Then for every λ ≥ |T |, there is an M
with |Sm

i (M)| > |M | = λ.

Remark 2.2 (Proof Sketch) Before the formal proof we outline the argument. We
start with a sequence of models Mα and many distinct types over each of them. By
an argument which is completely uniform in α, we construct triples 〈aα,i,bα,i,dα,i〉
for i < µ+

α with the aα,i,bα,i ∈ Mα and dα,i in an elementary extension M ′
α of

Mα of the same cardinality and so that Mαdα,i is atomic and the distinctness of the
types of the dα,i is explicitly realized by formulas. Then we apply Morley’s omitting
types theorem to the M ′

α and extract from this sequence a countable sequence of order
indiscernibles with desirable properties. Finally, this set of indiscernibles easily yields
models of all cardinalities with the required properties.

Remark 2.3 The idea of the proof can be seen by ignoring the α and proving a slightly
weaker result from one model of size iδ(T ).

Notation 2.4 λα = |Mα|iα+2(|T |); µα = iα(|T |); κα = iα+2(|T |).

Lemma 2.5 For some τΦ extending τ with |τΦ| = |τ |, there is Φ, proper for linear
orders, with fixed additional unary predicates P, P1 and binary R such that:

1. For every linear ordering I , NI = EMτ (I,Φ) |= T and MI = EMτ (I,Φ) �
P ∈ K. Naturally J ⊂ I implies NJ ≺ NI and MJ ≺MI .

2. The skeleton of NI is 〈aî bî ci : i ∈ I〉 and lg(ci) = m.
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3. For some first order φ:

NI |= (φ(ct,as) ≡ φ(ct,bs)) iff s <I t.

4. MI ∪ ci ⊂ NI is atomic.

5. For Smod(M), we add the requirement that for each s ∈ I ,

MI,s = NI � {d : NI |= R(d, cs)}

is an atomic elementary submodel of NI containing MIcs.

Proof. The proof of Lemma 2.5 requires a number of steps. Fix for each α < δ(T ),
Mα ∈ K such that |Sm

i (Mα)| > λα = |Mα|iα+2(|T |). Fix pα,i for i < λ+
α , a list of

distinct types in Sm
i (Mα). We work throughout in a monster model M of T .

Notation 2.6 In the following construction, we choose by induction triples
〈aα,i,bα,i,dα,i〉 for i < µ+

α . We use the following notation for initial segments of
the sequences.

1. Dα,i = {dα,j : j < i}.

2. Xα,i = {aα,j ,bα,j : j < i}.

3. qα,i is the type of dα,i over Xα,i.

The following variant on splitting is crucial to carry out the construction. We call it
ex-splitting (for external) because the elements which exemplify splitting are required
to satisfy the same type over a set which is not in (so external to) the model.

Definition 2.7 Let M be a model, X ⊂ M and D ⊂ M. We say that p ∈ Sm
i (M)

ex-splits over (D,X) if there exist a,b ∈M, f ∈ M so that f realizes p � X , a ≡D b
but (a, f) and (b, f) realize different types.

Claim 2.8 The number of types in Sm
i (Mα) that do not ex-split over a pair (D,X)

with |X| = |D| = iα is µα+2.

Proof. Since it only strengthens the result while simplifying the exposition we let
X = ∅. Let Pα denote the collection of tp(e/Mα) with lg(e) = m such that if
a,b ∈ Mα realize the same type over D then (a, e) and (b, e) realize the same type.
Each type r in Pα is determined by knowing for each i < |T | its restriction to one
k-tuple from each equivalence class of the equivalence relation Ek on Mα defined by
aEkb if a and b realize the same type over D. So, since |D| = µα, there are at most
(22µα )|T | = µα+2 possible such r. �2.8

As noted, for each Mα we will be constructing by induction on i < µ+
α , sets

Xα,i, Dα,i of cardinality µα. We need to choose in advance a type pα which does not
ex-split over any (Xα,i, Dα,i) that arises. In order to do that we restrict the source of
Dα,i; clearly Xα,i ⊂ Mα. That is, we will fix M ′

α with Mα ≺ M ′
α, |M ′

α| = λα and
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M ′
α is µ+

α -saturated and choose Dα,i ⊂ M ′
α. (Note then that M ′

α is not in general
atomic.)

Note that the number of types in Sm
i (Mα) that do not ex-split over any pair (D,X)

with |X| = |D| = iα is bounded by the number of such sets, |M ′
α|µα , times the

number of types in Sm
i (Mα) that do not ex-split over a particular choice of (D,X),

which is µα+2 by Claim 2.8. That is, the bound is |M ′
α|µα × µα+2. Since this number

is less than λ+
α , we can fix a type pα ∈ SM

i (Mα) which does not ex-split over any of
the relevant (D,X).

Definition 2.9 For each α < δ(T ), fix M ′
α with Mα ≺ M ′

α, |M ′
α| = λα, and M ′

α is
µ+

α saturated. Choose, by induction on i < µ+
α , triples eα,i = 〈aα,i,bα,i,dα,i〉 where

a) dα,j ∈M ′
α.

b) aα,i,bα,i are sequences of the same length from Mα that realize the same type
over Dα,i = {dα,j : j < i}.

c) The types over the empty set of (aα,i,dα,i) and (bα,i,dα,i) differ.

d) qα,i = pα � Xα,i = tp(dα,i/Xα,i) so if j < i, qα,j ⊆ qα,i.

e) Mαdαi
is an atomic set for each i. (In the mod-version Nα,i is an atomic model

containing Mαdαi
.)

Construction 2.10 Choose dα,i to realize pα � Xα,i. By Claim 2.8, we can choose
aα,i and bα,i to satisfy conditions a) and b). So we have

tp(dα,i,aα,j) = tp(dα,i,bα,j) if and only if i < j. (1)

We want this order condition for a single formula. For each i < µ+
α , the types of

(aα,i,dα,i) and (bα,i,dα,i) differ. That is, φα,i(aα,i,dα,i) and ¬φα,i(bα,i,dα,i) for
some φα,i. By the pigeon-hole principal we may assume the φα,i is always the same
φα. (Further, since |T | is not cofinal in δ(T ), we can assume the φα is the same φ for
all α.)

Suppose the construction is completed. We expand τ to a language τΦ ⊃ τ by
adding predicates P,<,R and Skolem functions. We add Skolem axioms to T to get
a theory T1 that admits quantifier elimination, requiring that these Skolem functions
applied to elements of P give an element of P so that P will pick out an elementary
submodel. (We make a similar requirement for R(x,y) in the mod-case.) Let M+

α be
a model of T1 (submodel of M ′

α) with cardinality µ+
α containing Mα and all the dα,i

(Nα,i in the mod-case). Interpret P as the modelMα and the relation< as the ordering
on the triples 〈eα,i : i < µα〉 imposed by φα.

Assign the Skolem functions so that the eα,i generate M ′
α and interpret R by

R = {ê dα,i; e ∈Mα, i < µ+
α}.

(In the Smod(M) case, interpret R as {ê dα,i : i < µ+
α , e ∈ Nα,i}.)
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Notation 2.11 Let Γ be the collection of types Pn ∪ Qn. Each non-principal n-type q
over the empty set determines one element of Pn and non-principal n+m-type q one
of Qn:

1. Pn = {
∧

i<n P (xi)} ∪ {q(x) : q is a non-principal n-type }

2. Qn = {
∧

i<nR(xi, y)} ∪ {q(x,y) : q is a non-principal n+m-type }

Now apply Morley’s omitting types theorem1 to the τΦ-theory T1 and the collection
of M+

α to get a countable sequence I of order indiscernibles and an extension Φ of T1,
(the EM-template) such that Φ is realized in each M+

α and such that for every linear
order J , EMτ (J,Φ) |= T1 and omits Γ.

Remark 2.12 (Morley’s Method) The next observation requires a little care in prov-
ing Morley’s theorem rather than just quoting it. The M ′

α are generated by the eα,i

and we have interpreted < so that these are exactly the domain of <. So in proving the
omitting types theorem, all witnesses for the consistency of the template Φ(c) can be
chosen from the domain of <. We use this fact below. It is this extra care that in the
mind of the first author distinguishes “Morley’s Method” from Morley’s theorem. But
this may be an idiosyncratic interpretation. The earliest mention of the phrase, I have
found is in [She74] and that refers to applying the two cardinal theorem for cardinals
far apart.

Note that any τΦ formula φ(x) is in Φ if it is true of every tuple 〈eα,i1 , . . . eα,i1〉
with i1 < i2 < . . . in. We describe a crucial such sentence.

Let x1x2x3 be a triple of sequences with the first two having the same length as
lg(a) = lg(b) and the third has length m. Let ψ(x,y) denote:

φ(y3,x1) ≡ φ(y3,x2).

Let ψ1 be the assertion that φ defines a linear order on its domain; this directly trans-
lates precisely Lemma 2.5.3 and is true by the displayed statement 1. These structures
clearly satisfy all the conditions of the requirements in Lemma 2.5 and we complete
the proof.

�2.5

Proof of Theorem 2.1: To show instability in λ, let I be a dense linear ordering
with cardinality λ and choose J ⊃ I , that realizes more than |I| cuts over I . Then
EMτ (J,Φ) realizes more than λ types in Sm

i (P (EMτ (I,Φ)). To see this, consider
for any cut in I realized by an element j ∈ J the type:

{ψ(〈ai,bi, ci〉,x, ) : i < j} ∪ {ψ(〈ai,bi, ci〉,x, ) : i ≥ j}.

Then 〈aj ,bj , cj〉 realizes the type in EMτ (J,Φ) and P (EMτ (J,Φ))cj is an atomic
set since Q was omitted. For the mod-case, use the interpretation of R to define Nα,i.
�2.1

1See Appendix A.3.1 of [Bal09] for a precisely tailored version. See [She78] or [Hod93], page 587 for
a version with the role of the ordering more explicit. The latter two sources make the connection with the
well-ordering number clear.
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Question 2.13 Must an atomic class that is unstable in all λ have the order property?

We say a class of atomic models has the order property if there is a sequence as
in Lemma 2.5.3 but with the set of all the sequences being contained in atomic set.
Condition 3) only requires each triple to be atomic. In particular we don’t know the
various c’s can appear together in any atomic model.

3 Strictly stable case
As the following examples show, it is easy to have superstable sentences of Lω1,ω that
are not superstable for some values below H . The following theorem has two easily
stated corollaries. If K is not superstable then it is not stable in every λ with λω > λ.
If K is superstable then it is stable in some λ < H .

The results here are related to those in [GS86] but the combinatorics here is con-
siderably simpler than in [GS86] for two related reasons. First, we construct tree indis-
cernibles indexed by <ωλ while they are concerned with ≤ωλ; the limit node is much
more difficult to handle. Second, they are constructing many non-isomorphic models,
we only construct many different types. To obtain these stronger results, they assume
the existence of large cardinals while this paper is in ZFC.

Example 3.1 For α < ω1, let φα be Morley’s sentence that has a model in iα but no
larger model. It is easy to see that the sentences are not stable in the cardinalities where
they have models. Let ψ be the Scott sentence of an infinite set with only equality.
Now let ψα assert that either a structure has a nontrivial relation and obeys φα or just
ψ. Then φα is iα-unstable but stable (indeed categorical in all cardinals beyond iω1 .

If one adds even joint embedding such trivial examples are no longer apparent.
We retain the value of µα from the first section but λα is redefined in the hypothesis

of the next theorem.

Theorem 3.2 Suppose that for every α < δ(T ), there is Mα ∈ K such that λα =
|Mα| ≥ µα and Sm

i (Mα) > λα. Then for any µ with µℵ0 > µ, K is not stable in µ.

Proof. Fix for each α < δ(T ), Mα ∈ K such that |Sm
i (Mα)| > λα. Fix pα,i for

i < λ+
α , a list of distinct types in Sm

i (Mα). We work throughout in a monster model
M of T .

To prepare for the application of an appropriate version of Morley’s omitting types
theorem we construct a sequence of models and certain types. For this, we construct
trees of types that arise from failure of stability. The combinatorics slightly extends
the classical arguments and avoids compactness. Note that this stage of the construc-
tion takes place in the original language. We will apply the following general result
uniformly to each Mα.

Fact 3.3 Suppose |M | ≥ µα+1 and P is a collection of > λα = |M | members of
Sm

i (M). Then there exists a sequence 〈bj :j < µα〉 with each bj ∈M and a formula
φ(x,y) = φP such that for each j < µα,

|{p ∈ P : i < j → φ(x,bi) ∈ p but ¬φ(x,bj) ∈ p}| > λα. (2)
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Proof. We consider many possibilities for φ and prove one works. We choose
{φη : η ∈ Ti} by induction on i < µα where each Ti is a subset of i2 and each
bη ∈Mα so that

1. j < i and η ∈ Ti implies η � j ∈ Tj .

2. if η ∈ Ti then pη = {φη�j(x,bη�j)η(j) : j < i} is included in > λα members of
P .

3. For limit i,

Ti = {η ∈ i2:(∀j < i)η � j ∈ Tj and pη is included in > λα members of P}

4. if i = j + 1 then Ti = {η̂ 0, η̂ 1:η ∈ Tj}.

For the successor step in the induction recall the following crucial observation of
Morley. Suppose there are more than |M | types over M extending a partial type p.
Then there exists a formula φ(x,a) with a ∈ M such that both p ∪ {φ(x,a) and
p ∪ {¬φ(x,a)} have more than |M | extensions to complete types over M . (We are
extending Morley’s analysis to types in Sm

i (M) but the argument is just counting;
otherwise there is a unique type obtained by always choosing the big side.)

The interesting point in the induction is the limit stage. We cannot guarantee that
individual paths survive. But at each stage in the induction, we have defined types over
a set of cardinality µα. So there are at most µα+1 types over {bη : lg(η) < δ}. So one
of the paths must have more than λα extensions to Sm

i (M).
So Tµα 6= ∅. Choose η ∈ Tµα . Let φ′j(x,bj) = φη�j(x,bη�j)η(j) for j < µα. But

since the path has length µα = iα(T ), by the pigeonhole principle we may assume
there is a single formula φ. This completes the construction of the φ and the bj . �3.3

Now we apply this fact to construct from the original Mα given in the hypothesis
of Theorem 3.2 a sequence of models M̂α and associated sequences bα,ρ and cα,ρ for
ρ ∈ <ωµα.

Definition 3.4 Let M̂α be a µ+
α saturated elementary extension of Mα. We construct

for each α by induction on n < ω, submodels Mα
n of Mα and types {qα

ν :ν ∈ <ωµα}
with qα

ν ∈ Sm
i (Mα

lg(ν)) and realizations cα,ν ∈ M̂α of qα
ν satisfying the following

conditions.

1. 〈Mα
n :n < ω〉 is an increasing chain of submodels of Mα, each with cardinality

µα.

2. If k ≤ n and ν ∈ kµα, then qα
ν ∈ Sm

i (Mα
k ).

3. Each qα
ν ∈ Sm

i (Mα
n ) has > λα extensions to Sm

i (Mα)

4. Suppose k < r ≤ n, ν ∈ kµα, ρ ∈ rµα and ρ extends ν:

qα
ν ⊆ qα

ρ .
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5. If ν ∈ kλα, k < n, i 6= j, then

qα
νbi 6= qα

νbj .

They are distinguished by the bα,ρ, as specified in statement 3 below.

6. cα,ν ∈ M̂α realizes qα
ν . (In the mod-case, Nα,ρ is the universe of an atomic

model containing Mcα,ρ.)

Construction 3.5 We use Fact 3.3 to construct objects meeting this definition. Let the
subscript x denote at or mod. By induction, for each ρ ∈ nµα the type qα

ρ ∈ Sm
xt(M

α
n )

has > λα extensions to Sm
x (Mα). Let Pρ = {r ∈ Sx(Mα) : qα

ρ ⊆ r} so |Pρ| > λα.
By Fact 3.3, we find 〈bα,ρbj :j < µα〉 and φρ satisfying displayed statement 2.

Let Mα
n+1 be a submodel of Mα with Mα

n ∪ {bα,ρ : ρ ∈ n+1(µα)} ⊆ Mα
n+1 and

with cardinality µα. Mα
n+1 ⊂ Mα so is an atomic model and each qα

ρ extends to an
atomic type over Mα.

For ρ ∈ n(µα) and i < µα first define

p′ρbi = qα
ρ ∪ {φρ(x,bα,ρbj) :j < i} ∪ {¬φρ(x,bα,ρbi)}.

Since λα < |{r ∈ Sx(Mα) : p′ρ ⊆ r}|, we can find pα
ρbi ∈ Sm

x (Mα
n ) extending p′ρbi

such that Pρbi = {r ∈ Sx(Mα) :pρbi ⊆ r} has cardinality > λα. Note that

pα
ρbi ⊇ q

α

ρ ∪ {φρ(x,bα,ρbj) :j < i} ∪ {¬φρ(x,bα,ρbi)}.

This completes the n + 1st stage of the construction. So we can construct the
Mα

n and {qν,i : ν ∈ <ωµα}〉, M̂α and by µ+
α -saturation choose cα,ρ ∈ M̂α. In the

mod-case choose an atomic model Nα,ρ with Mαcα,ρ ⊂ Nα,ρ ≺ M̂α. Note

{φρ(cα,ρbi,bα,ρbj) :j < i} ∪ {¬φρ(cα,ρbi,bα,ρbi)}. (3)

We expand τ to a language τΦ ⊃ τ in two stages. Form τ ′ by adding predicates
P, Pn, <,<

∗, R and Skolem functions. We add Skolem axioms to T to get a theory
T ′ that admits quantifier elimination, requiring that these Skolem functions applied to
elements of P give an element of P so that P will pick out an elementary submodel.

Let M+
α be a model of T (submodel of M̂α) with cardinality µα containing Mα

n

for n < ω and all the cα,ρ Assign the τ ′-Skolem functions so that P (M̂α) = Mα =⋃
n<ω M

α
n is generated by the bα,ρ for ρ ∈ <ωµα. Let Xα be the tree with domain

〈bα,ρ :ρ ∈ <ω(µα)〉 and the following relations. Interpret < as the partial order on the
〈bα,ρ :ρ ∈ <ω(µα)〉 given by inclusion on the indices. Let <∗ be a linear order of the
〈bα,ρ :ρ ∈ <ω(µα)〉 given by lexiocographic order on the indices. Interpret R as

{ê cα,ρ :ρ ∈ <n(µα), e ∈
⋃

n<ω

Mα
n }.

Form τΦ by adding function symbols Fn. Define Fn(bα,ρ) = cα,ρ. Now let T1 be
the collection of all L(τΦ)-sentences that are true in each M̂α.
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In the Smod(M) case, we must do a bit more. Interpret R as {ê cα,ρ : ρ ∈
<n(µα), and e ∈ Nα,ρ}. Define the τ ′-Skolem functions so that the Skolem clo-
sure of Mcα,ρ is Nα,ρ. This implies that if R(e, cα,ρ) holds then e is a sequence given
by τ ′-Skolem functions with arguments a finite number of members of P (M+

α ) and
cα,ρ.

Observe:

Claim 3.6 For any finite linearly ordered initial <-segment of the tree with length
n+ 1, enumerated by x0, . . .xn, (so Pi(xi)):

1.
∧

i≤n Pi(z) ∧ z <∗ xi ∧ φi(Fn(xn), z)

2.
∧

i≤n ¬φi(Fn(xn),xi).

The universal quantification of each such sentence is true in each M̂α and so is in
T1.

As in Notation 2.11 let Γ be the collection of types:

1. Pn = {
∧

i<n P (xi)} ∪ {q(x) :q is a non-principal n-type }

2. Qn = {
∧

i<nR(xi,y)} ∪ {q(x,y) :q is a non-principal n+m-type }

Now apply the omitting types theorem (as stated in Section 4) to the τΦ-theory T1

and the collection ofM+
α to get a countable set of tree-indiscernibles in order type <ωω

and an extension Φ of T1, (the EM-template) such that for every tree of J of order <ωλ,
EMτ (J,Φ) |= T1 and omits Γ.

Finally we must show there are many types; we separate the cases.

Claim 3.7 If λω > λ then there is an I with |I| = λ such that Sm
at(MI) > λ, where

MI = EM(I,Φ) � P .

Proof. Note that by 3 and Claim 3.6 we have:

1. If ρ, ρ̂ i ∈ I , tp(Fn(ρ)/Pn(M)) ⊆ tp(Fn+1(ρ̂ i)/Pn+1(M)).

2. If ρ ∈ I and i 6= j,

tp(Fn+1(ρ̂ j)/Pn+1(M)) 6= tp(Fn+1(ρ̂ i)/Pn+1(M)).

Now in any MI = EM(I,Φ) for any ρ ∈ J define pρ ∈ Sm
at(PN (MI) =

tp(Fn(ρ), Pn(M)). Now letting pη ∈ Sm
at(P (MI)) be

⋃
i<ω pη�n, we find λω mem-

bers of Sm
at(P (MI)). The definition of Sm

at guarantees the union is in Sm
at . �3.7

Now we extend this result to mod.

Claim 3.8 If λω > λ then there is an I with |I| = λ such that Sm
mod(MI) > λ, where

MI = EM(I,Φ) � P .

10



Proof. We need to construct an atomic model Nη containing MIcη (from the proof
of Claim 3.7). The natural choice is the τ ′-Skolem closure of MIcη. The reason
the reduct of this structure to τ is atomic is that any finite sequence is of the form a,b
where the a come from Pn(MI) (for a fixed n) and each of the b has the formG(a, cη)
whereG is a τ ′-Skolem function. But then the τ type of ab is the same as the τ -type of
a sequence a′b′ where a′ ∈ Pn(M̂α) and each b′ ∈ Nα,ρ is of the form G(a′, cη�n).

�3.8

4 Tree Indiscernibility
The main result of this section is the existence of tree indiscernibles as needed in the
previous section. But we take the occasion to discuss the role of various types of index
sets for indiscernible collections and to make explicit role of expanding the vocabulary
when finding indiscernibles in various contexts.

The theorem reported here is implicit in the literature (e.g. [She78, GS86]) but we
could not find an explicit statement. Theorem VII.3.6 of [She78] finds an indiscernible
tree in the first order case on ≤ωω but we want to omit types as well. The basic plan of
the proof dates to Morley [Mor65]. We indicate the modifications needed for the more
complicated combinatorics to build models to omit types that are over indiscernible
trees instead of over linear orders.

Many variants of tree indiscernibles are used in various parts of model theory; we
sketch the contexts to point out where the current version lies.

linear order <ω2 <ωλ ≤ωλ

In τ 1 2 3 4
In τΦ 5 6 7 8

In this chart the first column labels the row. In the first row, the ordering is explicitly
defined in the base language; in the second row it is not. Thus the first row describes
examples where the (tree)-ordering is definable in the original vocabulary.

Indiscernibles may be ordered by linear orders, or trees of the form <ω2, <ωλ or
even ≤ω2, ≤ωλ. We may want to find the ordering in the basic language (to witness un-
stability at some level) or not (to avoid introducing instability). In some cases the order
is explicit in the expanded language; in others it is not. Ehrenfeucht and Mostowski
(5) did not introduce the order to the base language (so second row) and built the tree
over a linear order (first column). In his construction of many models of unstable the-
ories [She71, She78], Shelah (1) is in the first column, first row. To investigate stable
but not superstable theories, we (3) want the first row, third column. The exposition
here differs from [She78], where the number of models of an unsuperstable theory is
computed, because in working with Lω1,ω , we must omit types. In VII.3.6 of [She78],
Erdos-Rado is applied to show the existence of a ‘uniform’ β-tree implies the existence
of a tree of indiscernibles indexed by <ωω. The use (2) of trees indexed by 2≤ω to con-
struct many models in ℵ1 if a countable theory is not ω-stable appears in [She78]. (The
tree is found in VI.3.7; it is used to construct many models in VIII.1.2.) An exposition
of this result and some extensions to uncountable languages occur in [Bal89]. There are

11



further applications to two-cardinal models [She75, She76] and to Peano arithmetic (6)
[MP84]. Tree indiscernibles on <ω2 rely on Halpern-Lauchli etc; tree indiscernibles
on <ωω rely on Erdos-Rado. The construction of many models from infinitary order
properties in [GS86] (4) requires large cardinal axioms for the combinatorics.

We see three steps in this kind of construction. The references in parentheses are to
the application of this method to the proof in Section 3.

1. Model theoretic construction of specific syntactic-combinatoric configurations
on models. (Construction 3.5.)

2. Application of Erdos-Rado or Halpern-Lauchli and compactness to extract a
countable family of indiscernibles. (Theorem 4.7.)

3. Application of Ehrenfeucht-Mostowski models to obtain models of arbitrary car-
dinality. (Claim 3.7.) This is sometimes called ‘stretching’.

We first establish some background notation. The exact language of the partial
order is significant; the language here is considerably more expressive than that in
[She75].

Notation 4.1 1. A tree T is a subset of ≤ωλ that is closed under initial segment.

2. atp means atomic (quantifier-free) type.

3. The vocabulary τ∗ will denote the language of trees we use. It contains the
partial order on the tree, <, the lexiocographic order on the tree <∗, and the
levels Pn. τ∗n omits the Pi with i > n.

4. When elements aη and aτ in a structure M are indexed by η, τ ∈ T that realize
the same quantifier free τ∗-type in the tree then aτ and aη have the same length.

5. If ν is an n-element sequence from T , aν denotes 〈aν(0), . . .aν(n−1)〉.

Definition 4.2 For any vocabulary τ , letM be a τ -structure and Σ a set of τ -formulas.
If atpτ∗(η/∅) = atpτ∗(ν/∅) implies tpΣ(aτ/∅) = tpΣ(aτ/∅) in M then we call

〈aη :η ∈ T 〉 ⊂M a set of Σ-tree indiscernibles:
We just say tree indiscernibles if Σ contains all formulas in L(τ).

We rely on a combinatorial lemma that follows from Erdos-Rado. The result is
proved as Theorem 2.6 in the appendix to [She78]. A stronger result (the bound on
k(m,n) is smaller) with a shorter proof appears in the appendix of [GS86].

Lemma 4.3 ([She78]) For every n,m < ω, there is a k(n,m) < ω such that if λ =
ik(χ)+ the following is true. For any function f : [≤nλ]m → χ, there exists a T ⊆ ≤nλ
such that

1. Each η ∈ T has χ+ immediate successors in T .

2. If ν and τ are m-tuples from T with atpτ∗(η/∅) = atpτ∗(ν/∅), then f(τ) =
f(η).

12



We now prove the theorem on the existence of tree-indiscernibles. In order to be
clear about the definability of the tree in the original language we extend Notation 4.1
and are quite pedantic about the vocabularies involved.

Notation 4.4 1. τΦ includes both τ and τ∗ and includes Skolem functions for τΦ,
where the Skolem axioms and relations with crucial τ -formulas are axiomatized
in a τΦ-theory T1.

2. The set of constants C which guarantee the consistency of the order are added
to τΦ.

3. Σi denotes the set of φ ∈ τΦ − {Pj :j > i} with at most i free variables.

Tree-indiscernibles are a special case of generalized indiscernibility as defined in
VII.2 of [She78]. Indiscernibles indexed by other types of structure appear for example
in [LS03, DS04, Sco]. The following notion, based on one introduced by Scow[Sco]
in a slightly different context is helpful for stating the results here. The point is that
although the type of infinite collection of indiscernibles may not be realized in any
of the input models, each finite subtype is. Thus properties of finite character (such
as realizing a finite type) follow immediately if the indiscernibles have the modeling
property.

Definition 4.5 A collection of Σ-tree-indiscerniblesB = {bη : η ∈ T } has the model-
ing property if for some (Mα, Xα) (where Mα ⊃ Xα = {aη : η ∈ T α}, and T α ≈ T
(isomorphic) for α < H) if for every finite sequence ν from T and every sequence bν

from B and each α there is a sequence aν′ ∈ Xα with ν′ having the same τ∗ type as ν
and such that aν′ and bν have the same Σ-type.

Note that in the argument below when the Xα are refined using Lemma 4.3 a tuple
aν ∈ Xi

α,n was originally named aν′ ∈ X0
α+m∗,n (where m∗ < ω can be easily

computed). But, ν and ν′ realize the same τ∗-type.

Remark 4.6 There are at least four approaches to the proof of Morley’s omitting types
theorem that differ subtly. In [CK73, Mar02]2 the language is countable and there are
separate steps to guarantee indiscernibility and omission of the types (meeting indis-
cernibility type omission requirements in turn for each formula and for each type). In
the argument here, we use the Skolemization of the modelsMα to deduce the omission
of types from the indiscernibility. This argument strategy is forced because in dealing
with uncountable languages, working with one formula at each step makes the induc-
tion too long. We replace this by working with all formulas with n free variables at step
n. The arguments in [She78, GL02, GS86] employ nonstandard-models of set theory.
Finally, the arguments in [Hod87, Kei71], work directly in infinitary logic using Hin-
tikka sets or consistency properties. The arguments of [She78, GS86, Hod87] make the
connection with well-ordering numbers explicit.

Recall that µα = iα(|T |). Writing µα rather than iα and considering Mα for
α < δ(T ) = (2|T |)+ is part of the price for dealing with uncountable T .

2Compare comments on the proof in [CK73]. The stated result is the existence of large models omitting
types without mentioning indiscernibility.
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Note that when applying this theorem in Section 3, the Mα here are the M+
α (as

Skolemized) there.

Theorem 4.7 Let T1 be a theory with Skolem functions in a vocabulary τΦ. Suppose
for α < δ(T ), there exists a model Mα of T1 with |Mα| ≥ µα such that Mα omits a
family Γ of τ -types. τΦ contains the vocabulary τ∗ and Xα is a set of elements in Mα

that form a tree of type <ωµα in Mα defined by the interpretations of <,<∗, Pn. In
particular Xα,n is the restriction of Xα to Pn; it has order type ≤nµα.

Then, there is a countable set of tree-indiscernibles C = 〈cτ : τ ∈ I〉 with I of
order type <ωω such that C has the modeling property with respect to (Mα, Xα) and
an extension Φ of T such that for every tree J of the form <ωλ, EMτ (J,Φ) |= T ,
witnesses the universal τΦ-sentences that are true on all Xα, and omits Γ.

Proof. After expanding the language τΦ with new constants 〈cρ : ρ ∈ <ωω〉, we
need to demonstrate the consistency of the following families of sentences.

1. cρ 6= cη if ρ 6= η.

2. For each τΦ-formula φ(v), for each quantifier-free τ∗-type r. If η, ν both realize
r,

φ(cν) ≡ φ(cη).

3. For each `-type p ∈ Γ, for each sequence of ` τΦ-terms ti(u) with lg(u) = m
(t(u) = 〈t0(u), . . . , t`−1(u)〉) and each quantifier-free τ∗-m-type r, there is a
φp(v0, . . . v`−1), such that if ν realizes r

¬φp(t(cν)).

4. If ψ is the universal quantification of a τΦ-formula χ(x1, . . .xn) that is true in
all Xα (i.e on the substructure of the τΦ expansion of Mα with universe Xα)
then χ(c1, . . . cn) ∈ Φ.

Let T ⊆ <ωλ and T n = T ∩ ≤nλ. We begin with pairs (Mα, X
0
α,n) for n < ω, a

model Mα, and a subset X0
α,n = {aτ : τ ∈ T α,n} which contains a sufficiently large

tree as in the hypothesis of the theorem. Here, T α ⊆ <ωµα and T α,n = T ∩ ≤nµα.
We construct by induction for i < ω and for each n a pair (M i

α, X
i
α,n) withXi

α,n =
{aτ :τ ∈ T i

α,n} ⊂
⋃

j≤n Pj(M i
α). And we construct the diagram Φ, checking its finite

consistency. Let Φ0 include all τΦ sentences true in all X0
α,n and the assertion that the

cρ are distinct.
At stage i, we apply the next result, Claim 4.8.

Claim 4.8 Let Sn be the collection of τΦ-n-types over the empty set which are realized
in

⋃
i≤n Pn(Mα) (i.e. the Σn-types). The sequence (M i

α, X
i
α,n) has the property that

for each α:
If η, ν ∈ T i

α,n both realize the same quantifier-free τ∗-type r, and n ≥ i then for
each φ ∈ Σi

φ(cη) ≡ φ(cν). (4)

Moreover, (Xi
α,n, <,<

∗) ≈ ≤nµα.
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Proof. Consider (M i
α+k, X

i
α+k,i) where k = k(m, i). Let f : [Xi

α+k,i]
m → Sn,

where f(ν) = s if tpτΦ
(aν) = s. Now by Lemma 4.3, there is a Yα,i (contained

in Xi
α+k,i ⊂

⋃
j≤i Pj(Mα)) and with (Yα,i, <,<

∗) ≈ ≤nµα and (4) is true on Yα,i.
Denote Yα,i as Xi+1

α,i and M i
α+k as M i+1

α . For j ≥ i, let Xi+1
α,j be the elements of

Xi
α+k,j that extend members of Yα,i = Xi+1

α,i . �4.8

We also refine (and rename for convenience) the index set of ordinals to guarantee
that for all α, each τ∗-type in Sn is given the same truth value for all tuples from Xi

α,i

realizing r. This assignment gives us Φn+1. We can do this because at any stage, the
number of Σn-theories is at most 2|T | which is not cofinal in (2|T |)+. Note that as
i increases in this induction, the indiscernibility is being insured for larger Σi. Since
the Σi are increasing this results in a consistent theory Φ giving tree-indiscernibility in
L(τΦ).

At stage i, we have assigned to each τ∗i type r, a complete Σi-diagram in τΦ; each
formula φ(v) ∈ Σi has a fixed truth value for all cη where η realizes r. In particular,
since all Mα omit each `-type p ∈ Γ for any finite ` , for each sequence of `-Skolem
functions t in a most m-variable, and each η realizing a τ∗-type in m-variables there
is a φp ∈ Σ`·m with φp ∈ p and ¬φp(t(cη).

�4.7
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