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Abstract

We prove two results on the stability spectrum for Lω1,ω . Here Smi (M) de-
notes an appropriate notion (at or mod) of Stone space of m-types over M . The-
orem A. (unstable case) Suppose that for some positive integer m and for every
α < δ(T ), there is an M ∈ K with |Smi (M)| > |M |iα(|T |). Then for ev-
ery λ ≥ |T |, there is an M with |Smi (M)| > |M | = λ. Theorem B. (strictly
stable case) Suppose that for every α < δ(T ), there is Mα ∈ K such that
λα = |Mα| ≥ iα and |Smi (Mα)| > λα. Then for any µ with µℵ0 > µ, K
is not i-stable in µ. These results provide a new kind of sufficient condition for
the unstable case and shed some light on the spectrum of strictly stable theories
in this context. The methods avoid the use of compactness in the theory under
study. In the Section 4, we expound the construction of tree indiscernibles for sen-
tences of Lω1,ω . Further we provide some context for a number of variants on the
Ehrenfeucht-Mostowski construction.

1 Context
For many purposes, e.g., the study of categoricity in power, the class of models of a
sentence φ of Lω1,ω can be profitably translated to the study of the class of models of
a first order theory T that omit a collection Γ of first order types over the empty set.
In particular, if φ is complete (i.e. a Scott sentence) Γ can be taken as the collection
of all non-principal types and the study is of the atomic models of T . This translation
dates from the 60’s; it is described in detail in Chapter 6 of [Bal09]. The study of finite
∗We give special thanks to the Mittag-Leffler Institute where this research was conducted. This is pa-
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diagrams (see below) is equivalent to studying sentences of Lω1,ω; the study of atomic
models of a first order theory is equivalent to studying complete sentences of Lω1,ω .

The stability hierarchy provides a crucial tool for first order model theory. She-
lah [She78] and Keisler [Kei76] show the function fT (λ) = sup{|S(M)| : |M | =
λ,M |= T} has essentially only six possible behaviors (four under GCH). In [She70],
Shelah establishes a similar result for homogeneous finite diagrams. The homogene-
ity assumption is tantamount to assuming amalgamation over all sets. This is a strong
hypothesis that is avoided in Shelah’s further investigation of categoricity in Lω1,ω

([She83a, She83b]), which is expounded as Part IV of [Bal09]. Important examples,
due to Marcus and Zilber, which do not satisfy the homogeneity hypothesis are also
described in [Bal09]. As we explain below, this investigation begins by identifying the
appropriate notion of type over a set (and thus of ω-stability). Shelah [She83a, Bal09]
showed that ω-stability implies stability in all powers. And assuming 2ℵ0 < 2ℵ1 ,
ω-stability was deduced from ℵ1-categoricity. But further questions concerning the
stability hierarchy for this notion of type for arbitrary sentences of Lω1,ω had not been
investigated. We do so now. In fact our results hold for arbitrary finite diagrams, the
class of models of first order theory that omit a given set of types over the empty set.
But our results are by no means as complete as in homogeneous case.

There are (at least) two a priori reasonable notions of Stone space for studying
atomic models of a first order theory. (As noted, we could more generally replace
‘atomic’ by ‘finite diagram’.) Recall that for a first order theory T (with a monster
model M) A ⊂ M is an atomic set if each finite sequence from A realizes a principal
type over the empty set. An atomic set is an atomic model if it is also a model of the
theory T .

Definition 1.1 Let K be the class of atomic models of a complete first order theory.

1. Let A be an atomic set; Sat(A) is the collection of p ∈ S(A) such that if a ∈M
realizes p, Aa is atomic.

2. Let A be an atomic set; Smod(A) is the collection of p ∈ S(A) such that p is
realized in some M ∈K with A ⊆M .

In [Bal09] we wrote S∗ for the notion called Smod here. The latter notation is more
evocative. We will simultaneously develop the results for both notions of Stone space
and indicate the changes required to deal with the two cases. We will write Si(M)
where i can be either at or mod.

We sometimes write |T | for |τ | where τ is the vocabulary of T . K = KT is the
class of atomic models of T . We write H = H(µ) for the Hanf number for atomic
models of all theories with |T | = µ. By [She78] H equals iδ(T ), where δ(T ), the
well-ordering number of the class of models of a theory T omitting a family of types,
is defined in VII.5 of [She78]. It is also shown there that if T is countable, H evaluates
as iω1

while for uncountable T H = i(2|T |)+ . Fix µα = iα(|T |).

Remark 1.2 In [She70], Shelah’s definition of stability makes a stronger requirement;
it implies by definition the existence of homogeneous models in certain cardinals. We
do not make that assumption here so we are considering a larger class of theories.
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Definition 1.3 1. K is i-stable in λ (for i = at or mod) if for every m < ω, and
M ∈K with |M | = λ, |Smi (M)| = λ.

2. Stability classes. For either i = at or mod,

(a) K is i-stable if it is i-stable in some λ.

(b) K is i-superstable if it is i-stable in all λ ≥ H .

(c) K is strictly i-stable if it is i-stable but not i-superstable.

For any M , Sat(M) contains Smod(M) so at-stability in λ implies mod-stability
in λ. Thus for both notions ω-stability implies stability in all powers by results of
[She83a, She83b], expounded in [Bal09].

We prove Theorem A in Section 2 and Theorem B in Section 3. The proof of
Theorem B uses an application of omitting types in Ehrenfeucht-Mostowski models
generated by trees of the form <ωλ. This is by no means new technology but we weren’t
able to locate an explicit statement of the result so we include a proof in Section 4.

We acknowledge helpful discussions with Tapani Hyttinen, Ali Enayat, Alexei
Kolesnikov, and Lynn Scow.

2 Unstable K

We first show that if there are cardinals λα in which K is ‘sufficiently unstable’, then
K is not stable in any cardinal.

Theorem 2.1 Suppose that for some positive integer m and for every α < δ(T ), there
is an Mα ∈K with |Smi (Mα)| > |Mα|iα(|T |). Then for every λ ≥ |T |, there is an M
with |Smi (M)| > |M | = λ.

Remark 2.2 (Proof Sketch) Before the formal proof we outline the argument. We
start with a sequence of models Mα and many distinct types over each of them. By
an argument which is completely uniform in α, we construct triples 〈aα,i,bα,i,dα,i〉
for i < µ+

α with the aα,i,bα,i ∈ Mα and dα,i in an elementary extension M ′α of
Mα of the same cardinality and so that Mαdα,i is atomic and the distinctness of the
types of the dα,i is explicitly realized by formulas. Then we apply Morley’s omitting
types theorem to the M ′α and extract from this sequence a countable sequence of order
indiscernibles with desirable properties. Finally, this set of indiscernibles easily yields
models of all cardinalities with the required properties.

Remark 2.3 The idea of the proof can be seen by ignoring the α and proving a slightly
weaker result from one model of size iδ(T ).

Notation 2.4 λα = |Mα|iα+2(|T |); µα = iα(|T |); κα = iα+2(|T |).

Lemma 2.5 There is Φ, proper for linear orders, in a vocabulary τΦ extending τ with
|τΦ| = |τ |, with fixed additional unary predicates P, P1 and binary R such that:
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1. For every linear ordering I , NI = EMτ (I,Φ) |= T and MI = EMτ (I,Φ) �
P ∈K. Naturally, J ⊂ I implies NJ ≺ NI and MJ ≺MI .

2. The skeleton of NI is 〈aî bî ci : i ∈ I〉 and lg(ci) = m.

3. For some first order φ:

NI |= (φ(ct,as) ≡ φ(ct,bs)) iff s <I t.

4. MI ∪ ci ⊂ NI and is atomic.

5. For Smod(M), we add the requirement that for each s ∈ I ,

MI,s = NI � {d : NI |= R(d, cs)}

is an atomic elementary submodel of NI containing MIcs.

Proof. The proof of Lemma 2.5 requires a number of steps. Fix for each α < δ(T ),
Mα ∈ K with |Mα| = λα such that |Smi (Mα)| > λα = |Mα|iα+2(|T |). Fix pα,i for
i < λ+

α , a list of distinct types in Smi (Mα). We work throughout in a monster model
M of T .

Notation 2.6 In the following construction, we choose by induction triples
〈aα,i,bα,i,dα,i〉 for i < µ+

α . We use the following notation for initial segments of
the sequences.

1. Dα,i = {dα,j : j < i}.

2. Xα,i = {aα,j ,bα,j : j < i}.

3. qα,i is the type of dα,i over Xα,i.

The following variant on splitting is crucial to carry out the construction. We call it
ex-splitting (for external) because the elements which exemplify splitting are required
to satisfy the same type over a set D which is not in (so external to) the model M and,
in particular, is not required to be realized in an atomic set.

Definition 2.7 Let M be a model, X ⊂ M and D ⊂ M. We say that p ∈ Smi (M)
ex-splits over (D,X) if there exist a,b ∈M, f ∈M so that f realizes p � X , a ≡D b
but (a, f) and (b, f) realize different types over ∅.

We will apply the next claim to Mα, Xα,i, and Dα,i when carrying out the con-
struction in paragraph 2.10. Note that this computation does not depend on |M |.

Claim 2.8 For any model M , the number of types in Smi (M) that do not ex-split over
a pair (D,X) with |X| = |D| ≤ µα is at most µα+2.
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Proof. Let P denote the collection of tp(e/M) with lg(e) = m that do not ex-
split over a pair (D,X). Each type r in P is determined by knowing r � X and for
each formula φi(x1, . . . xki) for i < |T | the restriction of r to one ki-tuple from each
equivalence class of the equivalence relation Ek on M defined by aEkib if a and b
realize the same ki-type over D. So, since |D| = µα, there are at most

2µα × (22|D|)|T | = (22µα )|T | = µα+2

possible such r. �2.8

As noted, for each Mα we will be constructing by induction on i < µ+
α , sets

Xα,i, Dα,i of cardinality µα. We need to choose in advance a type pα which does not
ex-split over any (Xα,i, Dα,i) that arises. In order to do that we restrict the source of
Dα,i; clearly Xα,i ⊂ Mα. That is, we will fix M ′α with Mα ≺ M ′α, |M ′α| = λα and
M ′α is µ+

α -saturated and choose Dα,i ⊂ M ′α. (Note then that M ′α is not in general
atomic.)

The number of types in Smi (Mα) that do not ex-split over any pair (D,X) with
|X| = |D| = iα is bounded by the number of such sets, |M ′α|µα , times the number
of types in Smi (Mα) that do not ex-split over a particular choice of (D,X), which is
µα+2 by Claim 2.8. That is, the bound is |M ′α|µα × µα+2. Since this number is less
than λ+

α , we can fix a type pα ∈ SMi (Mα) which does not ex-split over any of the
relevant (D,X).

Definition 2.9 For each α < δ(T ), fix M ′α with Mα ≺ M ′α, |M ′α| = λα, and M ′α is
µ+
α saturated. Choose, by induction on i < µ+

α , triples eα,i = 〈aα,i,bα,i,dα,i〉 where

a) dα,i ∈M ′α.

b) aα,i,bα,i are sequences of the same length from Mα that realize the same type
over Dα,i = {dα,j : j < i}.

c) The types over the empty set of (aα,i,dα,i) and (bα,i,dα,i) differ.

d) qα,i = pα � Xα,i = tp(dα,i/Xα,i) so if j < i, qα,j ⊆ qα,i.

e) Mαdαi is an atomic set for each i. (In the mod-version Nα,i is an atomic model
containing Mαdαi .)

Construction 2.10 Choose dα,i to realize pα � Xα,i. By Claim 2.8 and since
|Si(Mα)| > λα we can choose aα,i and bα,i to satisfy conditions b) and c). So we
have

tp(dα,i,aα,j) = tp(dα,i,bα,j) if and only if i < j. (1)

We want this order condition for a single formula. For each i < µ+
α , the types of

(aα,i,dα,i) and (bα,i,dα,i) differ. That is, φα,i(aα,i,dα,i) and ¬φα,i(bα,i,dα,i) for
some φα,i. By the pigeon-hole principal we may assume the φα,i is always the same
φα. (Further, since |T | is not cofinal in δ(T ), we can assume the φα is the same φ for
all α.)
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Now the construction is completed. We expand τ to a language τΦ ⊃ τ by adding
predicates P,<,R and Skolem functions. We add Skolem axioms to T to get a theory
T1 that admits quantifier elimination, requiring that these Skolem functions applied
to elements of P (Pn) give an element of P (Pn) so that P (Pn) will pick out an
elementary submodel. (We make a similar requirement for R(x,y) in the mod-case.)
Let M+

α be a model of T1 (submodel of M ′α) with cardinality µ+
α containing Mα and

all the dα,i (Nα,i in the mod-case). Interpret P as the model Mα, Pn as Mα
n , and the

relation < as the ordering on the triples 〈eα,i : i < µα〉 imposed by φα.
Assign the Skolem functions so that the eα,i generate M ′α and interpret R by

R = {ê dα,i; e ∈Mα, i < µ+
α}.

(In the Smod(M) case, interpret R as {ê dα,i : i < µ+
α , e ∈ Nα,i}.)

Notation 2.11 Let Γ be the collection of types Pn ∪ Qn. Each non-principal n-type q
over the empty set determines one element of Pn and each non-principal n+m-type q
determines one element of Qn:

1. Pn = {
∧
i<n P (xi)} ∪ {q(x) : q is a non-principal n-type }

2. Qn = {
∧
i<nR(xi, y)} ∪ {q(x,y) : q is a non-principal n+m-type, m < ω }

Now apply Morley’s omitting types theorem1 to the τΦ-theory T1 and the collection
of M+

α to get a countable sequence I of order indiscernibles and an extension Φ of T1,
(the EM-template) such that Φ is realized in each M+

α and such that for every linear
order J , EMτ (J,Φ) |= T1 and omits Γ.

Remark 2.12 (Morley’s Method) The next observation requires a little care in prov-
ing Morley’s theorem rather than just quoting it. The M ′α are generated by the eα,i
and we have interpreted < so that these are exactly the domain of <. So in proving the
omitting types theorem, all witnesses for the consistency of the template Φ(c) can be
chosen from the domain of <. We use this fact below. It is this extra care that in the
mind of the first author distinguishes “Morley’s Method” from Morley’s theorem. But
this may be an idiosyncratic interpretation. The earliest mention of the phrase, I have
found is in [She74] and that refers to a standard application of the two cardinal theorem
for cardinals far apart.

Note that any τΦ formula φ(x) is in Φ if it is true of every tuple 〈eα,i1 , . . . eα,i1〉
with i1 < i2 < . . . in. We describe a crucial such sentence.

Let x1x2x3 be a triple of sequences with the first two having the same length as
lg(a) = lg(b) and the third has length m. Let ψ(x,y) denote:

φ(y3,x1) ≡ φ(y3,x2).

Let ψ1 be the assertion that φ defines a linear order on its domain; this directly trans-
lates precisely Lemma 2.5.3 and is true by the displayed statement 1. These structures

1See Appendix A.3.1 of [Bal09] for a precisely tailored version. See [She78] or [Hod93], page 587 for
a version with the role of the ordering more explicit. The latter two sources make the connection with the
well-ordering number clear.
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clearly satisfy all the conditions of the requirements in Lemma 2.5 and we complete
the proof.

�2.5

Proof of Theorem 2.1: To show instability in λ, let I be a dense linear ordering
with cardinality λ and choose J ⊃ I , that realizes more than |I| cuts over I . Then
EMτ (J,Φ) realizes more than λ types in Smi (P (EMτ (I,Φ)). To see this, consider
for any cut in I realized by an element j ∈ J the type:

{ψ(〈ai,bi, ci〉,x, ) : i < j} ∪ {ψ(〈ai,bi, ci〉,x, ) : i ≥ j}.

Then 〈aj ,bj , cj〉 realizes the type in EMτ (J,Φ) and P (EMτ (J,Φ))cj is an atomic
set since Q was omitted. For the mod-case, use the interpretation of R to define Nα,i.
�2.1

Question 2.13 Must an atomic class that is unstable in all λ have the order property?

We say a class of atomic models has the order property if there is a sequence as in
Lemma 2.5.3 but with the set of all the sequences contained in atomic set. Condition
3) only requires each triple to be atomic. In particular we don’t know the various c’s
can appear together in any atomic model.

3 Strictly stable case
As the following examples show, it is easy to have superstable (incomplete) sentences
of Lω1,ω that are not superstable for some values below the Hanf number H . The
following theorem has two easily stated corollaries. If K is not superstable then it is
not stable in every λ with λω > λ. If K is superstable then it is stable in some λ < H .

The results here are related to those in [GS86] but the combinatorics here is con-
siderably simpler than in [GS86] for two related reasons. First, we construct tree indis-
cernibles indexed by <ωλ while they are concerned with ≤ωλ; the limit node is much
more difficult to handle. Second, they are constructing many non-isomorphic models,
we only construct many different types. To obtain these stronger results, they assume
the existence of large cardinals while this paper is in ZFC.

Example 3.1 For α < ω1, let φα be Morley’s sentence that has a model in iα but no
larger model. It is easy to see that the sentences are not stable in the cardinalities where
they have models. Let ψ be the Scott sentence of an infinite set with only equality.
Now let ψα assert that either a structure has a nontrivial relation and obeys φα or just
ψ. Then φα is iα-unstable but stable (indeed categorical) in all cardinals beyond iω1

.
If one adds even joint embedding such trivial examples are no longer apparent.

Question 3.2 Is there a complete sentence of Lω1,ω which is stable beyond H (for
either mod or at) but fails stability for some cardinals less than H?

We retain the value of µα = iα(|T |) from the first section but λα is redefined in
the hypothesis of the next theorem.
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Theorem 3.3 Suppose that for every α < δ(T ), there is Mα ∈ K such that λα =
|Mα| ≥ µα and Smi (Mα) > λα. Then for any µ with µℵ0 > µ, K is not stable in µ.

Proof. Fix for each α < δ(T ), Mα ∈ K such that |Smi (Mα)| > λα. Fix pα,i for
i < λ+

α , a list of distinct types in Smi (Mα). We work throughout in a monster model
M of T .

To prepare for the application of an appropriate version of Morley’s omitting types
theorem we construct a sequence of models and certain types. For this, we construct
trees of types that arise from failure of stability. The combinatorics slightly extends
the classical arguments and avoids compactness. Note that this stage of the construc-
tion takes place in the original language. We will apply the following general result
uniformly to each Mα.

Fact 3.4 Suppose |M | ≥ µα+1 and P is a collection of > λα = |M | members of
Smi (M). Then there exists a sequence 〈bj :j < µα〉 with each bj ∈M and a formula
φ(x,y) = φP such that for each j < µα,

|{p ∈ P : i < j → φ(x,bi) ∈ p but ¬φ(x,bj) ∈ p}| > λα. (2)

Proof. We consider many possibilities for φ and prove one works. We choose
{φη : η ∈ Ti} by induction on i < µα where each Ti is a subset of i2 and each
bη ∈Mα so that

1. j < i and η ∈ Ti implies η � j ∈ Tj .

2. if η ∈ Ti then pη = {φη�j(x,bη�j)η(j) : j < i} is included in > λα members of
P .

3. For limit i,

Ti = {η ∈ i2:(∀j < i)η � j ∈ Tj and pη is included in > λα members of P}

4. if i = j + 1 then Ti = {η̂ 0, η̂ 1:η ∈ Tj}.

For the successor step in the induction recall the following crucial observation of
Morley. Suppose there are more than |M | types over M extending a partial type p.
Then there exists a formula φ(x,a) with a ∈ M such that both p ∪ {φ(x,a) and
p ∪ {¬φ(x,a)} have more than |M | extensions to complete types over M . (We are
extending Morley’s analysis to types in Smi (M) but the argument is just counting; there
is a unique type which has more than λα extensions.)

The interesting point in the induction is the limit stage. We cannot guarantee that
individual paths survive. But at each stage in the induction, we have defined types over
a set of cardinality µα. So there are at most µα+1 types over {bη : lg(η) < δ}. So one
of the paths must have more than λα extensions to Smi (M).

So Tµα 6= ∅. Choose η ∈ Tµα . Let φj(x,bj) = φη�j(x,bη�j)
η(j) for j < µα.

Since the path has length µα = iα(T ), by the pigeonhole principle we may assume
there is a single formula φ. This completes the construction of the φ and the bj . We
have the result by condition 4. �3.4
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Now we apply this fact to construct from the original Mα given in the hypothesis
of Theorem 3.3 a sequence of models M̂α and associated sequences bα,ρ and cα,ρ for
ρ ∈ <ωµα.

Definition 3.5 Let M̂α be a µ+
α saturated elementary extension of Mα. We construct

for each α by induction on n < ω, submodels Mα
n of Mα and types {qαν :ν ∈ <ωµα}

with qαν ∈ Smi (Mα
lg(ν)) and realizations cα,ν ∈ M̂α of qαν satisfying the following

conditions.

1. 〈Mα
n :n < ω〉 is an increasing chain of submodels of Mα, each with cardinality

µα.

2. If k ≤ n and ν ∈ kµα, then qαν ∈ Smi (Mα
k ).

3. Each qαν ∈ Smi (Mα
n ) has > λα extensions to Smi (Mα)

4. Suppose k < r ≤ n, ν ∈ kµα, ρ ∈ rµα and ρ extends ν:

qαν ⊆ qαρ .

5. If ν ∈ kλα, k < n, i 6= j, then

qαν î 6= qαν ĵ .

They are distinguished by the bα,ρ, as specified in statement 3 below.

6. cα,ν ∈ M̂α realizes qαν . (In the mod-case, Nα,ρ is the universe of an atomic
model containing Mcα,ρ.)

Construction 3.6 We use Fact 3.4 to construct objects meeting this definition. Let the
subscript x denote at or mod. By induction, for each ρ ∈ nµα the type qαρ ∈ Smx (Mα

n )
has > λα extensions to Smx (Mα). Let Pρ = {r ∈ Sx(Mα) : qαρ ⊆ r} so |Pρ| > λα.
By Fact 3.4, we find 〈bα,ρ̂ j :j < µα〉 and φρ satisfying displayed statement 2.

Let Mα
n+1 be a submodel of Mα with Mα

n ∪ {bα,ρ : ρ ∈ n+1(µα)} ⊆ Mα
n+1 and

with cardinality µα. Mα
n+1 ⊂ Mα so is an atomic model and each qαρ extends to an

atomic type over Mα.
For ρ ∈ n(µα) and i < µα first define

p′ρ̂ i = qαρ ∪ {φρ(x,bα,ρ̂ j) :j < i} ∪ {¬φρ(x,bα,ρ̂ i)}.

Since λα < |{r ∈ Sx(Mα) : p′ρ ⊆ r}|, we can find pαρ̂ i ∈ Smx (Mα
n ) extending p′ρ̂ i

such that Pρ̂ i = {r ∈ Sx(Mα) :pρ̂ i ⊆ r} has cardinality > λα. Note that

pαρ̂ i ⊇ qαρ ∪ {φρ(x,bα,ρ̂ j) :j < i} ∪ {¬φρ(x,bα,ρ̂ i)}.

This completes the n + 1st stage of the construction. So we can construct the
Mα
n and {qν,i : ν ∈ <ωµα}〉, M̂α and by µ+

α -saturation choose cα,ρ ∈ M̂α. In the
mod-case choose an atomic model Nα,ρ with Mαcα,ρ ⊂ Nα,ρ ≺ M̂α. Note

{φρ(cα,ρ̂ i,bα,ρ̂ j) :j < i} ∪ {¬φρ(cα,ρ̂ i,bα,ρ̂ i)}. (3)
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With the construction complete, we expand τ to a language τΦ ⊃ τ in two stages.
Form τ ′ by adding predicates P, Pn, <,<∗, R and Skolem functions. We add Skolem
axioms to T to get a theory T ′ that admits quantifier elimination, requiring that these
Skolem functions applied to elements of P give an element of P so that P will pick
out an elementary submodel.

Let M+
α be a model of T (submodel of M̂α) with cardinality µα containing Mα

n

for n < ω and all the cα,ρ Assign the τ ′-Skolem functions so that P (M̂α) = Mα =⋃
n<ωM

α
n is generated by the bα,ρ for ρ ∈ <ωµα. Let Xα be the tree with domain

〈bα,ρ :ρ ∈ <ω(µα)〉 and the following relations. Interpret < as the partial order on the
〈bα,ρ : ρ ∈ <ω(µα)〉 given by inclusion on the ρ-indices. Let <∗ be a linear order of
the 〈bα,ρ :ρ ∈ <ω(µα)〉 given by lexiocographic order on the ρ-indices. Interpret R as

{ê cα,ρ :ρ ∈ <n(µα), e ∈
⋃
n<ω

Mα
n }.

Form τΦ by adding function symbols Fn. Define Fn(bα,ρ) = cα,ρ. Now let T1 be
the collection of all L(τΦ)-sentences that are true in each M̂α.

In the Smod(M) case, we must do a bit more. Interpret R as

{ê cα,ρ :ρ ∈ <n(µα), and e ∈ Nα,ρ}.

Define the τ ′-Skolem functions so that the Skolem closure of Mcα,ρ is Nα,ρ. This
implies that ifR(e, cα,ρ) holds then e is a sequence given by τ ′-Skolem functions with
arguments a finite number of members of P (M+

α ) and cα,ρ.
By conditions 4-6 of Definition 3.5,

Claim 3.7 For any finite linearly ordered initial <-segment of the tree with length
n+ 1, enumerated by x0, . . .xn, (so Pi(xi)):

1.
∧
i≤n[Pi(z) ∧ z <∗ xi → φi(Fn(xn), z)]

2.
∧
i≤n ¬φi(Fn(xn),xi).

The universal quantification of each such sentence is true in each M̂α and so is in
T1.

As in Notation 2.11 let Γ be the collection of types:

1. Pn = {
∧
i<n P (xi)} ∪ {q(x) :q is a non-principal n-type }

2. Qn = {
∧
i<nR(xi,y)} ∪ {q(x,y) :q is a non-principal n+m-type, m < ω }

Now apply the omitting types theorem (as stated in Section 4) to the τΦ-theory T1

and the collection ofM+
α to get a countable set of tree-indiscernibles in order type <ωω

and an extension Φ of T1, (the EM-template) such that for every tree of J of order <ωλ,
EMτ (J,Φ) |= T1 and omits Γ.

Finally we must show there are many types; we separate the mod and at cases.
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Claim 3.8 If λω > λ then there is an I with |I| = λ such that Smat(MI) > λ, where
MI = EM(I,Φ) � P .

Proof. Note that by displayed statement 3 and Claim 3.7 we have:

1. If ρ, ρ̂ i ∈ I , tp(Fn(ρ)/Pn(M)) ⊆ tp(Fn+1(ρ̂ i)/Pn+1(M)).

2. If ρ ∈ I and i 6= j,

tp(Fn+1(ρ̂ j)/Pn+1(M)) 6= tp(Fn+1(ρ̂ i)/Pn+1(M)).

Now in any MI = EM(I,Φ) for any ρ ∈ J define pρ ∈ Smat(PN (MI) =
tp(Fn(ρ), Pn(M)). Now letting pη ∈ Smat(P (MI)) be

⋃
i<ω pη�n, we find λω mem-

bers of Smat(P (MI)). The definition of Smat guarantees the union is in Smat . �3.8

Now we extend this result to mod.

Claim 3.9 If λω > λ then there is an I with |I| = λ such that Smmod(MI) > λ, where
MI = EM(I,Φ) � P .

Proof. We need to construct an atomic model Nη containing MIcη (from the proof
of Claim 3.8). The natural choice is the τ ′-Skolem closure of MIcη . The reason
the reduct of this structure to τ is atomic is that any finite sequence is of the form a,b
where the a come from Pn(MI) (for a fixed n) and each of the b has the formG(a, cη)
whereG is a τ ′-Skolem function. But then the τ type of ab is the same as the τ -type of
a sequence a′b′ where a′ ∈ Pn(M̂α) and each b′ ∈ Nα,ρ is of the form G(a′, cη�n).

�3.9

Remark 3.10 We investigate the difference in hypotheses between Theorem 2.1 and
Theorem 3.32. We first study Theorem 2.1.

Let κ = |Mα|.
Case 1. κ ≤ iα: then κiα is equal to iiα

α = 2iα = iα+1. The assumption
of the theorem is that |Smi (Mα)| > κiα = 2iα . This case is not possible since
|Smi (Mα)| ≤ 2κ ≤ 2iα .

Case 2. κ > iα. On one hand we have κ ≤ κiα ; on the other iα+1 = iiα
α ≤ κiα .

Thus, κiα ≥ max(iα+1, κ). The hypothesis in the theorem says that |Smi (Mα)| >
κiα , so |Smi (Mα)| > max(iα+1, κ).

This leads to two cases:
Case 2a. κ ≥ iα+1: then |Smi (Mα)| > max(iα+1, κ

iα) ≥ κ. So the requirement
is at least instability in κ.

Case 2b. iα < κ < iα+1: then |Smi (Mα)| > max(iα+1, κ
iα) = iα+1 > κ.

This yields instability in κ. (Under GCH, of course, this case is empty.)
In general, the hypothesis in case 2a) requires more than instability in κ: if κ has

cofinality less than or equal to the cofinality of iα, then κiα > κ, and the number of
types needs to be (possibly) much greater than κ.

2This analysis was worked out by the first author and Alexei Kolesnikov.
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Theorem 3.3 asserts that K is unstable in some cardinal then it is unstable in any
λ with λω > λ so it is analogous to the first order case. Further it asserts that the first
stability cardinal for a superstable class is less than H .

Thus, in Theorem 2.1 we assume ‘serious’ instability and get instability everywhere
and in Theorem 3.3 we assume “just” instability, and get instability for cardinals of
countable cofinality only.

We further analyze case 2a under GCH. The possible values of κiα , given that
κ > iα+1, become κ and 2κ = κ+ (the first is the case when the cofinality of κ is
greater than the cofinality of iα; otherwise, the second alternative holds).

Under the GCH the difference between ’serious’ and ’just’ instability disappears.
Moreover, we can expect to find Mα satisfying the hypothesis only for |Mα| of cofi-
nality greater than the cofinality of iα. So under the GCH, the difference between the
hypotheses in 2.1 and 3.2 disappears, but the conclusion of 3.2 is weaker.

4 Tree Indiscernibility
The main result of this section is the existence of tree indiscernibles as needed in the
previous section. But we take the occasion to discuss the role of various types of
index sets for indiscernible collections and to make explicit the role of expanding the
vocabulary when finding indiscernibles in various contexts.

The theorem reported here is implicit in the literature (e.g. [She78, GS86]) but we
could not find an explicit statement. Theorem VII.3.6 of [She78] finds an indiscernible
tree in the first order case on ≤ωω but we want to omit types as well. The basic plan of
the proof dates to Morley [Mor65]. We indicate the modifications needed for the more
complicated combinatorics to build models to omit types that are over indiscernible
trees instead of over linear orders.

Many variants of tree indiscernibles are used in various parts of model theory; we
sketch the contexts to point out where the current version lies.

linear order <ω2 <ωλ ≤ωλ

<∈ τ 1 2 3 4
<∈ τΦ 5 6 7 8

In this chart the left most column labels the row and there are four numbered
columns. In the first row, the ordering is explicitly defined in the base language; in the
second row it is not. Thus the first row describes examples where the (tree)-ordering is
definable in the original vocabulary.

Indiscernibles may be ordered by linear orders, or trees of the form <ω2, <ωλ or
even ≤ω2, ≤ωλ. We may want to find the ordering in the basic language (to witness un-
stability at some level) or not (to avoid introducing instability). In some cases the order
is explicit in the expanded language; in others it is not. Ehrenfeucht and Mostowski (5)
did not introduce the order to the base language (so second row) and built the tree over
a linear order (first column). Morley’s proof that ℵ1-categoricity implies ω-stability
occupies the same place in the chart. He is counting the number of τ types and there is
certainly no ordering in the vocabulary τ . In his construction of many models of unsta-
ble theories [She71, She78], Shelah (1) is in the first column, first row. To investigate
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the difference in stability spectrum for stable but not superstable theories, we want (3)
the first row, third column. But to count the number of models of superstable theory in-
volves (4) trees of height ω+1. The proof here differs from [She78], where the number
of models of an unsuperstable theory is computed, because in working with Lω1,ω , we
must omit types. In VII.3.6 of [She78], Erdos-Rado is applied to show the existence of
a ‘uniform’ β-tree implies the existence of a tree of indiscernibles indexed by <ωω. The
use (2) of trees indexed by 2≤ω to construct many models in ℵ1 if a countable theory
is not ω-stable appears in [She78]. (The tree is found in VI.3.7; it is used to construct
many models in VIII.1.2.) An exposition of this result and some extensions to uncount-
able languages occur in [Bal89]. There are further applications to two-cardinal models
[She75, She76] and to Peano arithmetic (6) [MP84]. Tree indiscernibles on <ω2 rely
on Halpern-Lauchli; tree indiscernibles on <ωω rely on Erdos-Rado. The construction
of many models from infinitary order properties in [GS86] (4) requires large cardinal
axioms for the combinatorics.

We see three steps in this kind of construction. The references in parentheses are to
the application of this method to the proof of the strictly stable case in this paper.

1. Model theoretic construction of specific syntactic-combinatoric configurations
on models. (Construction 3.6.)

2. Application of Erdos-Rado or Halpern-Lauchli and compactness to extract a
countable family of indiscernibles. (Theorem 4.7.)

3. Application of Ehrenfeucht-Mostowski models to obtain models of arbitrary car-
dinality. (Claim 3.8.) This is sometimes called ‘stretching’.

We first establish some background notation. The exact vocabulary for describ-
ing the partial order is significant; ours is considerably more expressive than that in
[She75].

Notation 4.1 1. A tree T is a subset of ≤ωλ that is closed under initial segment.

2. atp means atomic (quantifier-free) type.

3. The vocabulary τ∗ will denote the vocabulary for trees we use. It contains the
partial order on the tree, <, the lexiocographic order on the tree <∗, and the
levels Pn. τ∗n omits the Pi with i > n.

4. When elements aη and aτ in a structure M are indexed by η, τ ∈ T that realize
the same quantifier free τ∗-type in the tree then aτ and aη have the same length.

5. If ν is an n-element sequence from T , aν denotes 〈aν(0), . . .aν(n−1)〉.

Definition 4.2 For any vocabulary τ , letM be a τ -structure and Σ a set of τ -formulas.
If atpτ∗(η/∅) = atpτ∗(ν/∅) implies tpΣ(aη/∅) = tpΣ(aν/∅) in M then we call

〈aη :η ∈ T 〉 ⊂M a set of Σ-tree indiscernibles:
We just say tree indiscernibles if Σ contains all formulas in L(τ).
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We rely on a combinatorial lemma that follows from Erdos-Rado. The result is
proved as Theorem 2.6 in the appendix to [She78]. A stronger result (the bound on
k(m,n) is smaller) with a shorter proof appears in the appendix of [GS86].

Lemma 4.3 ([She78]) For every n,m < ω, there is a k = k(n,m) < ω such that if
λ = ik(χ)+ the following is true. For any function f : [≤nλ]m → χ, there exists a
T ⊆ ≤nλ such that

1. Each η ∈ T has χ+ immediate successors in T .

2. If ν and τ are m-tuples from T with atpτ∗(η/∅) = atpτ∗(ν/∅), then

f(τ) = f(η).

We now prove the theorem on the existence of tree-indiscernibles. In order to be
clear about the definability of the tree in the original vocabulary we extend Notation 4.1
and are quite pedantic about the vocabularies involved.

Notation 4.4 1. τΦ includes both τ and τ∗ and includes Skolem functions for τΦ,
where the Skolem axioms and relations with crucial τ -formulas are axiomatized
in a τΦ-theory T1.

2. The set of constants C which guarantee the consistency of the order are added
to τΦ.

3. Σi denotes the set of φ ∈ τΦ − {Pj :j > i} with at most i free variables.

Tree-indiscernibles are a special case of generalized indiscernibility as defined in
VII.2 of [She78]. Indiscernibles indexed by other types of structure appear for exam-
ple in [LS03, D0̌4, Sco]. The following notion of modeling property, based on one
introduced by Scow[Sco] in a slightly different context is helpful for stating the results
here. The point is that although the type of an infinite collection of indiscernibles may
not be realized in any of the input models, each type of a finite subsequence is. Thus
properties of finite character (such as realizing a finite type) follow immediately if the
indiscernibles have the modeling property. We use ≈ for isomorphic.

Definition 4.5 A collection of Σ-tree-indiscernibles B = {bη : η ∈ T } has the mod-
eling property if it is derived from a sequence (Mα, Xα) (where Mα ⊃ Xα = {aη :
η ∈ T α}, and T α ≈ T for α < H) such that for every finite sequence ν from T and
every sequence bν from B and some α there is a sequence aν′ ∈ Xα with ν′ having
the same τ∗-type as ν and such that aν′ and bν have the same Σ-type.

Note that in the argument below when the Xα are refined using Lemma 4.3 a tuple
aν ∈ Xi

α,n was originally named aν′ ∈ X0
α+m∗,n (where m∗ < ω can be easily

computed). But, ν and ν′ realize the same τ∗-type.

Remark 4.6 There are at least four approaches to the proof of Morley’s omitting types
theorem that differ subtly. In [CK73, Mar02]3 the language is countable and there are

3Compare comments on the proof in [CK73]. The stated result is the existence of large models omitting
types without mentioning indiscernibility.
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separate steps to guarantee indiscernibility and omission of the types (meeting indis-
cernibility type omission requirements in turn for each formula and for each type). In
the argument here, we use the Skolemization of the modelsMα to deduce the omission
of types from the indiscernibility. This argument strategy is forced because in dealing
with uncountable languages, working with one formula at each step makes the induc-
tion too long. We replace this by working with all formulas with n free variables at step
n. The arguments in [She78, GL02, GS86] employ nonstandard-models of set theory.
Finally, the arguments in [Hod87, Kei71], work directly in infinitary logic using Hin-
tikka sets or consistency properties. The arguments of [She78, GS86, Hod87] make the
connection with well-ordering numbers explicit. Tsuboi [Tsu08] shows that a family
of < 2ℵ0 complete types that is omitted up to ℵω1

can be omitted in arbitrarily large
models; this argument introduces some new combinatorial ideas.

Recall that µα = iα(|T |). Writing µα rather than iα and considering Mα for
α < δ(T ) = (2|T |)+ is part of the price for dealing with uncountable T .

Note that when applying this theorem in Section 3, the Mα here are the M+
α (as

Skolemized) there.

Theorem 4.7 Let T1 be a theory with Skolem functions in a vocabulary τΦ. Suppose
for α < δ(T ), there exists a model Mα of T1 with |Mα| ≥ µα such that Mα omits a
family Γ of τ -types. τΦ contains the vocabulary τ∗ and Xα is a set of elements in Mα

that form a tree of type <ωµα in Mα defined by the interpretations of <,<∗, Pn. In
particular Xα,n is the restriction of Xα to Pn; it has order type ≤nµα.

Then, there is a countable set of tree-indiscernibles C = 〈cτ : τ ∈ I〉 with I of
order type <ωω such that C has the modeling property with respect to (Mα, Xα) and
an extension Φ of T such that for every tree J of the form <ωλ, EMτ (J,Φ) |= T ,
witnesses the universal τΦ-sentences that are true on all Xα, and omits Γ.

Proof. After expanding the language τΦ with new constants 〈cρ : ρ ∈ <ωω〉, we
need to demonstrate the consistency of the following families of sentences.

1. cρ 6= cη if ρ 6= η.

2. For each τΦ-formula φ(v), for each quantifier-free τ∗-type r. If η, ν both realize
r,

φ(cν) ≡ φ(cη).

3. For each `-type p ∈ Γ, for each sequence of ` τΦ-terms ti(u) with lg(u) = m
(t(u) = 〈t0(u), . . . , t`−1(u)〉) and each quantifier-free τ∗-m-type r, there is a
φp(v0, . . . v`−1), such that if ν realizes r

¬φp(t(cν)).

4. If ψ is the universal quantification of a τΦ-formula χ(x1, . . .xn) that is true in
all Xα (i.e on the substructure of the τΦ expansion of Mα with universe Xα)
then χ(c1, . . . cn) ∈ Φ.
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Let T ⊆ <ωλ and T n = T ∩ ≤nλ. We begin with pairs (Mα, X
0
α,n) for n < ω, a

model Mα, and a subset X0
α,n = {aτ : τ ∈ T α,n} which contains a sufficiently large

tree as in the hypothesis of the theorem. Here, T α ⊆ <ωµα and T α,n = T ∩ ≤nµα.
We construct by induction for i < ω and for each n a pair (M i

α, X
i
α,n) withXi

α,n =

{aτ :τ ∈ T i
α,n} ⊂

⋃
j≤n Pj(M

i
α) with (T i

α,n, <,<
∗) ≈ ≤nµα. And we construct the

diagram Φ, checking its finite consistency. Let Φ0 include all τΦ sentences true in all
X0
α,n and the assertion that the cρ are distinct.

At stage i, we apply the next result, Claim 4.8.

Claim 4.8 Let Sn be the collection of τΦ-n-types over the empty set which are realized
in

⋃
i≤n Pn(Mα) (i.e. the Σn-types). The sequence (M i

α, X
i
α,n) has the property that

for each α:
If η, ν ∈ T i

α,n both realize the same quantifier-free τ∗-type r, and n ≤ i then for
each φ ∈ Σn

φ(cη) ≡ φ(cν). (4)

Moreover, (Xi
α,n, <,<

∗) ≈ ≤nµα.

Proof. Consider (M i
α+k, X

i
α+k,i) where k = k(m, i). Let f : [Xi

α+k,i]
m → Sn,

where f(ν) = s if tpτΦ(aν) = s. Now by Lemma 4.3, there is a Yα,i (contained
in Xi

α+k,i ⊂
⋃
j≤i Pj(Mα)) and with (Yα,i, <,<

∗) ≈ ≤nµα and (4) is true on Yα,i.
Denote Yα,i as Xi+1

α,i and M i
α+k as M i+1

α . For j ≥ i, let Xi+1
α,j be the elements of

Xi
α+k,j that extend members of Yα,i = Xi+1

α,i . �4.8

We also refine (and rename for convenience) the index set of ordinals to guarantee
that for all α, each τ∗-type in Sn is given the same truth value for all tuples from Xi

α,i

realizing r. This assignment gives us Φn+1. We can do this because at any stage, the
number of Σn-theories is at most 2|T | which is not cofinal in (2|T |)+. Note that as
i increases in this induction, the indiscernibility is being insured for larger Σi. Since
the Σi are increasing this results in a consistent theory Φ giving tree-indiscernibility in
L(τΦ).

At stage i, we have assigned to each τ∗i type r, a complete Σi-diagram in τΦ; each
formula φ(v) ∈ Σi has a fixed truth value for all cη where η realizes r. In particular,
since all Mα omit each `-type p ∈ Γ for any finite ` , for each sequence of `-Skolem
functions t in a most m-variable, and each η realizing a τ∗-type in m-variables there
is a φp ∈ Σ`·m with φp ∈ p and ¬φp(t(cη).

�4.7

This completes the general proof for obtaining tree indiscernibles and so the proof
of Theorem 3.3 is complete as well.
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