Nonsplitting extensions

John T. Baldwin Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

February 14, 2004

The existence of nonsplitting extensions of a Galois type $p \in \text{ga} - \mathcal{S}(M)$ to a model M' of the same cardinality such that M' is universal over M is obtained in [2] and, in more detail, in [3]. Finding such extensions where M'has larger cardinality requires a different technique. The argument here uses only 'relative saturation' properties of models of the form $EM(\mu^{<\omega}, \Phi)$, which are proved in [1]. The application to categoricity transfer requires the characterization of saturated models as having this form, which is also in [1]. The Corollary is from [2] but this argument is significantly shorter.

By $\operatorname{aut}_{N}(\mathbb{M})$ we mean the set of automorphisms of \mathbb{M} which fix N pointwise.

Lemma 1 Let $M = EM(\mu^{<\omega}, \Phi) = EM(I, \Phi)$ and $p \in S(M)$. Suppose p does not split over $M_0 = EM(I_0, \Phi)$ with $I_0 \subset I$. Then there is an extension of p to $N = EM(J, \Phi)$ $(J = \lambda^{<\omega})$ which does not split over M_0 .

Proof. Let $\tau(\mathbf{a}) \in N$ realize p. Without loss of generality $(\mathbf{a} \cap M) \subset I_0$. Now extend J to J' by adding a finite sequence \mathbf{a}' with a'_i in the same I-cut as a_i but a'_i greater than any element of J in that cut. Now since \mathbf{a} and \mathbf{a}' realize the same type in the language of orders over I, a compactness argument shows there is an extension J'' of J and an automorphism f of J'' which fixes I and maps \mathbf{a} to \mathbf{a}' . Thus, $\alpha = \tau(\mathbf{a}')$ realizes p. Consider any N_1, N_2 in N and a \mathbf{K} -map h over M_0 which maps N_1 to N_2 ; by homogeneity of the monster, h extends to an $\eta \in \operatorname{aut}(\mathbb{M})$. Let $p' = \operatorname{tp}(\tau(\mathbf{a}')/N)$. We will show there is a map $\hat{\eta} \in \operatorname{aut}_{N_2}(\mathbb{M})$ witnessing that $h(p' \upharpoonright N_1) = p' \upharpoonright N_2$; that is $\hat{\eta}$ maps $\eta(\alpha)$ to α . Choose $K \subseteq J$ such that $N_1, N_2 \prec_{\mathbf{K}} N_3 = EM(K, \Phi)$. By the 'relative saturation' of I in J there is an order isomorphism g fixing I_0 and mapping K to $K' \subseteq I$. Moreover, wolog we take the domain of g to be $I_0K\mathbf{a}'$ and g fixes \mathbf{a}' . Thus g extends to a $\gamma \in \operatorname{aut}(\mathbb{M})$, such that γ fixes $EM(I_0\mathbf{a}, \Phi)$. In particular, γ fixes αM_0 . Let N'_1 denote $\gamma(N_1)$ and N'_2 denote $\gamma(N_2)$. Then $\eta' = \gamma \eta \gamma^{-1} \in \operatorname{aut}_{M_0}(\mathbb{M})$ takes N'_1 to N'_2 . Since p does not split over M_0 , there is an $\hat{\eta}' \in \operatorname{aut}_{N'_2}(\mathbb{M})$, taking $\eta'(\alpha)$ to α . We claim $\gamma^{-1}\hat{\eta}'\gamma(\eta(\alpha))$) which equals α by the choice of $\hat{\eta}'$ and since γ fixes α .

Modulo the easy fact from [2] that types over saturated models don't split over a smaller model, we have proved:

Corollary 2 Suppose an acc with amalgamation and joint embedding is categorical in λ . If $M \prec_{\mathbf{K}} N$ are saturated models in \mathbf{K} with $|M| < |N| \le \lambda$ and $p \in \text{ga} - S(M)$, p has a nonsplitting extension to ga - S(N).

References

[1] J.T. Baldwin. Ehrenfreuht-Mostowski models in abstract elementary classes. submitted, 200?

- [2] S. Shelah. Categoricity for abstract classes with amalgamation. Annals of Pure and Applied Logic, 98:261–294, 1999. paper 394.
- [3] Monica VanDieren. Categoricity in abstract elementary classes with no maximal models.