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Abstract

Suppose t = (T, T1, p) is a triple of two theories in vocabularies τ ⊂ τ1 with
cardinality λ and a τ1-type p over the empty set. We show the Hanf number for
the property: ‘There is a model M1 of T1 which omits p, but M1 � τ is saturated’
is less than i

(2(2
λ)+ )

+ if T is superstable.
We showed in [2] that with no stability restriction the Hanf number is essen-

tially equal to the Löwenheim number of second order logic.

Hanf observed [4] that if one asks for each K in a set of classes of structures, ‘Does
K have arbitrarily large members?’, there is a cardinal κ (the sup of the maxima of the
bounded K) such that any class with a member at least of cardinality κ has arbitrarily
large models. In many cases this bound κ can be calculated (For a countable first
order theory, it is ℵ0.) In this paper we call a Hanf number for a family K of classes
calculable if it is bounded by a function that can be computed by an arithmetic function
in ZFC (See Definition 0.1.) and if not it is incalculable.

The following definition is more abstract than needed for this paper but we include
it for comparison with other works where other Hanf functions are shown to be not
calculable.

Definition 0.1 1. A function f (a class-function from cardinals to cardinals) is
strongly calculable if f can (provably in ZFC) be defined in terms of cardinal
addition, multiplication, exponentiation, and iteration of the i function.
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2. A function f is calculable if it is (provably in ZFC) eventually dominated by a
strongly calculable function. If not, it is incalculable.

We extend our work on Newelski’s [6] question about calculating the Hanf number
of the following property:

Definition 0.2 1. We say M1 |= t where t = (T, T1, p) = (Tt, T1,t, pt) is a triple
of two theories T, T1 in vocabularies τ ⊂ τ1, respectively, such that |τ1| ≤ λ,
T ⊆ T1 and p is a τ1-type over the empty set if M1 is a model of T1 which omits
p, but M1�τ is saturated.

2. Let Nλ denote1 the set of t with |τ1| = λ. Then H(Nλ) denotes the Hanf
number of Nλ, H(Nλ) is least so that if t ∈ Nλ has a model of cardinality
H(Nλ) it has arbitrarily large models.

3. The Hanf number of a logic L (e.g. Lκ+,κ) is the least cardinal µ such that if an
L-sentence has model in cardinal µ, then it has arbitrarily large models.

Under mild set theoretic hypotheses, we showed in [2] that H(Nλ) equals the
Löwenheim number of second order logic, which is incalculable. In Section 1 we
restrict the question by requiring that the theory T be superstable case; the number is
then easily calculable in terms of Beth numbers.

The phenomena that stability considerations can greatly lower Hanf number esti-
mates was earlier explored in [5]. Work in preparation extends the current context to
strictly stable theories. References of the form X.x.y are to [7].

Much of this paper depends on a standard way of translating between sentences in
languages of the form Lλ,ω(τ) and first order theories in an expanded vocabulary τ
that omit a family of types. This translation dates back to [3]; a short explanation of the
process appears in Chapter 6.1 of [1]. Chapter VII.5 of [7] is an essential reference for
this paper. There, these (equivalent) Hanf numbers of sentences and associated pair of
a family of types and theory are calculated using the ‘well-ordering number of a class’.
We begin with a slight rewording of Definition VII.5.1 of [7], using language from [3].

Definition 0.3 1. The Morley number µ(λ, κ) is the least cardinal µ such that if a
first order theory T is a vocabulary of cardinality λ has a model in cardinality µ
which omits a family of κ types over the empty set, it has arbitrarily large such
models.

2. The well-ordering number δ(λ, κ) is the least ordinal α such that if a first order
theory T is a vocabulary τ of cardinality λ, which includes a symbol < has a
model in which omits a family κ types over the empty set < is well ordering of
type α, then there is such a model where < is not a well-order.

The connection between these two notions is in section VII of [7].

Fact 0.4 1. If κ > 0, µ(λ, κ) = iδ(λ,κ).
1Thus, ‘there is an M ∈ Nλ with cardinality κ’ replaces the more cumbersome notation in [2],

‘PλN (Kt, κ) holds’.
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2. For every infinite cardinal θ, H(Lθ+,ω) ≤ µ(θ, 1) < i(2θ)+.

Proof. Item 1 is VII.5.4 of [7]. Recall that Lopez-Escobar and Chang (e.g. [3])
showed how to code sentences of Lλ+,ω as first order theories omitting types and even
(as in proof of VII.5.1.4) a single type. H(Lλ+,ω) < i(2λ)+ is now clear from Theo-
rems VII.5.4 and VII.5.5.7 of [7].

1 Computing H(N ss
λ )

1.1 Introduction
We study the following notions in this section.

Definition 1.1 Let N ss
λ denote the set2 of t with |τ1| = λ with the additional require-

ment that Tt is a superstable theory. Now we have the natural notion of the Hanf
number, H(N ss

λ ) for this set: If t ∈N ss
λ has a model of cardinality≥ H(N ss

λ ), it has
arbitrarily large models.

We will prove the following theorem:

Theorem 1.2

H(Lλ+,ω) < i(2λ)+ < H(N ss
λ ) < H(L(2λ)+,ω) < i

(2(2λ)+ )+
.

The first and fourth of these inequalities are immediate from Fact 0.4.2 taking θ
first as λ and then as 2λ.

In Subsection 1.2, we give a rather involved proof that i(2λ)+ is strictly less than
H(N ss

λ ); together with the first inequality, this implies immediately that H(Lλ+,ω) <
H(N ss

λ ). Note that less than or equal, H(Lλ+,ω) ≤ H(N ss
λ ) is straightforward. Just

set t as (T0, T1, p) where T0 is pure equality and (T1, p) encode a given sentence ψ ∈
Lλ+,ω . Then T0 is superstable and every model is saturated, so we have the desired
interpretation.

The second and third inequalities are in Subsections 1.2 and 1.3, respectively.

1.2 The Second Inequality
To show H(Lλ+,ω) < H(N ss

λ ), we actually show

Theorem 1.3 H(Lλ+,ω) < i(2λ)+ < H(N ss
λ ).

As noted the first inequality in Theorem 1.2.1 is standard. The following Lemma
will be key to showing i(2λ)+ < H(N ss

λ ). We will construct a sequence of
Kα ∈ N ss

λ which code sentences of Lλ+,ω which, in turn, code increasingly large

2Technically, this is not a set since a vocabulary is a sequence of relation symbols and we could use
different names for the symbols; this pedantry can be avoided in at least two ways: restrict the symbols to
come from a specified set; return to Tarski’s convention of discussing not vocabularies but similarity types,
the equivalence classes of enumerated vocabularies such that the ith symbol has aritity ni.
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well-orders. Then in Theorem 1.10, we will combine the Kα into a single K ∈ N ss
λ

which codes the supremum of these well-orders. The proof of Lemma 1.4 takes several
steps.

Lemma 1.4 Fix a sentence φ ∈ Lλ+,ω in a vocabulary of cardinality at most λ, which
has a model of cardinality at least 2λ but for some (least) µ = µφ has no model of
cardinality ≥ µφ.

1. There is an associated ψ = ψφ ∈ Lλ+,ω and a class Kψ of models of ψ such that
Kψ satisfies Requirements 1.5 and 1.6, and each model of Kψ has cardinality
χ for some χ with λ ≤ χ < µ.

2. Moreover, for each such Kψ we can define a t = tψ ∈ N ss
λ such that the

following are equivalent.

(a)
spec(Kψ) = {χ : λ ≤ χ < µ}.

(b)
spec(tψ) = {χ : 2λ ≤ χ < µ}.

Proof. First we construct ψ = ψφ and Kψ . Recall φ is in some vocabulary σ of
cardinality at most λ. The vocabulary τ∗ of ψφ adds to σ, unary predicates P , Q0, Q1,
a binary relation R, a unary function G, and λ constants ci.

Here is a sketch of the argument. By omitting a type we can guarantee PM has
cardinality λ. QM1 is a family of subsets of PM . As we describe immediately after
Notation 1.9, by the saturation of the reduct to a model of a superstable theory, we can
guarantee that every subset of PM is represented in QM1 . Via a pairing function on
PM , we can show every subset of QM1 with cardinality < λ can be coded; hence we
can ‘say’ <M well-orders QM1 .

Requirement 1.5 ψ asserts that

1. the symbols of σ are defined only on Q0 and if M |= ψ, and N is the restriction
of M to QM0 , N�σ |= φ;

2. the ci are all in P and exhaust P ; P,Q0, Q1 partition the universe;

3. R is a extensional binary relation between P and Q1; thus the elements of Q1

code subsets of P .

4. G is a 1-1 function from Q1 into Q0.

For any M |= ψ, for b ∈ QM1 , let uM (b) = {i : M |= R(ci, b)}. To complete the
definition of Kψ , we add the additional requirement (not axiomatizable in Lλ+,ω):

Requirement 1.6 For M ∈ Kψ , for every w ⊂ λ there is a b ∈ QM1 such that
uM (b) = w.
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Conditions 1) and 4) of Requirement 1.5 guarantee each member of Kψ has car-
dinality less than µ. Condition 2) implies |PM | = λ. Conditions 2) and 3) guarantee
that QM1 has cardinality at most 2λ. Condition 4) guarantees that |QM0 | ≥ |QM1 |. And
Requirement 1.6 asserts |QM1 | is at least 2λ.

Definition 1.7 Kψ is the class of τ∗-structures satisfying Requirements 1.5 and 1.6.

We have constructed ψ from φ proving Lemma 1.4.1. Now we construct tψ . to
satisfy Lemma 1.4.2. As in Fact 0.4 ψ ∈ Lλ+,ω by a first order theory Tψ of cardinality
λ and omitting a single type: {P (x), x 6= ci : i < λ}.

The vocabulary τ is a set of λ unary predicates Pi. The theory T asserts the 〈Pi :
i < λ〉 are an independent family of unary predicates on the entire model. The theory
T is superstable as it is formulated in a language with only unary predicates.

The vocabulary τ1 adds the rest of τ∗ (from the proof of Lemma 1.4) and addition-
ally a binary function F and a unary function H .

Requirement 1.8 T1 asserts:

1. The axioms of Tψ .

2. (∀x)[Q1(x)→ (Pi(x)↔ ciRx)].

3. If M |= T1, F maps M ×M to M so that

(a) for each x, F (x, ) is a 1-1 function from M to M .

(b) (∀x)(∀y)[Pi(x)→ Pi(F (x, y))].

4. H is a function that preserves each Pi and maps into Q1.

Notation 1.9 The crucial type pt is {P (x), x 6= ci : i < λ}. Omitting p guarantees
that structure satisfies (the translation of) ψ (by the choice of Tψ and pt).

Requirement 1.6 is guaranteed by the saturation: For every w ⊂ λ, the type

qw(y) = {Pi(y) if i∈w : i < λ}

is consistent and so realized by some bw. Then, H guarantees there is a realization
H(bw) satisfying Q1. Requirement 1.8.2 implies R(ci, H(bw)) if and only if i ∈ w.
So M�τ∗ satisfies Requirement 1.6 and so is in Kψ .

Conversely, each τ∗-model N of Kψ of cardinality less than µ expands to a τ1-
structure N ′ satisfying tψ of the same cardinality in the obvious way. It omits pt by
Requirement 1.5. Moreover, N ′�τ is saturated. All that is needed for this is that each
conjunction of the Pi is realized |N |-times; this is guaranteed by Requirement 1.8.3 on
F . �1.4

Lemma 1.10 i(2λ)+ < H(N ss
λ ).
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Proof: Fix a sentence ψ ∈ Lλ+,ω(τ) with |τ | = λ and with a model in 2λ and no
larger. Construct tψ by Lemma 1.4. We now construct an extension t∗ψ = (T ∗, T, p).
Without loss of generality, we can expand the vocabulary and add a pairing function
pr on P , a new index sort I , a linear ordering < of P such that cα < cβ if and only
if α < β and a ternary relation W . Let W ⊂ I × Q1 × Q1 and for each a ∈ I assert
thatW (a, x, y) (written x <a y) defines a well ordering onQ1. For this, note that each
x ∈ Q1 defines a family Uxy for y ∈ P , Uxy = {z : pr(y, z)Rx}. By Requirement 1.6,
there is an ex,y ∈ Q1 such that Uxy = {z : zRex,y}. Now to say W (a, , ) defines a
well ordering on Q1, write

¬(∃x ∈ Q1)(∀y1 < y2 < cω)ex,y2 <a ex,y1 .

Moreover, we can say

(∃a)(∃z ∈ Q1)(∀x ∈ Q1)(∀y ∈ P )ex,y1 <a z.

That is, there is a well ordering <a of cofinality greater than λ. The well-orderings
on Q1 induces a well-ordering a <∗ b on I by W (a, , ) is an initial segment of
W (b, , ). Now let J be a partial function from I to Q1 and assert that each <∗-initial
segment of I is embeddible in Q1. So |I| ≤ (2λ)+. Since there is a model of ψ with
cardinality 2λ and our expansion codes every well ordering of that model, there is an
M ∈ t with IM well-ordered of type (2λ)+.

Now expand the vocabulary still further by adding binary predicates S(x, y) and
ternary predicates R(x, y, z). Assert in a new theory T ∗∗ that the S(a, x) for x ∈ IM
are disjoint if the order type of a with respect to <∗ is a successor ordinal and if it is
a limit ordinal S(a, x) ↔ (∃b)[b <∗ a ∧ S(b, x)]. Further, for a the <∗-successor of
b , R(a, y, z) is an extensional relation coding subsets of S(b, x) by elements S(a, x).
Let t∗∗ be (T ∗∗, T, p). Then t∗∗ has a model in i(2λ)+ but no larger, as required.

�1.10

Note that since we have a well-order of IM of order type (2λ), we can get even
larger bounds on the Hanf number by replacing the well-order on M by one of higher
ordinality.

This completes the proof of the second inequality in Theorem 1.2; we pass to the
third.

1.3 The third inequality
Lemma 1.11 H(N ss

λ ) < H(L(2λ)+,ω).

We first show H(N ss
λ ) ≤ H(L(2λ)+,ω) by constructing a map from t ∈ N ss

λ

to ψt ∈ L(2λ)+,ω; this construction depends heavily on the superstability hypothe-
sis. Then we use some observations on Hanf numbers to show the inequality is strict:
H(N ss

λ ) < H(L(2λ)+,ω).

Lemma 1.12 For each t = (T, T1, p) ∈ N ss
λ , there is a τ2 extending τ1 with |τ1| =

|τ2| = λ and a ψ ∈ L(2λ)+,ω such that spec(t) = spec(ψ).
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Proof. In preparation consider a fixed saturated model M of cardinality 2|T | of T .
To form τ2, we add to τ1 constants 〈cα : α < (2λ)〉 and as described below 2n+1-

ary functions Hn and function symbols Gn,m indexing maps from N to Nm by n+m
tuples.

Notation 1.13 1. We write y1 ≡x1,x2
y2 to mean for every φ(v,w), φ(x1,y1)↔

φ(x2,y2).

2. F(x) is the collection (for i < 2λ) of m-ary finite equivalence relations
Ei(x;y, z) over x.

We need these notions below.

Definition 1.14 1. Recall that a model N is F aκ(T )-saturated (also called a-
saturated and ε-saturated if each strong type over a set of size less κ(T ) is
realized. For superstable theories F aκ(T )-saturated is just F aℵ0 -saturated (each
strong type over a finite set is realized).

2. A model N is strongly ω-homogeneous, if any two finite sequences that realize
the same type over the empty set are automorphic in N .

Fact 1.15 (III.3.10.2) If a model M of a stable theory is F aκ(T )-saturated and for each
set of infinite indiscernibles I in M there is an equivalent set of indiscernibles I ′ in M
that has cardinality |M |, then M is saturated.

Notation 1.16 Now let ψt ∈ L(2λ)+,ω(τ1) assert of a model N :

1. The specified p = pt is omitted.

2. The complete diagram of M where the cα enumerate M . (M is the saturated
model of cardinality 2|T | specified at the beginning of the proof.)

3. N�τ is strongly ω-homogeneous. (Add 2n + 1-ary functions Hn satisfying if
a ≡ b, (λz)Hn(a,b, z) is a τ -automorphism taking a to b. This is expressible
since having the same type over the empty set is expressible in L(2λ)+,ω(τ).)

4. For each n < ω,m < ω there is an n+2m-ary functionG such thatG witnesses
that for any n-tuple a andm-tuple b, if stp(b/a) is realized infinitely often then
it is realized |N |-times. Formally, N |= ψt:

[(∀xy)
∧
n<ω

(∃≥nz)(
∧

Ei(x;y,z)∈F(x)

Ei(x, z,y))]→
∧

Ei(x;y,z)∈F(x)

Ei(x, G(x, z, w),y))

where for every x, z λwG(x, z, w) is a 1-1 map from N into Nm.
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Proof of H(N ss
λ ) ≤ H(L(2λ)+,ω): Suppose t ∈ N ss

λ , ψt is constructed to satisfy
Notation 1.16, and N |= ψt. Since |N | = |N�τ1|, it suffices to show N�τ1 |= t.
Clearly N omits pt and N�τ is superstable; in particular it is an elementary extension
of F aℵ0 -saturated the model M . We must show N�τ is saturated. But N is strongly ω-
homogeneous by Notation 1.16.2. So each consistent strong type p over an n-element
sequence a ∈ N is realized by H−1n (a,b, c) where b ∈ M satisfies a ≡ b and
c |= Hn(a,b, q) (where the Hn transforms a strong type over a to one over b in the
natural manner. Thus, N is F aℵ0 -saturated so we may apply Fact 1.15. Every infinite
indiscernible set J in N�τ is based on a finite d. That is, there is a strong type pJ over
d such that J contains infinitely many realizations of p. Now the conditions on G of
Notation 1.16.4 guarantee that pJ is realized N times in N as required. �1.12

Now we strengthen the inequality H(N ss
λ ) ≤ H(L(2λ)+,ω) to a strict one.

Claim 1.17 H(N ss
λ ) < H(L(2λ)+,ω).

Proof. VII.5.4 and VII.5.5.1 of [7] shows for any µ, cf(H(Lµ+,ω)) ≥ µ+; in
particular, cf(H(L(2λ)+,ω) ≥ (2λ)+. But there are at most 2λ-classes in N ss

λ and
Lemma 1.12 implies that the supremum of the spec of each is less than H(L(2λ)+,ω).
Thus, H(N ss

λ ) < H(L(2λ)+,ω). �1.17

Note that our result is even stronger than advertized. The coding theory T is not
merely superstable but weakly minimal with trivial forking.

References
[1] John T. Baldwin. Categoricity. Number 51 in University Lecture Notes. American

Mathematical Society, Providence, USA, 2009. www.math.uic.edu/˜ jbaldwin.

[2] J.T. Baldwin and S. Shelah. A Hanf number for saturation and omission.
Fund. Math., 213:255–270, 2011. preprint:http://www.math.uic.edu/
\˜jbaldwin/pub/shnew22.

[3] C. C. Chang. Some remarks on the model theory of infinitary languages. In
J. Barwise, editor, The syntax and semantics of infinitary languages, pages 36–64.
Springer-Verlag, 1968. LNM 72.

[4] William Hanf. Models of languages with infinitely long expressions. In Abstracts
of Contributed papers from the First Logic, Methodology and Philosopy of Science
Congress, Vol.1, page 24. Stanford University, 1960.

[5] Ehud Hrushovski and Saharon Shelah. Stability and omitting types. Israel J Math,
74:289–321, 1991.

[6] Ludomir Newelski. Bounded orbits and measures on a group. Israel Journal of
Mathematics, 187:209–229, 2012.

[7] S. Shelah. Classification Theory and the Number of Nonisomorphic Models.
North-Holland, 1991. second edition.

8


