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Abstract

Suppose t = (T, T1, p) is a triple of two theories in vocabularies τ ⊂ τ1 with
cardinality λ and a τ1-type p over the empty set. We show the Hanf number for
the property: ‘There is a model M1 of T1 which omits p, but M1 � τ is saturated’
is less than i

(2(2
λ)+ )

+ if T is superstable.
We showed in [BS11] that with no stability restriction the Hanf number is

essentially equal to the Löwenheim number of second order logic.

Hanf observed [Han60] that if one asks for each K in a set of classes of structures,
‘Does K have arbitrarily large members?’, there is a cardinal κ (the sup of the maxima
of the bounded K) such that any class with a member at least of cardinality κ has
arbitrarily large models. In many cases this bound κ can be calculated (For a countable
first order theory, it is ℵ0.) In this paper we call a Hanf number for a family K of
classes calculable if it is bounded by a function that can be computed by an arithmetic
function in ZFC (See Definition 0.1.) and if not it is incalculable.

The following definition is more abstract than needed for this paper but we include
it for comparison with other works where other Hanf functions are shown to be not
calculable.

Definition 0.1 1. A function f (a class-function from cardinals to cardinals) is
strongly calculable if f can (provably in ZFC) be defined in terms of cardinal
addition, multiplication, exponentiation, and iteration of the i function.
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2. A function f is calculable if it is (provably in ZFC) eventually dominated by a
strongly calculable function. If not, it is incalculable.

We extend our work on Newelski’s [New12] question about calculating the Hanf
number of the following property:

Definition 0.2 1. Let t = (T, T1, p) = (Tt, T1,t, pt) be a triple of two theories
T, T1 in vocabularies τ ⊂ τ1, respectively, such that |τ1| ≤ λ, T ⊆ T1 and p is
a τ1-type over the empty set. We say M1 |= t if M1 is a model of T1 which omits
p, but M1�τ is saturated.

2. Let Nλ denote1 the set of t with |τ1| = λ. Then H(Nλ) denotes the Hanf
number of Nλ. That is, H(Nλ) is the least cardinal so that if t ∈ Nλ has a
model of cardinality H(Nλ) it has arbitrarily large models.

3. The Hanf number of a logic L (e.g. Lκ+,κ) is the least cardinal µ such that if an
L-sentence has model in cardinal µ, then it has arbitrarily large models.

Under mild set theoretic hypotheses, we showed in [BS11] that H(Nλ) essentially
equals the Löwenheim number of second order logic, which is incalculable. In Sec-
tion 1 we restrict the question by requiring that the theory T be superstable; the number
is then easily calculable in terms of Beth numbers.

The phenomena that stability considerations can greatly lower Hanf number esti-
mates was earlier explored in [HS91]. Work in preparation extends the current context
to strictly stable theories. References of the form X.x.y are to [She91].

Much of this paper depends on a standard way of translating between sentences in
languages of the form Lλ,ω(τ) and first order theories in an expanded vocabulary τ that
omit a family of types. This translation dates back to [Cha68]; a short explanation of
the process appears in Chapter 6.1 of [Bal09]. Chapter VII.5 of [She91] is an essential
reference for this paper. There, these (equivalent) Hanf numbers of sentences and
associated pair of a family of types and theory are calculated using the ‘well-ordering
number of a class’. We begin with a slight rewording of Definition VII.5.1 of [She91],
using language from [Cha68].

Definition 0.3 1. The Morley number µ(λ, κ) is the least cardinal µ such that if a
first order theory T in a vocabulary of cardinality λ has a model in cardinality µ
which omits a family of κ types over the empty set, it has arbitrarily large such
models.

2. The well-ordering number δ(λ, κ) is the least ordinal α such that if a first order
theory T in a vocabulary τ of cardinality λ, which includes a symbol < has a
model which omits a family κ types over the empty set and < is well ordering of
type α, then there is such a model where < is not a well-order.

The connection between these two notions is in section VII of [She91].
1Thus, ‘there is anM with cardinality κ such thatM |= t and t ∈Nλ’ replaces the notation in [BS11],

‘PλN (Kt, κ) holds’.
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Fact 0.4 1. If κ > 0, µ(λ, κ) = iδ(λ,κ).

2. For every infinite cardinal θ, H(Lθ+,ω) ≤ µ(θ, 1) < i(2θ)+.

Proof. Item 1 is VII.5.4 of [She91]. Recall that Lopez-Escobar and Chang (e.g.
[Cha68]) showed how to code sentences of Lλ+,ω as first order theories omitting types
and even (as in proof of VII.5.1.4) a single type. H(Lλ+,ω) < i(2λ)+ is now clear
from Theorems VII.5.4 and VII.5.5.7 of [She91].

1 Computing H(N ss
λ )

1.1 Introduction
We study the following notions in this section.

Definition 1.1 Let N ss
λ denote the set2 of t with |τ1| = λ with the additional require-

ment that Tt is a superstable theory. Now we have the natural notion of the Hanf
number, H(N ss

λ ) for this set: If t ∈N ss
λ has a model of cardinality≥ H(N ss

λ ), it has
arbitrarily large models.

We will prove the following theorem:

Theorem 1.2

H(Lλ+,ω) < i(2λ)+ < H(N ss
λ ) < H(L(2λ)+,ω) < i

(2(2λ)+ )+
.

The first and fourth of these inequalities are immediate from Fact 0.4.2 taking θ
first as λ and then as 2λ.

In Subsection 1.2, we give a rather involved proof that i(2λ)+ is strictly less than
H(N ss

λ ); together with the first inequality, this implies immediately that H(Lλ+,ω) <
H(N ss

λ ). Note that less than or equal, H(Lλ+,ω) ≤ H(N ss
λ ) is straightforward. Just

set t as (T0, T1, p) where T0 is pure equality and (T1, p) encode a given sentence ψ ∈
Lλ+,ω . Then T0 is superstable and every model is saturated, so we have the desired
interpretation.

The second and third inequalities are in Subsections 1.2 and 1.3, respectively.

1.2 The Second Inequality
As noted the first inequality in Theorem 1.2.1 is standard. Thus by showing in The-
orem 1.4, the second inequality appearing in Theorem 1.2 we will have H(Lλ+,ω) <
H(N ss

λ ) and in fact

Theorem 1.3 H(Lλ+,ω) < i(2λ)+ < H(N ss
λ ).

2Technically, this is not a set since a vocabulary is a sequence of relation symbols and we could use
different names for the symbols; this pedantry can be avoided in at least two ways: restrict the symbols to
come from a specified set; return to Tarski’s convention of discussing not vocabularies but similarity types,
the equivalence classes of enumerated vocabularies such that the ith symbol has aritity ni.
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The proof of the second inequality requires the construction of two triples t1, t2.
The first characterizes 2λ; the second i(2λ)+ .

Fix Lλ as the set of constructible sets of hereditary cardinality less than λ. In fact,
any transitive model of a very weak set theory of cardinality λ would suffice.

Theorem 1.4 There is a t1 = (T, T1, p) ∈N ss
λ with |τ(T1)| ≤ λ such that:

1. There is an M |= t2 with cardinality i(2λ)+

2. but there is no M |= t2 with cardinality greater than i(2λ)+ .

Proof. We first introduce t1 ∈N ss
λ and prove several properties of it.

In the first stage, we first define T to be the prototypic superstable theory with λ-
independent unary predicates, P1,t (i.e. in the vocabulary τ ). The set P2 will have
cardinality λ when the type p is omitted. E3 will be an extensional relation on P2×P3

so that P3 has cardinality at most 2λ. The function F maps the universe into P3 while
respecting the P1,t (and ¬P1,t) and so that for any d, F (d) codes via E3 the τ -type of
d. Thus saturation with respect to the P1,t guarantees that P3 has cardinality exactly
2λ.

Now we begin the formal development: τ contains unary predicates P1,t for t ∈ Lλ
and let T assert any Boolean combination of the P1,t is consistent. Let τ1 = τ ∪ {ct :
t ∈ Lλ} ∪ {P2, P3, E2, E3, F}.

In the following definition, clauses 1) through 4) set the scene; clauses 5) through
7) are the crux of proving Lemmas 1.7 and 1.8; the other clause are preparation for the
proof of Lemma 1.11.

Definition 1.5 Let T1 be the τ1-theory such that for any τ1-structure M , M |= T1 iff:

1. M�τ |= T ;

2. 〈cMt : t ∈ Lλ〉 are pairwise distinct elements of M .

3. cMt ∈ PM2 for t ∈ Lλ.

4. EM2 ⊆ PM2 × PM2 and (PM2 , EM2 ) is a model of Th(Lλ, ε);

5. FM is a function fromM onto PM3 such thatM |= (∀x)[P1,t(x)↔ P1,t(F (x))]
for every t ∈ Lλ.

6. (extensionality) EM3 ⊆ PM2 × PM3 satisfies

(∀x1)(∀x2)[P3(x1) ∧ P3(x2)→ (∃y)[P2(y) ∧ (yE3x1 ↔ ¬yE3x2)]).

So, letting A2
M,b denote {a ∈ PM2 : aEM3 b} we know that b1 6= b2 implies

A2
M,b1

6= A2
M,b2

.

7. For every d ∈M :
d ∈ PM1,t ↔ cMt ∈ A2

M,FM (d).

That is, cMt E3F
M (d).
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8. If t1, t2 ∈ Lλ, then M |= ct1E2ct2 if and only if Lλ |= t1 ∈ t2.

9. For every e ∈ M , 〈G(e, d) : e ∈ M〉 is a 1-1 function from M into {f ∈ M :
FM (f) = d}.

The required τ1-type p to complete the definition of t is

p(x) = {P2(x)} ∪ {x 6= ct : t ∈ Lλ}.

Definition 1.6 We call a model M of T1 standard when

1. cMt = t for t ∈ Lλ.

2. PM2 = {t : t ∈ Lλ}

3. For every X ⊆ Lλ, there is b ∈ PM3 such that A2
M,b = X . Note b is unique by

Definition 1.5.6.

Lemma 1.7 If M is a standard model of T1 then M omits p and M�τ is saturated.
That is, M |= t.

Proof. Condition 2) asserts p is omitted. A saturated model M of T is one where
for each X ⊆ Lλ, qX(x) =

∧
t∈Lλ P1,t(x)

t∈X is realized |M | times. Clauses 1) and
3) of Definition 1.6 guarantee there is a bX ∈ PM3 such that X = A2

M,bX
. By clause

7) of Definition 1.5 any element of (FM )−1(bX) realizes qX . Finally, Condition 9) of
Definition 1.5 implies |(FM )−1(bX)| = |M |. �1.7

Lemma 1.8 If M |= t1 (t1 = (T, T1, p)) then M is (isomorphic to) a standard model
of T .

Proof. Since M omits p, PM2 = {cMt : t ∈ L}. The map g : PM2 → Lλ is a
well-defined isomorphism from (PM2 , EM2 ) by condition 9 of Definition 1.5.

Finally, condition 3) of Definition 1.6 holds because the saturation provides a real-
ization dX of qX(x) =

∧
t∈Lλ P1,t(x)

t∈X . But then by condition 7) of Definition 1.5,
A2
M,FM (dX) = {c

M
t ∈ PM2 :cMt E

M
3 FM (dX)} = X as required.

�1.8

Now we introduce a second triple, t2 = (T, T4, p) ∈N ss
λ , which will have models

up to but no larger than i(2λ)+ .
We add a new predicate P4 which will be linearly (indeed well) ordered by <4 (say

as {aα :α < β}). The well-ordering is obtained by first requiring that every non-empty
definable subset of P4 has a least element and then showing every countable subset is
definable (using a set theoretic structure imposed on P2). A function G4 projects the
universe onto P4. The predicate R will code the subsets of (G4)

−1(aα) by elements of
(G4)

−1(aα+1). An induction then bounds the cardinality of any model of t2.

Definition 1.9 τ2 expands τ1 by adding <4, P4, R,G4, G5. G4 unary, G5 binary.
Let T4 be the τ2-theory such that for any τ1-structure M , M |= T4 iff:
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1. M � τ1 |= T1.

2. <4 is a linear order of PM4 satisfying the first order theory of well-orderings.

3. G4 is a function from M onto PM4 .

4. If cRMd then G4(c) <
M
4 G4(d).

5. If d1 6= d2 then for some d ∈M , dRMd1 ≡ ¬dRMd2.

6. GM5 is a partial function from PM4 × PM4 to PM3 . If d ∈ P 4
M then and d1 <M4

d2 <
M
4 d then G5(d1, d) 6= G5(d2, d).

So every proper initial segment of PM4 has cardinality ≤ |PM3 |.

7. For any φ(x,y) ∈ L(τ2) and d in M with the same length as y, {a ∈ PM4 :
M |= φ(a,d)} is either empty or has a first element.

Observe that t2 = (T, T4, p) ∈N ss
λ .

Lemma 1.10 There is an M |= t2 of cardinality i(2λ)+ .

Proof. We define a τ2-model as follows.

1. The universe of M is V(2λ)+ where Vα is the α’th stage in the cumulative hier-
archy.

2. cMt = t for t ∈ Lλ.

3. PM2 = Lλ = {cMt : t ∈ Lλ}.

4. EM2 = ε�PM2 .

5. P 3
M = P(Lλ).

6. EM3 = {(t, s) : t ∈ Lλ, s ∈ P(Lλ), t ∈ s}.

7. Let 〈Ys : s ∈ P(λ)〉 be a partition of |M | = V(2λ)+ such that each Ys has
cardinality ||M || and s ∈ Ys (This implies Ys ∩ P(Lλ) = {s}).

8. PM1,t =
⋃
{Ys : s ∈ P(Lλ) ∧ t ∈ s}.

9. FM maps M to P(Lλ) = P 3
M by for d ∈ Ys, F (d) = s.

10. Choose FM1 :M ×M →M as 1-1 function that maps M × Ys into Ys.

11. PM4 = (2λ)+.

12. Let <M4 be the natural order ε�(2λ)+ on PM4 .

13. GM5 is any binary function from PM4 into PM3 such that iff d1 <M4 d2 <
M
4 d

then G5(d1, d) 6= G5(d2, d).

14. GM4 maps M to PM4 by GM4 (a) is the least α such that a ∈ Vα+1.
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15. RM = ε�V(2λ)+ .

We have defined M to satisfy T4; it omits p by clause 2) and 3). And conditions 5)
and 6) show M�τ1 is a standard model of T1. So by Lemma 1.7, M�τ is saturated and
M |= t1.

�1.10

Now we show t2 has no model of cardinality greater than i(2λ)+ .

Lemma 1.11 If M |= t2, |M | ≤ i(2λ)+ .

Proof. Since M |= t1, M |= t1 so M�τ1 is standard. The proof of Theorem 1.11
is easy from the next two claims.

Claim 1.12 If dn <4
M dn−1 <

4
M d for n < ω, there is φ(x,y) ∈ L(τ2) and a ∈ M

with same length as y such that {b :M |= φ(b,a)} = {dn : n < ω}.

Proof. LetD = {dn : n < ω} and writingGM5 (d, dn) as bn, letB = {bn : n < ω}.
Our goal is to show that D is τ2-definable. Letting g(x) denote the function GM5 (d, x),
D = g−1(B) and g is τ2-definable. So it suffices to show B is definable.

Let Xn denote A2
M,bn

= {a ∈ M : PM2 (a) ∧ aEM2 bn} and set X =
⋃
n<ω{n} ×

Xn. Now Xn is a τ2-definable subset of PM2 , so X is definable in (PM2 , EM2 ) using
the set theoretic operations. And b ∈ B if and only (n, b)) ∈ X so B is τ2-definable.
�1.12

Claim 1.13 (PM4 , <M4 ) is well-ordered of order type at most (2λ)+.

Proof. By Lemma 1.12 the range of any infinite descending sequence is τ2-
definable. But then by clause 7 of Definition 1.9, it has a least element.

Since M�τ1 is standard, |PM3 | = 2λ. Then condition 6) of Definition 1.9 implies
the order type of (PM4 , <M4 ) is at most (2λ)+. So we can write (PM4 , <M4 ) as 〈aα :
α < β〉 for some β ≤ (2λ)+. �1.13.

To complete the proof, we can show by induction that |{a ∈M :GM4 (a) < aα}| ≤
iα(λ). Condition 4) of Definition 1.9 shows that for any d ∈ M with G4(d) = aα, if
bRd, then GM4 (b) < aα. So with respect to R, d codes a subset of (GM4 )−1(aα). Since
R is extensional by Condition 4) of Definition 1.9, the |(GM4 )−1(aα| ≤ iα+1(λ) and
we finish by induction. �HN

Theorem 1.4 is immediate from Lemmas 1.10 and 1.11. �1.4.
The Hanf number Lλ+,ω can consistently be less than i(2λ)+ . See [SVPV05] and

chapter VII.5 of [She91].

1.3 The third inequality
The previous section completed the proof of the second inequality in Theorem 1.2; we
pass to the third.

Lemma 1.14 H(N ss
λ ) < H(L(2λ)+,ω).
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We first show H(N ss
λ ) ≤ H(L(2λ)+,ω) by constructing a map from t ∈ N ss

λ

to ψt ∈ L(2λ)+,ω; this construction depends heavily on the superstability hypothe-
sis. Then we use some observations on Hanf numbers to show the inequality is strict:
H(N ss

λ ) < H(L(2λ)+,ω).

Lemma 1.15 For each t = (T, T1, p) ∈ N ss
λ , there is a τ2 extending τ1 with |τ1| =

|τ2| = λ and a ψ ∈ L(2λ)+,ω such that spec(t) = spec(ψ).

Proof. In preparation consider a fixed saturated model M of cardinality 2|T | of T .
To form τ2, we add to τ1 constants 〈cα : α < (2λ)〉 and as described below 2n+1-

ary functions Hn and function symbols Gn,m indexing maps from N to Nm by n+m
tuples.

Notation 1.16 1. We write y1 ≡x1,x2
y2 to mean for every φ(v,w), φ(x1,y1)↔

φ(x2,y2).

2. F(x) is the collection (for i < 2λ) of m-ary finite equivalence relations
Ei(x;y, z) over x.

We need these notions below.

Definition 1.17 1. Recall that a model N is F aκ(T )-saturated (also called a-
saturated and ε-saturated) if each strong type over a set of size less κ(T ) is
realized. For superstable theories F aκ(T )-saturated is just F aℵ0 -saturated (each
strong type over a finite set is realized).

2. A model N is strongly ω-homogeneous, if any two finite sequences that realize
the same type over the empty set are automorphic in N .

Fact 1.18 (III.3.10.2) If a model M of a stable theory is F aκ(T )-saturated and for each
set of infinite indiscernibles I in M there is an equivalent set of indiscernibles I ′ in M
that has cardinality |M |, then M is saturated.

Notation 1.19 Now let ψt ∈ L(2λ)+,ω(τ1) assert of a model N :

1. The specified p = pt is omitted.

2. The complete diagram of M where the cα enumerate M . (M is the saturated
model of cardinality 2|T | specified at the beginning of the proof.)

3. N�τ is strongly ω-homogeneous. (Add 2n + 1-ary functions Hn satisfying if
a ≡ b, (λz)Hn(a,b, z) is a τ -automorphism taking a to b. This is expressible
since having the same type over the empty set is expressible in L(2λ)+,ω(τ).)

4. For each n < ω,m < ω there is an n+2m-ary functionG such thatG witnesses
that for any n-tuple a andm-tuple b, if stp(b/a) is realized infinitely often then
it is realized |N |-times. Formally, N |= ψt:
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[(∀xy)
∧
n<ω

(∃≥nz)(
∧

Ei(x;y,z)∈F(x)

Ei(x, z,y))]→
∧

Ei(x;y,z)∈F(x)

Ei(x, G(x, z, w),y))

where for every x, z λwG(x, z, w) is a 1-1 map from N into Nm.

Proof of H(N ss
λ ) ≤ H(L(2λ)+,ω): Suppose t ∈ N ss

λ , ψt is constructed to satisfy
Notation 1.19, and N |= ψt. Since |N | = |N�τ1|, it suffices to show N�τ1 |= t.
Clearly N omits pt and N�τ is superstable; in particular it is an elementary extension
of F aℵ0 -saturated the model M . We must show N�τ is saturated. But N is strongly ω-
homogeneous by Notation 1.19.2. So each consistent strong type p over an n-element
sequence a ∈ N is realized by H−1n (a,b, c) where b ∈ M satisfies a ≡ b and
c |= Hn(a,b, q) (where the Hn transforms a strong type over a to one over b in the
natural manner. Thus, N is F aℵ0 -saturated so we may apply Fact 1.18. Every infinite
indiscernible set J in N�τ is based on a finite d. That is, there is a strong type pJ over
d such that J contains infinitely many realizations of p. Now the conditions on G of
Notation 1.19.4 guarantee that pJ is realized N times in N as required. �1.15

Now we strengthen the inequality H(N ss
λ ) ≤ H(L(2λ)+,ω) to a strict one.

Claim 1.20 H(N ss
λ ) < H(L(2λ)+,ω).

Proof. VII.5.4 and VII.5.5.1 of [She91] shows for any µ, cf(H(Lµ+,ω)) ≥ µ+;
in particular, cf(H(L(2λ)+,ω) ≥ (2λ)+. But there are at most 2λ-classes in N ss

λ and
Lemma 1.15 implies that the supremum of the spec of each is less than H(L(2λ)+,ω).
Thus, H(N ss

λ ) < H(L(2λ)+,ω). �1.20
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