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\begin{abstract}
Three major axiom  systems for organizing plane geometry are used in
various GeT/high school textbooks. In the light of SLO4, we describe the
distinct challenges facing Euclid, Hilbert, and Birkhoff (SMSG) in this
project. Building on a workshop we gave to in-service high school teachers
a logician and a high school teacher describe an amalgam of the
Euclid/Hilbert system designed to avoid the technical complexities of
Hilbert's system while preserving his foundation for both analytic and
synthetic geometry.  The supplement contains further proofs and student
activities involving explorations and technology.
\end{abstract}
%\sidebar{incorporates Andreas' remark from Dec. 2  on section 5.}
\section{Introduction}\label{intro}
\numberwithin{thrm}{section} \setcounter{thrm}{0}



%MOVE TO BEGINNING OF sECTION 5
%\numberwithin{thrm}{subsection} \setcounter{thrm}{0}


This chapter is aimed primarily at instructors of college courses in geometry
for teachers. We address the roles of the college instructor, college
students, who are future high school teachers and high school students. We
discuss the role of axioms in mathematics and then use a slightly
non-standard set of axioms to show that verifying an easily constructed
algorithm for splitting a line into equal pieces requires all the Euclidean
axioms. To emphasize that axiom  systems are designed by individuals to
clarify the reasons for certain mathematical truths, and to provide
background (alternative texts)  for (future) instructors, we contrast in
\ref{EC} to \ref{BMC} the challenges faced by Euclid, Hilbert, Birkhoff, and
the goals of this chapter.


This chapter provides
 %for instructors of the college course
 both motivations
for and amplifications of material in a course the two authors gave for
in-service high school teachers in Fall 2012.
%We discuss the reasons for
%axiomatizing.
 We describe  and contrast the challenges faced by Euclid, Hilbert, Birkhoff, and  our
own challenge in amalgamating them for a 21st century audience.
% of the Hilbert and Euclid
%approach to geometry,
We label our comments on the underlying mathematical development rather
loosely as motivation, methodology, extension, or pedagogy. Hilbert's
geometry book stimulated such notions of modern logic  as consistency, truth
(in a model), independence, and completeness; they are crucial in discussing
`models and axioms' in a college geometry course. The supplement contains
both i) deeper study of logic and geometry and ii) many activities and
exercises from the original course that are not appropriate for a commentary
on learning standards.
% our experience and the mathematics education
%literature.
Our extensive bibliography aims to afford instructors opportunities to deepen
their knowledge of the material. The supplement is at
\url{https://homepages.math.uic.edu/~jbaldwin/pub/supp2Dec3.pdf}. To access
activities mentioned in this supplement go to
\url{https://homepages.math.uic.edu/~jbaldwin/CTTIgeometry/ctti} and click on
the link for the named activity.


We build on the superb narrative for SLO4 and assume it below.  %We begin by
%elaborating on certain points of the narrative and indicating some minor
%changes in terminology.
We stress that axioms are intended to organize the study of an area of
mathematics by identifying the fundamental assumptions needed to establish
the results in that area and that different choices of fundamental notions
(undefined terms) and axioms can provide different explanations.
%Thus, rather
%than `undefined terms', we speak of a `vocabulary $\tau$' and call the
%collection of possible `interpretations' the $\tau$-structures.
% As in the
%narrative, a model is an interpretation where the axioms hold. This
%emphasizes that without the axioms, there may be no connection of the
%interpretation with the intuition the axioms are trying to catch.

We agree with the advice in the narrative that the college instructor should
scale up from the earlier levels of the Van Hiele
hierarchy\footnote{Following the easily easy accessible
\url{https://physics.mff.cuni.cz/wds/proc/pdf12/WDS12_112_m8_Vojkuvkova.pdf}
the five levels are:   0 Visualization,  1 Analysis, 2 Abstraction,  3
     Deduction, 4 Rigor}.
      We focus here on the development
     for
college students of levels 3 and 4.
%
%%Level 3 Deduction (Informal Deduction\footnote{The source says formal but
%%means what we call formal.}) At this level students can give deductive
%%geometric proofs. They are able to differentiate between necessary and
%%sufficient conditions. They identify which properties are implied by others.
%%They understand the role of definitions, theorems, axioms and proofs.
Level 4 Rigor: At this level students understand the way how mathematical
systems are established. They are able to use all types of proofs. They
comprehend Euclidean and non-Euclidean geometry. They are able to describe
the effect of adding or removing an axiom on a given geometric system.'


The common core demands level 3 of high school students but not level 4. As
noted in SLO2 there may be students in the college course who have not fully
attained level 3, while there are a number of high school students that
operate comfortably at level 4 and some who appreciate non-Euclidean
geometries.

The narrative defines a theorem as `a statement that can be proved from the
axioms without regard to interpretation' (i.e. holds in every interpretation
that satisfy the axioms (i.e. every model). More useful for students is `can
be deduced from the axioms by the rules of logic'. The equivalence of these
two characterizations of theorem is precisely G\"{o}del's completeness
theorem for first order logic. In particular G\"{o}del's  theorem makes
precise the meaning of {\em consistent}. In first order logic,
%\footnote{First order logic
%allows quantification over inviduals not sets of individuals. See NEEDREF}
$T$ is consistent if it satisfies one of the two equivalent conditions: i)
One cannot derive a contradiction from $T$, ii) $T$ has a model.  We will
examine such rules in Extension~\ref{sdiagdetail} of the supplement. The
crucial point is that Books I-IV of Euclid and axiom groups I-IV of Hilbert
are first order; Birkhoff is not. The complexity of the continuity axioms is
discussed in \S 10 of the supplement. They seem to require an extension of
the Van Hiele hierarchy.

% Taking into account the necessity for a deep
%understanding of the notion of abstract function\footnote{See \cite{Harelcc}
%for an argument against the use of transformation based systems in high
%school; the unfamilarity of sophomores with functions is a key point.}, we
%note that for systems based on transformations there is a level 5: Ability to
%work with abstract functions.



%SLO 4 states: Understand the relationships between axioms, theorems, and
%different geometric models in which they hold. We first provide historical
%and logical background on these  notions by adding some others:   logic (See
%Remark~\ref{logics}), definition, vocabulary, proof,  and interpretation,
%that are necessary context for the first three. We  emphasize the creative
%side of the geometry; in what logic to write the axioms, what to choose as
%fundamental notions, what axioms to choose and most important, which of many
%proofs to use?
%
%We incorporate history both by exploring the various axiom systems developed
%over the two and a half millenia and the role of geometry in U.S. education
%in the last century.
%
%
%% Our goals is to explore
%%axomatization as a way to organize a subject (e.g. geometry). Thus we compare
%%different axiom schemes in view of the authors intentions. And we examine and
%%ask for different proofs of the same result to emphasize the choices
%%available. Mathematics is the K-12 subject that (after 3rd grade) requires
%%the least memorization. The goal is understanding.
%
%% {\color{green}\sidebar{Andreas 8/8: to me more logical order: vocabulary,
%%definitions, logic proof, interpretation} \color{red} jb 8/18 Note addition.}



%\sidebar{ Any chance we want the boldface? We would have to make the linear
%order theorem an axiom. The axiom set contains only geometrical concepts and
%has only COUNT THEM AT MOST 10.}
%\sidebar{commented out original description of sections}

% We begin
%with two sections outlining logical background and the role of
%axiomatization. This chapter integrates material aimed at the college
%instructor with notes that accompanied five six hour sessions of a geometry
%workshop conducted for the Chicago Teacher Transformation Initiative in 2014.
%Section~\ref{guideprob} contains an exercise to motivate the workshop
%participants. We present a procedure  for dividing a line into $n$ equal
%pieces and ask `Why can we carry this procedure and why does it work?
%Section~\ref{bk1} lays out our axioms, comparing them with other systems.
%Already, in Section~\ref{conspost} Euclid's construction postulates justify
%the method to divide the line. But to show the pieces are the same size
%requires   using the remaining axioms. The rest of Section~\ref{bk1}
%discusses  the congruence axiom and the parallel postulate. We examine
%independence, various forms of the axioms and prove geometrical results  to
%reduce (Section~\ref{proofsuc}) the proof the dividing line procedure works
%to questions about proportionality and similar triangles.
% Section~\ref{num} and \ref{prop} contain Hilbert's geometric construction
%of the coordinatizing field of the plane and the resulting sound
%geometrically based theory of proportion. This  yields the `side-splitter'
%theorem and so justifies the line-dividing procedure.
%
%Hilbert builds his theory of area (Section~\ref{area}), which strengthens
%Euclid's, on the coordinatization and proves  the area of a parallelogram is
%proportional to the base and the height without Euclid's reliance on
%Archimedes. We conclude with sections on the Archimedes and Dedekind
%postulates (short since they are never used in the geometric proofs) and
%non-Euclidean geometry (short since in another chapter).}
%%We do explain the relations among
%%neutral geometry and non-Euclidean geometries.
%
%
%






%\begin{remark}{Why axiomatics?}
%{\rm A fundamental goal of K-12 education is to inculcate the ability to make
%and understand rational arguments.  For over 2000 years Euclid's Elements
%performed this task more than any other single source. One of the standard
%goals for U.S. high school geometry is Common Core Standard 3 for
%mathematical practice: {\bf Construct viable arguments and critique the
%reasoning of others}. An argument consists of premises, deductions, and
%conclusions. A successful argument requires a clear statement of subject
%matter. While generalization of skills learned in geometry to e.g. political
%discourse raises many distinct questions, the goal here is to provide a model
%of reasoning in a context which is intuitive -- geometry is everywhere.
%Moreover, via Euclid et. al., geometry is precise.
%
%This axiomatic approach is called {\em synthetic geometry} as results are
%synthesized from explicit assumptions. In contrast, {\em analytic geometry}
%assumes the coordinization of the geometry by a field (commonly the real field) and
%the resulting existence of a (real) metric. The arguments then take place in
%set theory rather than axiomatic geometry.
%
%We contrast three modes of persuasion: {\em argument:} as described by
%Aristotle (Remark~\ref{corcproof}), {\em informal proof:} a typical argument
%in mathematics, the rules of inference are implicit and the global
%assumptions unstated although nominally reducible to formal set theory (e.g.
%Zermelo-Frankel with the axiom of choice), and {\em formal proof}: in a logic
%with strict rules for construction of sentences and deductions.  This chapter
%concerns informal proof but clarifies the relation with formal proof.}
%
%%\sidebar{jb 8/19/23 THIS MAY BE TOO STRONG TO BE HELPFUL. To be noted later
%%(probably near Remark~\ref{postsur}) the Birkhoff axioms meet the general
%%notion of informal proof but are proofs in set theory about objects called
%%geometries not proofs in geometry - probably why high school students are so
%%confused.}
%\end{remark}

\begin{motiv}[SL0 1, 3: Why axiomatics?]\label{whyax}
{\rm A fundamental goal of K-12 education is to inculcate the ability to make
and understand rational arguments.  For over 2000 years Euclid's Elements
performed this task more than any other single source. One of the standard
goals for U.S. high school geometry is Common Core Standard 3 for
mathematical practice: {\bf Construct viable arguments and critique the
reasoning of others}.
 A successful argument requires a clear statement of subject
matter. The notion that reasoning skills learned in geometry transfer  to
e.g. political discourse raises many distinct questions. However,
\cite{Inglisbook, CCmathreas} find  studying mathematics develops general
thinking skills.  Our task here is not to defend that proposition. Rather,
given that it is embedded in mathematics standards, the goal here is to
provide a model of reasoning in a mathematical context which is accessible to
high school students -- geometry is everywhere. Moreover, via Euclid et. al.,
geometry is precise.

%The axiomatic approach is called {\em synthetic geometry} as results are
%synthesized from explicit assumptions. In contrast, {\em analytic geometry}
%assumes the coordinization of the geometry by a field (commonly the real
%field) and the resulting existence of a (real) metric. The arguments then
%take place in set theory rather than axiomatic geometry.

We contrast three modes of persuasion: {\em argument:} reasoned persuasion in
any subject: mathematics, law, politics, movies,
 %as described by
%Aristotle (Remark~\ref{corcproof}),
{\em informal proof:} a typical argument in mathematics, the rules of
inference are implicit and the global assumptions unstated although nominally
reducible to formal set theory (e.g. Zermelo-Frankel with the axiom of
choice), and {\em formal proof}: in a logic with strict rules for
construction of sentences and deductions.  This chapter concerns informal
proof but clarifies the relation with formal proof,  which in its most
extreme form must be machine implementable \cite{Halesfp}.}
\end{motiv}



%Independence and completeness are complementary properties that enforce the
%parsimonious goal of finding an understandable base from which the remaining
%propositions are deduced. One might ask more: for a minimal complete
%independent set of axioms. But creating such a set might lower the intuitive
%content of the axioms and independence can be hard to establish; so we settle
%for `short'. The striking fact is that completeness is not actually so useful
%in practice.





\begin{method}[Axiom Systems]\label{axsys}
{\rm The introduction to \cite{Hilbertgeoma}, published in 1899, heralds a
new age in the foundations of mathematics.

\begin{quote} The following investigation is a new attempt to choose for geometry a simple and
 complete set of independent axioms and to deduce from these the most
important geometrical theorems in such a manner as to bring out as clearly
as possible the significance of the different groups of axioms and the
scope of the conclusions to be derived from the individual axioms.


\end{quote}

The aim is to determine fundamental, `simple and complete', reasons for
`important geometrical theorem'. Hilbert's axioms did not enter    the high
school curriculum because of the  complexity of their use. This complexity
arises from the difficult construction of the linear ordering of a line from
the abstract betweenness axioms and the tedious process of transcribing such
important notions as circle (Hilbert punted) into his choice of basic
concepts. By merging Hilbert's framework with Euclid's we present a more
accessible approach which gives Hilbert's answer to `{\em What is geometry?}'

{Old View:} Until the 19th century it was thought that geometry demonstrated
 truths from {\em unassailable premises}. These premises were
Euclid's axioms (common notions) and postulates (geometric assumptions).

  {New View:}
Geometry deduces conclusion from a specific set of geometric hypotheses.
These hypotheses might be Euclidean, spherical, hyperbolic,  etc. Whether
these geometrical hypotheses are "true" is {\em not} a mathematical question.
As the epigram of \cite{HenTaibook} puts it:

\begin{quote} Geometry doesn’t contain the truth about how space is. Geometry
is how you view space. Take charge of it – it’s yours. Understand how you
see things and how you imagine things. Geometry can say something about you
and your universe. – David W. Henderson
\end{quote}

But this new view leaves open the issue of how we are to understand these
`not known to be true' geometric hypotheses. What are the fundamental
notions? What is true about them? What do they imply?}
\end{method}

%The new view is justified by Russell (preface to \cite{RW}): `the chief
%reason in favour of any theory on the principles of mathematics must always
%be inductive, i.e., it must lie in the fact that the theory in question
%enables us to deduce ordinary mathematics.  In mathematics the greatest
%degree of self-evidence is usually not to be found quite at the beginning but
%at some later point; hence the early deductions, until they reach this point,
%give reasons rather for believing the premises because true consequences
%follow from them, than for believing the consequences because they follow
%from the premises.'}
%
%While Russell wrote about a foundation for all of mathematics, his point is
%even clearer for studying a specific subject, e.g. geometry.  Euclid
%inherited the geometry expounded by Plato and the Pythagoreans that had
%pointed to such notions as point and line as fundamental.



\begin{motiv}[SLO1 vs SL04]\label{axsys2}
{\rm By contrasting axioms and models, SLO4 focuses on the roles of axiom
systems for {\em organizing a topic} rather than particular proofs as in SLO1
and \cite{Styetal}. We consider several alternative axiomatizations that each
yield the propositions of Euclid. There is not a
    difference in most cases between the proof of a particular theorem; the
    difference is in what statements are theorems rather than  axioms, or
    provable or not.  We  examine how the different problems
that motivated each author affects the actual development of the geometry and
accessibility to students. Since, the non-Euclidean geometries are rarely
studied axiomatically, we concentrate on subsystems and differing approaches,
specifically those of Euclid, Hilbert, and Birkhoff (SMSG)  to the Euclidean
case.}
\end{motiv}


\begin{method}[SLO1: Criteria for Choosing Axioms]\label{axcrit}
{\rm Natural criteria include that axioms should be intuitive and
parsimonious.  By intuitive, we mean the axioms can be easily illustrated for
the students involved.
% Parsimonious axiom lists are   modest and short.
% Modest axiom systems do not include axioms that are not needed to prove
%the theorems.
An axiom system is independent if no axiom can be deduced from the others.
Parsimony can be violated in two ways: i) including an independent axiom
which is not needed for the intended collection of results or ii)  failing to
be independent.
 Independence may not be evident; it took two thousand
years to show the parallel postulate is independent.
 %\footnote{We haven't
%checked the independence of the axioms here. \cite{Hilbertgeoma} checks the
%independence of the groups of axioms; however \cite{Wylie} showed dependence
%within the order-group.}.
Mathematicians were convinced that the parallel postulate was not
self-evident but should be provable.

 A third natural criteria is that the
axioms should be, as Hilbert said in \ref{axcrit}, complete.  But
completeness turns out to be a rather complex notion that we will explore in
Section~\ref{ArchDed}. For now we will say an axiom system is {\em
descriptively  complete}\footnote{More strongly it is {\em deductively
negation complete} if every `relevant sentence' is proved or refuted. See
Definition~\ref{negcon}}  if it implies all the propositions it was designed
to axiomatize.}
\end{method}

%Axioms arise from attempts to organize a body of results or describe
%rigorously some mathematical concept such as the plane. Different
%axiomatizations arise from different issues. We describe four challenges.



%\begin{peda}\label{manyax} Many high school textbooks and internet sites
%provide up to 4 or 5 separate `concruence p \end{peda}


 %\sidebar{What is this to actually say?  A third natural criteria
%is that the axioms should be as Hilbert said in \ref{axcrit} complete. One
%notion of completeness is to entail all the propositions we are trying to
%axiomatize. We will consider more precise notions of completeness in REMARK
%XXX. Another candidate is `prove or refute' every statement. Between these
%two is `there is an algorithm to decide which statements are consequences.
%The axioms of neutral geometry (Notation~\ref{axnotation}) provide common
%proofs for results of both Euclidean and non-Euclidean geometry and
%`Euclidean geometry' yields the results that are applicable in life (e.g.
%Pythagoras). However, neither it nor Euclidean geometry is complete in either
%of the stronger senses.}}
%
%\begin{method}[Argument]\label{corcproof}
%{\rm For Aristotle, demonstrative logic is the study of demonstration
%(conclusive proof) as opposed to persuasion or even probable proof. Aristotle
%asserts, `Demonstration produces knowledge'
%
%
%% However, deduction is the process of extracting information implied by given premises
%%– regardless of whether those premises are known to be true or even whether
%%they are true.
%
%
%
%
%
%An {\em Argument\footnote{Corcoran uses `Deduction' but then that word is
%overloaded. We paraphrase   work of \cite{Corc} but the basic distinctions
%are due to Aristotle. }} has three parts: Premises,
% Deduction, Conclusion.  For Aristotle, a Deduction is a chain  of evident steps.
%  {\em Demonstration}
%is  a particularly strong form of Argument: a step-by-step deduction {\em
%whose premises are known to be true}. Thus, {\em Deduction} is the process of
%extracting information implied by given premises – {\em regardless of whether
%those premises are known to be true or even whether they are true}. After
%all, even false propositions imply logical consequences; we can determine
%that a premise is false by deducing from it a consequence we already know to
%be false.
%
%
%
%A deduction from unknown premises also produces knowledge – of the fact that
%its conclusion follows logically from (is a consequence of) its premises -
%not just from knowledge of the truth of its conclusion. We have presented the
%difference between deduction and demonstration to clarify the distinction
%between  the old and new view of the question, `{\em What is geometry?}'
%
%{Old View:} Until the 19th century it was thought that geometry demonstrated
% truths from {\em unassailable premises}. These premises were
%Euclid's Axioms (common notions) and Postulates (geometric assumptions).
%
%  {New View:}
%Geometry deduces conclusion from a specific set of geometric hypotheses.
%These hypotheses might be Euclidean, spherical, hyperbolic,  etc. Whether
%these geometrical hypotheses are "true" is {\em not} a mathematical question.
%As the epigram of \cite{HenTaibook} puts it:
%
%\begin{quote} Geometry doesn’t contain the truth about how space is. Geometry
%is how you view space. Take charge of it – it’s yours. Understand how you
%see things and how you imagine things. Geometry can say something about you
%and your universe. – David W. Henderson
%\end{quote}
%
%But this new view leaves open the issue of how we are to understand these
%`not known to be true' geometric hypotheses. What are the fundamental
%notions? What is true about them?
%
%The new view is justified by Russell (preface to \cite{RW}): `the chief
%reason in favour of any theory on the principles of mathematics must always
%be inductive, i.e., it must lie in the fact that the theory in question
%enables us to deduce ordinary mathematics.  In mathematics the greatest
%degree of self-evidence is usually not to be found quite at the beginning but
%at some later point; hence the early deductions, until they reach this point,
%give reasons rather for believing the premises because true consequences
%follow from them, than for believing the consequences because they follow
%from the premises.'}
%
%While Russell wrote about a foundation for all of mathematics, his point is
%even clearer for studying a specific subject, e.g. geometry.  Euclid
%inherited the geometry expounded by Plato and the Pythagoreans that had
%pointed to such notions as point and line as fundamental.
%
%\end{method}

\section{Interpretations, Models,  and Axioms}\label{model}{}


\smallskip

\begin{peda}\label{synana} [SLO1: Synthetic and Analytic proof] {\rm Narrative
SLO2 prescribes `understanding different types of proof  such as synthetic
(from axioms), analytic (using coordinates), and proofs using transformations
or symmetries.' This distinction between synthetic and analytic illustrates
the difference between proof  from axioms in the language of geometry and
proof about interpretations. A {\em synthetic} proof is an informal proof
(Motivation~\ref{whyax}) organized as sequence of statements such that each
statement is either an axiom, hypothesis, previously proved  theorem,
 follows from the earlier statements by a (perhaps
vague) rule of inference.  We call synthetic proof as taught in high school,
`semi-formal', reserving `formal' for the stricter\footnote{Increasingly the
term is used only for computer proof
(e.g.\url{https://imsarchives.nus.edu.sg/files/CLThomasHales25Nov2009.pdf}}.,
 of Methodology~\ref{whyax}. An {\em analytic} proof is an algebraic proof
about the coordinatized plane, which almost always uses symbols. As such, it
is a proof {\em about} an interpretation of the axioms.}
\end{peda}


\begin{notation}\label{moddef}[Syntax/semantics/interpretation]
{\rm The crucial divide between axioms and models is between {\em syntax} and
{\em semantics}.  Axioms are syntactic objects, sentences (English or
symbolic). The sentences are in a regimented language with a fixed vocabulary
of basic terms.  Interpretations (models/structures)  are semantic,
mathematical objects). There is a clear method (either informally or by a
technical definition) to determine when a particular sentence is true in a
particular structure. An {\em interpretation or structure} for a {\em
vocabulary} (the basic terms)
 consists of a set (called e.g.
world, domain, universe) and a meaning for each basic term on that domain. An
interpretation is a {\em model} of a set of axioms if each axiom is satisfied
(true) in the interpretation.}
\end{notation}
%We now show coordinate geometry  illustrates the concept of interpretation
%and then formally define the concept.

The following  basic mathematical structures (possible interpretations)
should be known, but perhaps not so precisely.
% We use both symbols and words to describe the
%actual structure that interprets certain mathematical terms.
 A structure
(e.g. `the rationals') is a set with several kinds of basic terms: specified
constants, operations, and relations. The ordered field of rational numbers
$\langle \QQ, +,\times, -, {}^{-1}, 0,1, =,< \rangle$ consists of the
fractions  with the
specified constants, operations, %$+, \times, - {}^{-1}$
and relations listed. %$=,<$
 The word field indicates that both addition and multiplication are groups (satisfy
associativity, commutativity with identities $0,1$ and inverses)  and that
multiplication distributes over addition. `Ordered' prescribes a linear order
relation.  The real numbers satisfy the same properties but also satisfy the
least upper bound principle.  One point of these notes is the least upper
bound principle is largely irrelevant to high school geometry.

We have given a particular interpretation of the vocabulary of fields
(addition, multiplication, additive and multiplicative inverse, and
identities $0,1$, equal, less than) in symbols $\langle \QQ, +,\times, -,
{}^{-1}, 0,1, =,< \rangle$ on a particular set, the rational numbers $\QQ$.
$(\langle \QQ, +,\times, -, {}^{-1}, 0,1, =,< \rangle$ is a {\em model} of
the theory of fields.  Since all the field axioms are
satisfied\footnote{Since addition does not distribute over multiplication, if
we had perversely interpreted addition as $\times$ and multiplication as $+$,
we would still have an interpretation; but not a model. Note ${}^{-1}$
denotes the multiplicative inverse.},  this interpretation is a model of the
theory of fields.



 The basic terms of an  (incidence) geometry   are points ($P$), lines ($L$)
and a binary relation between points and lines $I$,  `A lies on $\ell$'. The
interpretation of the statement, `the point $A$ is on the line $\ell$' is
$\Pi(F) \models I(A,\ell)$.
% We
%introduce a symbolic vocabulary $\langle P,L,I\rangle$.
We need an unfamiliar symbol $I$ because unlike fields, where we routinely
work in the model, synthetic proof can be done in English with symbols only
naming particular points and lines.

\begin{definition}\label{cpdef}The `coordinate plane' over $F$ is an interpretation for the incidence
geometry language for any field $F$.
 By the coordinate plane $\Pi(F)$ over a  field $F$ we mean the
interpretation $\langle P, L, I\rangle$ with points being the ordered pairs
in $F \times F$ and the geometry whose lines are the solutions of linear
equations over $F$. That is, $A =(u,v)$  is on the line $\ell$ (determined
by) $y= mx + b$ if $v =mu+b$. We say $\Pi(F)$ satisfies the statement `A lies
on $\ell$' or formally $I(A,\ell)$.
\end{definition}

In Theorem~\ref{intfield} we show the correspondence is invertible: the field
is found in the geometry. Here is  a  very different interpretation for the
vocabulary of incidence geometries.





\begin{exercise} \label{alllinesparallel} For a different interpretation of
 $\langle P,L,I\rangle$, we
keep $P= F\times F$ but change incidence $I$ to $I'$ by interpreting $I'
(A,\ell)$ holds of the point $A$ and the line  $\ell$ (now determined by a
single field element $a$) if $A=(u,v)$ for any $v$ if $u=a$. Draw a picture
of the lines in this plane.
\end{exercise}

\begin{peda}[The new view and student understanding] {\rm We  now consider axioms for projective
planes since they are much simpler than those for Euclidean geometry.
\cite{Harelsu} describes the  distinction between the intuitive axiomatic
(Greek)  and structural conception (Hilbert) of axioms in \cite{Harelsu}.
Moreover, he highlights that distinction as obstructing  students
understanding proofs and in particular to their understanding such  exercises
as \ref{projpl}. How can a plane be finite?}
\end{peda}



%\sidebar{Andreas, how much do I need to say here -- better example?}

% Thus, to discuss the group of integers $\ZZ$ we would say `one plus one is two',
%    write the sentence $1+1 =2$ (in a vocabulary with binary function $+$,
%    binary relation $=$ and constant symbols for each integer). Formally we
%    write $(\ZZ, +, =) \models 1+1 =2$ and say $1+1 =2$ is true in the integers.
%     More interestingly, $(\ZZ, +, =)
%    \not \models (\exists x)\  x + x +x =2$.
%
%    The {formal) sentences and their proofs are called {\em syntax}; the models and statements
%    about truth are {\em semantics}.

%Definition~\ref{projgeom} is a much simpler example of axiomatizing a
%`geometry' than the axioms needed for Euclidean geometry. Although only
%sometimes \cite{Cederberg} treated in a geometry course aimed at future
%teachers,the large 20th century literature on possibly finite projective
%geometries includes \cite{Artin, Heytinggeom, HughesPiper}.

%{\color {green}\sidebar{Andreas 8/22: what is the geometric
%example?}\color{red} Whoops?  I think something got moved.  Have to think
%about what I am trying to say here. I think I meant exercise \ref{projpl} to
%be the geometric example -- but not of writing in first order logic.  Maybe
%ealier I had, ` write the three axioms of Definition~\ref{projgeom}  in first
%order logic.'\color{blue} 8/24: Actually, it is about what I wanted to say.
%Please read revision of previous paragraph. }


\begin{definition}[Projective Plane]\label{projgeom}
%Fix a vocabulary $\tau$ consisting of two unary predicates $\bP$, $\bL$ for
%points and lines and a binary relation $\bI$ between $\bP$ and $\bL$;
%$\bI(A,\ell)$ is read: point $A$ lies on the line $\ell$. A $\tau$-structure
%is a set (of points), a set (of lines), and an `incidence relation' between
%them.
An incidence geometry is a projective plane  if it satisfies the axioms: (P1)
Any two distinct points lie on a unique line. (P2) Any two distinct lines
meet in a unique point. (P3) There exist at least four points of which no
three are collinear (i.e., are on the same line).
\end{definition}

\begin{exercise}\label{projpl} \hfill
\begin{enumerate}
 \item {\bf Fano Plane} Draw a picture of the projective plane with $3$
     points on each line. (Hint: it has 7 points and 7 lines.)
\item Prove that in a projective plane there are four lines with no three
    sharing a common point.
\item Suppose $(P,L,I)$ is a projective plane and there are $n$ points on a
    given line $\ell$.  Prove each line  has $n$ points and there are $n^2
    -n +1$ points in the plane\footnote{The first author took a course in
    projective geometry while in college. His future wife, who had no
    college mathematics solved this problem.}.

    %\item Write the axioms in first order logic.
    \end{enumerate}
\end{exercise}

Items 1) and 2) have very different nature; the first is a {\em theorem of
projective geometry}; it is expressed in the vocabulary of geometry. The
second is {\em a theorem about projective geometry}. There are no numbers in
projective geometry; the result describes the models of projective geometry
using concepts it cannot express.

%\section{Systems to organize geometry}
%
%\sidebar{AM “Models and independence are intimately tied into the history of
%geometry,” as SLO 4 correctly states. Therefore, in this section…
%
%referring to an earlier version but the point remains.}
%
%
%%In contrast, Euclid
%%implicitly used Archimedes (Section~\ref{ArchDed}).
%
%\begin{peda}[SLO1: What is an interpretation]
%
%{\rm
%%Translation from English to formal language is a several week topic in a
%%first Philosophy course in logic.  We don't spend as much time on it as we
%%only want to establish the principles so we can apply them in explaining the
%%notions of formal inference and independence.
%
% The key point is grasping the
%relation between a sentence in a formal language and the various
%interpretations in which it maybe true. We haven't arrived at axioms. We have
%just fixed the basic relations (atoms) of the language.
%
%
%Thus we might have a binary relation symbol $R$ in the vocabulary $\tau$. A
%$\tau$-structure is a  set with one binary relation. Consider two sentences
%both saying the relation is reflexive $(\forall x)R(x,x)$, total $(\forall x)
%(\forall y) R(x,y) \vee R(y,x) \vee x=y)$, and transitive ($[(\forall x)
%(\forall y) R(x,y) \wedge R(y,z)] \rightarrow R(x,z)$). But one says $R(x,y)
%\leftrightarrow R(y,x)$ (symmetric) and the other $R(x,y) \leftrightarrow
%\neg R(y,x)$ (antisymmetry). They define two vastly differ mathematical
%notions: with Symmetry an equivalence relation, with anti-symmetry a linear
%order. But both an equivalence relation and a linear order are
%$\tau$-structure.  The narrative for SLO4 uses the word interpretation for
%where we use structure.  We preserve the difference because the method
% used to prove the consistency of e.g., hyperbolic geometry is the current logical meaning
%of  `interpretation'. Interpretation has many applications in various areas
%of mathematics and computer science, particularly around consistency and
%decidability.
%% We now give a more geometric example of
%%`truth in a model' and then the formal definition.
%}
%\end{peda}


%\begin{method}[SLO1,5,8] {\bf Definition} \label{fundnot}
% {\rm Euclid begins with a list of {\em definitions}.
%Some (`A line is breadthless length') are really just an {\em indicative
%definition}; it points to an intuition. These indicative definitions become
%the basic terms (vocabulary of Definition~\ref{moddef}.  Others (When a
%straight line standing on a straight line makes the adjacent angles equal to
%one another, each of the equal angles is {\bf right}) are {\em stipulative
%definitions}. They precisely describe a new concept in terms of previous
%definitions. The geometric definitions in this chapter are stipulative.
%
%Euclid and Hilbert chose point, line, incidence (a point is on a line),
%plane, and congruence as the most basic concepts.
%% \footnote{See
%%Remark~\ref{postsur} for several alternatives}.
%They regard triangles and other polygons as built from points and straight
%lines and facts about them follow from the axioms.
%
%For Euclid, words in the proof refer to ideal geometric objects. But
%Hilbert's attitude is different.   These basic concepts are named by words in
%the vocabulary.   For him, the meaning of those words is given implicitly by
%the axioms \cite{Demopoulos}. Blumenthal reported, `One must be able to say
%at all times--instead of points, straight lines, and planes -- tables,
%chairs, and beer mugs'.}
%\end{method}
%%For us a {\em vocabulary} is collection of relation and function symbols for
%the basic concepts. E.g., we have a symbol $P$ for points. A structure
%consists of set and an `interpretation' of each symbol on that set. (See
%Example~\ref{projgeom}.)

%Sentences about the concepts become formal sentences.  E.g., the point  $A$
%is on the line $\ell$ is represented by $\bI(A,\ell)$. Axioms are sentences
%that represent our intuition for the behavior of the basic concepts.
%
%A structure in which the interpretation of each axiom is true is called a
%{\em model}.}



%To get a clear idea of, for example, `two axioms are independent', we need to
%carefully distinguish between `objects' and `sentences'.  To define the truth
%of a statement we  specify the logic, the vocabulary and the model
%(Appendix~\ref{formsys}):

%{\color {green}\sidebar{Andreas 8/22: I managed to force "1. A vocabulary...." onto a new line with the "\hfill" command. I did it in other places as well, such as Exercise 2.5 etc. you can do a global change if it's not desirable}}


%
%
%%\begin{definition}[Vocabulary and models]\label{vocmod}\hfill
%%\begin{enumerate}
%%	
%%\item A vocabulary $\tau$ is a set of constant symbols $(c_1, c_2,...)$,
%%    relation (or predicate) symbols $(P_1, P_2,...)$ and function symbols
%%    $(f_1, f_2,...)$. No interpretation is given to any of the symbols
%%    yet and their names are arbitrary. Relations and functions connect
%%    two or more constants. Phrases with relations are true or false.
%%    Functions return a value.
%%
%%\item A sentence $\phi$ is formed by connecting two or more constants
%%    with relations and/or functions that are either true or false. No
%%    interpretation is given to these sentences until we have a model
%%    (structure).
%%
%%\item A model or $\tau$-structure $M$ is a set that consists of a
%%    universe A together with an interpretation of the entire vocabulary
%%    $\tau$ (constants, relations and functions). This is where English
%%    sentence can happen.
%%	
%%
%%
%%\item
%%
%%\end{enumerate}
%
%
%
%
% % Then the
%%English sentence ‘one plus two is three’ can be written in our model as ‘1 +
%%2 = 3’. In this sentence the constants are 1, 2, 3; ‘+’ is a binary function
%%and ‘=’ is a binary relation (predicate). Formally we write $(\ZZ, +, =)
%%\models 1+2=3$. More interestingly, $(\ZZ, +, =) \not \models (\exists x)\ x
%%+ x +x =2$.  We have used the same symbol for the constant in the vocabulary
%%and for the element of the universe.  Pedantically, they should be
%%distinguished, but aren't in modern treatments.
%%
%%More economically, we could have only $0,1$ as constants but added $-$ as
%%unary function for  additive inverse. Then we could define, e.g. $-2 = -1 +
%%-1$.
%
%%A geometric example is given in the following definition of a Projective
%%Plane which is much simpler than Euclidean geometry. Although only
%%sometimes \cite{Cederberg} treated in geometry course aimed at future
%%teachers,the large 20th century literature on possibly finite projective
%%geometries includes \cite{Artin, Heytinggeom, HughesPiper}.
%
%
%
%
%
%%Let's for example take the integers as our universe with the vocabulary
%%$(..., -2, -1, 0, 0, 2,..., =, +)$ or simply $(\ZZ, +, =)$.  Then the English
%%sentence ‘one plus two is three’ can be written in our model as ‘1 + 2 = 3’.
%%Here the constants are 1, 2, 3; ‘+’ is a binary function and ‘=’ is a binary
%%relation (predicate). Formally we write $(\ZZ, +, =) \models 1+1 =2$. More
%%interestingly, $(\ZZ, +, =) \not \models (\exists x)\  x + x +x =2$.


%We fix a vocabulary $\langle\bP,\bL,\bI\rangle$. Our intention is that $\bP$
%will be interpreted as a set of points, $\bL$ as a set of lines and
%$I(A,\ell)$ as `the point $A$ is on the line $\ell$'.



%%
%%{\color {green}\sidebar{Andreas 8/22: It doesn't say which appendix.} jb
%%8/.22 This is because I had written label{formsys } instead of ref{formsys}.}








%\begin{notation}[Axioms and Theories]\label{absax}
%
% %But making the distinctions first (i.e. without fully
%%clarify the notion of sentence) will clarify how the dependence arises.
% Fix a logic $\Lscr$,
%vocabulary $\tau$, and a system of deduction $\Sigma$.
%
%
%
%\begin{enumerate}
%\item {\em Axioms} are a collection of $\Lscr(\tau)$-sentences that are
%    chosen as premises to study a particular subject.
%
%     \item A {\em theory} $T$ is a deductively closed set of
%         $\Lscr(\tau)$-sentences.
%
%     We write $T \vdash \phi$ if the sentence $\phi$ is a
%     $\Sigma$-deductive consequence of $T$.
%
%
% \item  A {\em theory} $T$ is   {\em consistent} if it is impossible to
%     deduce a contradictory sentence from $T$.
%
%
%
%\item An axiom system is {\em independent} if none of the axioms can be
%    deduced from a combination of the others.
%
%\item A consistent $\Lscr(\tau)$-theory $T$ is  {\em  complete} if for
%    every $\Lscr(\tau)$-sentence $\phi$, $T\vdash \phi$ or $T\vdash \neg
%    \phi$.
%
%\item A theory $T$ is {\em univalent} or {\em categorical} if it has {\em
%    exactly one model}.
%\end{enumerate}
%\end{notation}
%%Each of these definition, particularly the last depends on knowing what a
%%$\tau$ sentence is and thus on the choice of logic.
%
%
%
%
%
% The most natural way to prove $\phi$ is independent from a set of axioms
%$X$ is to find a model $M$ satisfying each sentence of $X$ in which $\phi$ is
%false. But in order to productively add a sentence $\phi$ to the axiom set
%$X$, it is necessary to show $X\cup \{\phi\}$ is {\em consistent}.
%
%\begin{remark}[Informal Interpretation] {\rm It is easy to confuse two meanings of interpretation i) (somewhat
%archaic) an witness to truth: `a model of $\phi$ or $T$' is called `an
%interpretation of $\phi$ or $T$' and ii) a relation between two (languages,
%theories, models).  We mean the second.
%
%Roughly speaking, one way  to prove the consistency of, say, hyperbolic
%geometry, is  to interpret it in a Euclidean model; that is redefine the
%undefined terms of geometry (point, line, between, congruent, etc.) by
%formulas of Euclidean geometry and prove that {\em with this interpretation}
%the axioms of Hyperbolic geometry are satisfied in each model of Euclidean
%geometry. That is, hyperbolic geometry is  {\em relatively consistent} with
%Euclidean geometry. We give a full definition in Definition~\ref{fomrinterp}.
%A nice introduction for those familiar with modern algebra is near the
%\cite[\S 3: Interpretability]{BorovikNesinbook}}
%\end{remark}
%
%\begin{remark}{Completeness and Categoricity} \label{cc}
%
%{\rm Categoricity  was confused with completeness (Notation~\ref{absax}.4)
%until the late 1920's. Clearly, categoricity implies completeness. But the
%converse fails for both first order (any theory with an infinite model has
%one of each infinite cardinality) and (consistently by several authors ) for
%second order logic \cite[Theorem 3.1.1.(4)]{Baldwinphilbook}.   Hilbert's
%first four axiom groups are first order; he adds his continuity axioms
%primarily for the purpose of providing a categorical axiomatization whose
%only model is the Cartesian plane over the reals \cite[\S 17]{Hilbertgeom}.
%But this is overkill. Following Russell's theme, we need only find a basis
%for the theorems of Euclid's geometry. \cite[p 202-203]{Hartshornegeom}
%demonstrates that Hilbert's first order axioms suffice. The existence of
%non-Archimedean fields was proved in the late 19th century
%\cite{Ehrlichnonarch}.
%
%
%
%%
%%It would be nice if there were a finitely axiomatized complete first order
%%theory of geometry. Unfortunately, while first order logic allows for a
%%consistent and
%%  complete theory, it requires infinitely many axioms.
%   The first order theory $T_{rcf}$
%   of the Cartesian plane over real numbers is complete; one adds to EG the infinitely many
%  axioms that say of the coordinatizing field that every odd degree polynomial has
%  a root \cite{Tarskielgeom}. Alternatively, analogously to the Peano axioms for
%   arithmetic, Dedekind cuts are formalized to hold only for first order definable
%   cuts \cite[p 185]{GivantTarski}.
%
%
%
%}
%
%\end{remark}





%{\color {green}\sidebar{Andreas 8/22: doesn't independence force minimal? Or are
% you saying that Euclid's five independent postulates could possibly be written as four other independent %postulates?
%\color{red} jb 8/22: Actually the could be the case. The number of axioms is
%not a very well-defined notion.  Often an axiom say A and B.  It could be
%split into two and if A and B are independent over the rest we've increase
%the number. But I actually meant that we could be in Sacherri's position. He
%was sure the 5th postulate was a theorem but it turned to be independent.
%That we have a small axiom set but we don't know if it is minimal.
% }}


%\begin{com}[SLO2: Criteria for Choosing Axioms]\label{axcrit}
%{\rm Natural criteria include that axioms should be intuitive and
%parsimonious.  By intuitive, we mean the axioms can be easily illustrated for
%the students involved. Parsimonious axiom lists are   modest and short.
%Modest axiom systems for a topic $Z$ do not include axioms that are not
%needed to prove the theorems of $Z$.  Ideally, modest axioms are independent.
%Independence may not be evident; it took two thousand years to show the
%parallel postulate independent\footnote{We haven't checked the independence
%of the axioms here. \cite{Hilbertgeoma} checks the independence of the groups
%of axioms; however \cite{Wylie} showed dependence within the order-group.}. A
%more subtle goal is that imply all the results that hold in
%
%
%
%Independence and completeness are complementary properties that enforce the
%parsimonious goal of finding an understandable base from which the remaining
%propositions are deduced. One might ask more: for a minimal complete
%independent set of axioms. But creating such a set might lower the intuitive
%content of the axioms and independence can be hard to establish; so we settle
%for few. The striking fact is that completeness is not actually so useful in
%practice. The axioms of neutral geometry (Notation~\ref{axnotation}) provide
%common proofs for results of both Euclidean and non-Euclidean geometry and
%`Euclidean geometry' yields the results that are applicable in life (e.g.
%Pythagoras).}
%\end{com}









Deductions from Euclid's five axioms include some actual gaps and others that
are questionable. Many of these gaps are more apparent than real; much of the
difficulty came from later mathematicians ignoring the rigorous role diagrams
played in Euclidean proof (Pedagogy~\ref{diagmeaning}). For example, Hilbert
even postulates  that if $B$ lies between $A$ and $C$ then $B$ lies between
$C$ and $A$.  For high school this is unnecessary pedantry.
%{\color{red} The heading Fact in this
%text means a proof is well-known.}


Different challenges motivated the organization of geometry by different
authors. To situate Birkhoff's system with the others we need some
definitions.

\begin{definition}\label{rulpost}
\begin{enumerate}
\item A metric on a set $X$ is a function $d$ from $X\times X$  into the
    positive elements of an ordered group (field for us) such that $d(x,x)
    =0$, $x\neq y \rightarrow d(x,y) >0$, $d(x,y) = d(y,x)$, and $d(x,z)
    \leq d(x,y) +d(y,z) $ (the triangle inequality).
\item For any ordered field $F$, the $F$-ruler postulate asserts: for each
    line $\ell$ in the plane there is a bijection $f_\ell$ from $\ell$ to
    $F$ so that for $A,B \in \ell$, $d(A,B)  = |f_\ell(A)-f_\ell(B)$. So
    each line is an $F$-metric space.
    \item the   $\Re$-ruler postulate  (Birkhoff/SMSG) takes $F$ to be the
        real numbers $\Re$.
\end{enumerate}
\end{definition}
\begin{motiv}\label{EC} [SL02, 7: Euclid's Challenge] {\rm Euclid aimed to provide a unified foundation
  for earlier
geometry, specifically the side-splitter theorem of Thales
(Theorem~\ref{sidespl})  and the Pythagorean theorem. The obstacle is
incommensurability\footnote{Two line segments are commensurable if for some
integers $m$ and $n$, $m$ copies of one are the same length as $n$ copies of
other.} in each case.  He has five postulates. Using a theory (now called
{\em equi-complementability or equal content}) of area, Euclid establishes
the Pythagorean theorem as the culmination of Book I. By appealing to the
Axiom of Archimedes, he establishes a theory of proportion that first yields:
{\em VI.1 the area of a triangle is proportional to its base and altitude}
and then VI.2. side-splitter. While Eudoxus' method of exhaustion motivated
Dedekind's construction \cite{Dedekind}, the existence of
continuum\footnote{\url{https://en.wikipedia.org/wiki/Cardinal_number} for
background.} many ($2^{\aleph_0}$) real numbers was completely foreign to
Euclid.}

\end{motiv}

\begin{motiv}\label{HC}[Hilbert's Challenge]
{\rm  19th century mathematicians such as Cantor, Dedekind, and Frege
revolutionized the foundations of mathematics by making  the natural numbers
rather than Euclidean geometry fundamental.  Hilbert aimed for an independent
development of geometry.  In doing this, he had to meet the new higher
standards of rigor.  He needed to develop notions of distance and proportion
from geometric notions of point, line, between and congruence. Moreover, he
had to build this precision into his axioms so as to avoid any reliance on
diagrams (Extension~\ref{diagdetail}).   He deduced VI.2, side-splitter,from
a geometric foundation of the theory of proportion  and then VI.1 from a new
theory of `measured area'. He proved his four axiom groups are independent,
although there are dependencies within the entire set. The consistency of
geometries that satisfy the $F$-ruler postulate but are countable follows
easily in \S~\ref{num}.}
\end{motiv}








\begin{method}[SLO5: Congruence vs Distance] \label{congdist}
{\rm This is  partly a story of the chicken (congruence) and the egg
(distance). A fundamental distinction between Hilbert and Birkhoff is that
Hilbert takes the congruence relation as fundamental and proves that one can
define a metric (with values in a field).  Birkhoff (and SMSG \cite{SMSG}
\cite[Appendix]{Cederberg}) assume the {\em $\Re$-ruler postulate}.



The difficulty for a high school course is that  limits, which {\em Hilbert
has shown are irrelevant to the geometry of lines}, are  used implicitly
while basic observations are replaced by long proofs. E.g. Common notion 3
(subtraction of line segments) is  `reduced' in some texts to using the ruler
postulate twice and assuming the student knows the laws of algebra well.  In
this chapter we take congruence of line segments or angles as fundamental,
not some measure.

}\end{method}



\begin{motiv}\label{BC}[Birkhoff's Challenge]
{\rm  Birkhoff confronted  the difficulty of passing from technical axioms
about Hilbert's betweenness relation to the more intuitive concept of a
(dense) linear order. \cite{Raimi} begins his discussion of geometry teaching
`new math' days in US with the side-splitter theorem: Euclid VI.2: A line
parallel to the base and intersecting both sides splits a triangle into two
similar triangles. Many texts and an influential mathematics educator \cite[p
9]{Raimi} propagated an incorrect proof of this theorem by basically assuming
all line segments were commensurable. Birkhoff addressed these issue with 4
postulates: the ($\Re$)-ruler postulate and an analogous protractor
postulate, two points determine a line, and side-splitter\footnote{This
trivialization
  seems to be followed by at least the SMSG  high school  text books I have
looked at a Postulate AA or AAA. \cite{Moise} calls them theorems by what
seems to be an implicit appeal to Archimedes \cite[p 169]{Moise}.}.  The
existence of the real numbers and thus the $\Re$-ruler postulate can only be
stated and proved in second order logic/set theory so do not provide a {\em
geometric} foundation.}

\end{motiv}


\begin{peda}\label{BMC}[Our Challenge] {\rm A prime objection to Hilbert's axioms
is that their abstract nature is too hard to grasp for high school. Our aim
is to amalgamate the axioms of Hilbert and Euclid to provide a more
accessible account of Hilbert's foundation of both synthetic and analytic
geometry on purely  geometric principles culminating in a proof of   VI.I and
VI.2. We vary from Hilbert primarily in accepting Euclid's careful use of
diagrams and taking as an axiom (Pedagogy~\ref{whylo}) that each line has a
dense linear order extending betweenness.  We expound Hilbert's
bi-interpretation of Euclidean geometry and ordered fields because it not
only is the key step in the bi-interpretation of hyperbolic and Euclidean
geometry but because {\em it provides a synthetic basis for high school
analytic geometry}. For simplicity and succinctness, {\em we axiomatize only
plane
 geometry}.}
\end{peda}


\begin{motiv}\label{wnB}[Why not Birkhoff?]
{\rm We began with Hilbert's admonition to seek simple, explanatory axioms.
The ruler postulate is neither. It appeals to a `magical' notion: `the real
numbers'. Similarly, assuming  the side-splitter magically connects two
radically different concepts (fields and similarity) that in fact are
provably (in Hilbert's system) equivalent.  By magic, we mean that Hilbert's
axioms identify the actual property that make the reals special, they are the
largest Archimedean field. And he has proved his geometry is coordinatized by
a field. But there is a reason he avoids circles. A rigorous definition of
angle measure  involves the exponential and trigonometric functions, using
either calculus or infinite series. All this is buried by the protractor
postulate. Of course, this background is obvious to Birkhoff, one of the
leading analysts of the 20th century. But it isn't to a high school
sophomore. Nor even to a college student who hasn't absorbed the least upper
bound principle in Advanced Calculus. More practically, assuming the ruler
postulate kills almost all examples of axiom independence in this chapter.}
\end{motiv}




%Some high school geometry texts (e.g. 29 postulates in \cite{Larson}
%extending SMSG,  while there are  22 in  \cite{Rhoad}) (roughly Hilbert)
% %McDougal Littel 2007
%%\url{https://www.stcs.org/files/page/21947/Geometry%20Textbook%20Student%20Resources.pdf})
%list many of the congruence theorems (SSS, SAS, ASA, HL etc.) as separate
%axioms. This objection is not mere pedantry; calling a known theorem a
%postulate destroys the concept of axiom system. If to cover certain material
%(for reasons of time or perceived difficulty) one has to skip proofs,
%announce that. Don't pretend a new hypothesis has to be introduced.


\section{Common Notions vs Postulates}
%
%We described in general terms in Comment~\ref{fundnot} the fundamental
%notions Euclid took for developing geometry and in Remark~\ref{absax} the
%general role of axioms in modern mathematics. Now w
We now discuss  Euclid's distinction between general and geometric premises
 and
the 19th century quest for an autonomous basis for geometry.




\begin{method}\label{cnp}  [Common notions vs postulates]
{\rm Euclid's distinction between principles that are true everywhere in
mathematics and those that are true only of a particular topic remains
important today. But it is answered in a different way. Euclid was interested
only in geometry and natural number (positive integers)  arithmetic. His
common notions essentially describe the properties of equality and order
(among classes of `comparable objects', i.e. magnitudes of various sorts).
Length and area are incomparable magnitudes for Euclid. In modern mathematics
(almost) all topics can be studied on a common basis in set theory.

Nineteenth century geometers insisted that applicability of the common
notions be explicitly based within geometry \cite{GiovanniniHilbgeom}.
Postulates describe the relations among the fundamental concepts of a
particular subject. The best example for over 2000 years were Euclid's axioms
for geometry. Thus the geometrical consequences of the common notions must be
derived from the postulates; this required some additions (\S \ref{bk1}).}

\end{method}



These are the common notions %or {\em axioms}
of Euclid. They apply equally well to geometry or numbers.  Following modern
usage we call Euclid's postulates either `axiom' and `postulate'.



\medskip

Common notion 1. Things which equal the same thing also equal one another.

Common notion 2. If equals are added to equals, then the wholes are equal.

Common notion 3. If equals are subtracted from equals, then the remainders
    are equal.

Common notion 4. Things which coincide with one another equal one another.

Common notion 5. The whole is greater than the part.







    \begin{method}[SLO5,7: Common Notion 1]\label{cn1} {\rm  Euclid used `equal' in  a number of ways: to
    describe congruence of segments and figures, to describe that figures
    have the same measure (length, area, volume).
    While the only {\em numbers} for Euclid were the positive integers  $> 1$,  he did
study the  comparison of what we now interpret as lengths. Following Hilbert,
in Section~\ref{num} we build an `algebra of segments' (a semi-field) and
explain how to consider the segments as `numbers' that can measure areas, a
concept totally foreign to Euclid.


CN1 asserts that equality is transitive\footnote{A relation $R(x,y)$ is
transitive if $R(a,b)$ and $R(b,c)$ implies $R(a,c)$. `Descendent' is
transitive; `daughter of' is not.}. For various notions (e.g. congruence) we
may need to make this  property (as well as symmetry) an explicit axiom.}
\end{method}





\begin{method}[SLO5,7: Common Notion 4]\label{cn4} {\rm
What Euclid means by coincide and equal is unclear (\cite[p 224,
248]{Euclid}). We adopt the view that $X$ coincides with $Y$ means `one is
mapped to the other by a rigid motion';  we follow the usual interpretation
 that  in this context Euclid's equal  means  congruent. So, Euclid CN4 asserts any figure is congruent with itself.  That is one
ingredient of Hilbert's congruence axioms.    We discuss other more
contentious  properties,  symmetry and transitivity of congruence, in
Axiom~\ref{congax}. }




\end{method}

%{\color {purple}\sidebar{Andreas 8/28: The transformation idea is supported
% in P4 by "triangle ABC is applied to triangle DEF". And when they coincide then they are congruent.
% I disagree that 'equal' means 'congruent.' 'Coincide' means 'congruent.'
% 'Equal' means equal in magnitude, e.g. equal length, equal area, equal volume etc.
% So now CN4 translates to "congruent figures have equal magnitudes"
% (congruent segments have equal length, congruent plane figures (3D figures) have equal area (volume), c
% ongruent angles measure the same degrees, congruent \color{red} 8/28 we have to discuss this: Consider the proof I.35
% he writes triangle EAB equals the triangle FDC after establishing the conditions for SAS.  I think we agree that EAB and FDC don't coincide;
% so here `equals' means `congruent'. In the remainder of the proof it means equal area.}}





\begin{method}[SLO1,5,8  {\bf Definitions}] \label{fundnot}
 {\rm Euclid begins with a list of {\em definitions}.
Some (e.g., `A line is breadthless length') are really just an {\em
indicative definition}; it points to an intuition. These indicative
definitions become the basic terms (vocabulary) of Definition~\ref{moddef}.
Others (e.g., When a straight line standing on a straight line makes the
adjacent angles equal to one another, each of the equal angles is {\bf
right}.) are {\em stipulative definitions}. They precisely describe a new
concept in terms of previous definitions. The geometric definitions in this
chapter are stipulative.

Euclid and Hilbert point, line (line segment for Euclid), incidence (a point
is on a line), plane, and congruence of segments as the most basic concepts.,
incidence (a point is on a line), plane, and congruence of segments as the
most basic concepts.
% \footnote{See
%Remark~\ref{postsur} for several alternatives}.
They regard triangles and other polygons as built from points and straight
lines and facts about them follow from the axioms.

For Euclid, words in the proof refer to ideal geometric objects. But
Hilbert's attitude is different.   These basic concepts are named by words in
the vocabulary.   For him, the meaning of those words is given implicitly by
the axioms \cite{Demopoulos}. Blumenthal reported, `One must be able to say
at all times--instead of points, straight lines, and planes -- tables,
chairs, and beer mugs'.}
\end{method}





Before giving the postulates in \S \ref{bk1} we clarify some of the
stipulative definitions in Euclid.


       \bigskip



\begin{activity}\label{defact}{\bf SLO5, CC Standard G-C0 }{\rm
 1. Know precise definitions\footnote{Activity G-C01: definition.pdf} of
angle, circle, perpendicular line, parallel line, and line segment, based on
the undefined notions of point, line, distance along a line, and distance
around a circular arc.



Why is distance along a circular arc given as an undefined notion? Can we
        define the length (congruence) of a circular arc in terms of the
        length (congruence of line segments)?   Why is the
        length of the chord a less good measure than the length of the arc?


 As noted \cite[p 114]{Hartshornegeom}, congruence of arcs can be
defined by rigid motions. But in general, the length of an arc may not be the
length of a straight line segment in a particular interpretation.  E.g. when
the interpretation is  the plane over the real algebraic numbers (i.e. the
field of  real solutions of polynomial equations in one variable with
rational coefficients) as it does not contain $\pi$. The circle of radius $1$
about the origin is the set of solutions of $x^2 + y^2 =1$. The length of the
semicircle is $\pi$ which is not in the interpretation.}
\end{activity}



\begin{definition} A metric on a set $X$ is function $d$ from $X\times X$  into
the positive elements of an ordered group (field for us) such that $d(x,x)
=0$, $x\neq y \rightarrow d(x,y) >0$, $d(x,y) = d(y,x)$ and triangle
inequality $d(x,z) \leq d(x,y) +d(y,z) $ (a straight line is the shortest
distance between two points).
\end{definition}

%\begin{method}[SLO5: Congruence vs Distance] \label{congdist}
%{\rm A fundamental distinction between Hilbert and Birkhoff is that Hilbert
%takes the congruence relation as fundamental and proves that one can define a
%metric (with values in a field). Birkhoff (and SMSG \cite{SMSG}
%\cite[Appendix]{Cederberg}) assume the {\em ruler postulate}: for each line
%$\ell$ there is a bijection $f_\ell$ from $\ell$ to $\Re$ so that for $A,B
%\in \ell$, $d(A,B)  = |f_\ell(A)-f_\ell(B)$. So each line is a (real)-metric
%space. Birkhoff's position is natural for a mathematician who is also
%studying the analytic properties of the non-Euclidean geometries.
%
%
%
%The difficulty for a high school course is that  limits, which {\em Hilbert
%has shown are irrelevant to the geometry of lines}, are  used implicitly and
%basic observations are replaced by long proofs. E.g. Common notion 3
%(subtraction of line segments) is sometimes `reduced' to using the ruler
%postulate twice and assuming the student knows the laws of algebra well.  In
%this chapter we take congruence of line segments or angles as fundamental,
%not some measure.
%
%}\end{method}

We survey here some modern postulate systems for geometry that appear in
textbooks for GeT. In line with SLO4, we focus on those books that adopt an
axiomatic approach and leave for other chapters those texts (e.g.
\cite{Cederberg, HenTaibook} among many) who treat other strands of geometry
discussed in \cite{HenonHart}.  Our categories reflect the intellectual needs
of the system builders (Euclid, Hilbert, Birkhoff). We hope our discussion of
the motivations of various results and argument can help the instructor
respond to the intellectual needs of the students \cite{Harelin}.

\begin{method} \label{postsur}[Postulate systems classified by basic notions\footnote{There
 are a number of other postulate systems for geometry with quite different choices of fundamental
 notion that have not been adopted for school use. See \cite{Pametric, Szmielew, Wugeom}.}]
{\rm

\begin{enumerate}



\item Hilbert\footnote{\cite{MillerN} justifies the Euclidean use of
    diagrams.} \cite{Hilbertgeoma, Hilbertgeom, Harvey, Hartshornegeom,
    Serra}: congruence is fundamental; two kinds of objects: point and
    lines\footnote{Tarski \cite{Tarskielgeom, Szmielew}: makes a logical
    but not pedagogical  simplification reducing to one kind (sort) of
    object: a line is a set of collinear points (three points are collinear
    if they satisfy betweenness in some order).};



\item  Birkhoff \cite{Birkhoff,Birkhoffbook}, SMSG standards
    (\cite{Cederberg, SMSG}); distance is fundamental; all properties of
    the reals are implicitly assumed (via ruler and protractor
    postulates\footnote{ \cite[p 137]{Moise} carefully distinguishes
    between what he calls {\em synthetic} and {\em metric} approaches.
    Roughly speaking, his synthetic corresponds to Hilbert (HP) and metric
    to Birkhoff. But Hilbert with (HP5) establishes a metric but the range
    is a field that depends on the model of HP5.  It is only if Dedekind's
    axiom is assumed that this becomes a real-valued metric.  From our
    standpoint, these are different synthetic approaches (different axioms
    in different logics).});



   % \sidebar{Andres: What do you think of last paragraph?}
%
%    {\color {green}\sidebar{Andreas 8/8:  ...establishes a metric, but
% doesn't require all real numbers and stays in first order logic. As soon
% as the range is all reals one must leave first order logic.}}

\item  Transformations are studied in two ways: i) within one of the
    Hilbert or Birkhoff systems \cite{BarkerHowe, Clark, Libeskind,
    Martinbook} ii) Viewing transformations as fundamental notions
    \cite{King, Weinzweig}. All use Birkhoff's axioms except Martin and
    Weinzweig\footnote{See Hartshorne's review \cite{Hartshornerev} of
    \cite{BarkerHowe} `To begin with,the authors devote the first chapter
     to the axiomatic foundations of plane geometry. Here already,
     following a popular modern trend, they diverge from Euclid’s purely
synthetic geometry by presupposing the real numbers, and implicitly using
some concepts of analysis.}.



% Weinzweig \cite{Weinzweig, Wugeom}: transformations are fundamental and
%    axiomatized; In  \cite{Wugeom} the field is {\em not} ordered



\end{enumerate}}
\end{method}



Some recent approaches to high school geometry (\cite{CME, Illusgeom}) adopt
a local approach. Rather than positing a global axiom system, they carefully
state and argue from premises for particular topics.

%\sidebar{Eventually, we should explicitly label when we have stated all the
%axioms in the group and link from here to that point.}

\begin{notation}[Hilbert style axiom sets for plane geometry]\label{axnotation}
The relationship among the following important subsets of Hilbert's axioms
for geometry that are studied in this chapter is extensively explored in
\cite{Baldwinphilbook}.
\begin{enumerate}
\item {\bf Neutral Geometry (HP)} The system HP denotes (our translation
    of) Hilbert's first three axiom groups. A model is called a {\em
    Hilbert plane}
    \item {\bf Circle free (HP5)} The system HP5 is obtained by adding the
        parallel postulate to neutral geometry.
    \item {\bf Euclidean geometry (EG)} The system  EG  is HP5 plus
        circle-circle intersection; a model is called a Euclidean plane
        \item {\bf Continuity axioms}: Axiom of Archimedes and Dedekind
            completeness (Section~\ref{ArchDed}).

    \end{enumerate}

\end{notation}







\section{SL02, SL08: A guiding problem}\label{guideprob}

\begin{peda}\label{whyprob}[SL02, SL08: Role of this section]
 {\rm We began our workshop with the following  exercise, first used with future
middle school teachers, to emphasize the importance of ruler (straight-edge)
and  compass constructions in basic geometry
 and with the hope that the
questions  in the activity would provoke a need for the proof in
Sections~\ref{bk1}-\ref{prop}. While a  solution  using analytic geometry is
fairly straight forward, the process of creating a purely geometric proof
gives a deep insight into `(a) recognize and communicate the distinction
between axioms, definitions, and theorems, and describe how mathematical
theories arise from them, (b) construct logical arguments within the
constraints of an axiomatic system' (SLO 4).}

\end{peda}

%{\color {green}\sidebar{Andreas 8/8:  ruler $\rightarrow$ straight edge}}
%
%{\color {green}\sidebar{Andreas 8/8:  question to provide $\rightarrow$
%question will provide}}


\begin{exercise} Each group chooses an odd number $n$ between 2 and  10.  After the
number is chosen, the group will be asked to fold a string to divide it into
as many equal pieces as the number they chose. Other physical models will be
used. Activity - Divide a line into n equal pieces.
\end{exercise}




\begin{exercise} \label{linediv} {\bf SLO8: CCSS G-C0-12}
 Here is
a procedure to divide a line segment into $n$ equal segments.

\begin{enumerate}
\item Given a line segment $AC$. \item Draw a line through $A$ different
    from $AC$ and lay off sequentially $n$ equal segments on that line,
    with end points $A, A_1, A_2, \ldots$. Call the last point $D$.
    \item Construct $B$ on the opposite side of $AC$ from $D$ so that $AB
        \cong CD$ and $CB \cong AD$.
    \item Starting at B, lay off n equal segments of length $AA_1$ and call
        the points so constructed on $BC$ sequentially $B, B_1, B_2, ...,
        B_n-1, C$.



        \item Draw lines $A_iB_i$.
        \item The points $C_i$ where $C_i$ is the intersection of $A_iB_i$
            with $AC$ are the required points dividing
 $AC$ into $n$ equal segments.


            \end{enumerate}



            \begin{figure}[ht]



            \begin{center}
\includegraphics[width=3in]{div1nb.jpg}

\end{center}
\caption{Dividing the line}\label{divdia}
\end{figure}

\end{exercise}
%\includegraphics[width=3in]{divn1.emf}

%{\color{green}\sidebar{Andreas 8/5: point 2: It would be helpful (but not
%necessary) to specify angle CAD to be acute}
%
%\sidebar{Andreas 8/5: point 4: ...n segments equal to $AA_1$
%
%
%jb 8/6: Both of these suggestions are a bit more prescriptive than necessary.
%So I am inclined to leave it alone. }



\begin{exercise} \hfill
\begin{enumerate}
   \item Use the algorithm described above to divide an arbitrary line
       segment into 5 equal segments. (Could be done in pairs. One person
       draws the line; the two have to divide it up.)

   \item Show this construction used only Euclid's first 3 axioms, listed
       in Axiom~\ref{axI-III} and \ref{circint} below.
\end{enumerate}
\end{exercise}

 %Question 2) doesn't really make sense yet and the solution
%takes about 10 pages.  Why is the question asked?

\begin{peda}\label{whyassign}[SLO2: Why is this assignment made?]
{\rm We are really asking, how and why does this construction work?  Working
in our system we see Euclid's first three postulates suffice   to make the
construction.  See Exercise~\ref{doit}. We will need SAS and more to prove it
works!
 We start with
this exercise both to give the student a reason to prove (stimulate
intellectual need \cite{Harelin}) and to emphasize this distinction between
rule-based construction of geometric objects and a deductive verification of
geometric propositions.} \end{peda}



%\begin{com}[Construction vs proof] Hilbert's reformulation of geometry `not only
% provided for a higher degree of logical rigor but also left wholly
%aside an interesting and possibly valuable aspect of Euclid's theory that
%Hilbert called "genetic" or "constructive".' \cite{Rodingent}.
%\end{com}


\section{Book I: Propositions 1-34 }\label{bk1}
\numberwithin{thrm}{subsection} \setcounter{thrm}{0}

The construction in the guiding problem Exercise~\ref{linediv} is rather
straightforward using only Euclid’s first three axioms; the proof that the
construction works involves much more. To prepare for this argument, we
amalgamate the approaches of Euclid and Hilbert, trying to maximize both
understanding and rigor.  The material adapts some results from the first 34
proposition of Book I of Euclid to solving our guiding problem.
%We defer a comparison Euclid's development of
%area, begun in I.35 to establish Pythagoras without using proportion, with
%Hilbert's  to Section~\ref{area}.




%Axioms arise from attempts to organize a body of results or describe
%rigorously some mathematical concept such as the plane. Different
%axiomatizations arise from different issues. We describe three challenges.
%
%
%\begin{motiv}[SL02, 7: Euclid's Challenge] Euclid aimed to provide a unified foundation
%  for earlier
%geometry, specifically the side-splitter theorem of Thales
%(Theorem~\ref{sidespl})  and the Pythagorean theorem.  The obstacle is
%incommeasurability in each case. Using a theory (now called {\em
%equi-complementability}) of area, Euclid establishes the Pythagorean theorem
%as the culmination of Book I. By appealing to the Axiom of Archimedes, he
%establishes a theory of proportion that first    yields {\em VI.I the area of
%a triangle is proportional to its base and altitude} and then side-splitter
% book VI.2.
%\end{motiv}
%
%\begin{motiv}\label{HC}[Hilbert's Challenge]
%{\rm 19th century mathematicians Cantor, Dedekind, and Frege revolutionized
%the foundations of mathematics by making  the natural numbers  rather than
%Euclidean geometry fundamental.  Hilbert aimed for an independent development
%of geometry.  In doing this, he had to meet the new higher standards of
%rigor.  He needed to develop notions of distance and proportion from
%geometric notions of point, line, between and congruence. Moreover, he had to
%build this precision into his axioms so as to avoid any reliance on diagrams
%(Extension~\ref{diagdetail}). He gives a geometric foundation of the theory
%of proportion and deduces VI.I side-splitter and  then VI.2. }
%\end{motiv}
%
%\begin{motiv}\label{HC}[Birkhoff's Challenge]
%{\rm  Birkhoff confronted  the difficulty of passing from technical axioms
%about Hilbert's betweenness relation to the more intuitive concept of a
%(dense) linear order.  Birkhoff with this problem  by requiring each line to
%be ordered as the real numbers: the ruler postulate.  \cite{Raimi} describes
%the dismal state of early 20th century United States high school mathematics
%instruction.the dismal state
% of early 20th century United States high school mathematics
%instruction. His first example is  the side-splitter theorem: Euclid VI.2.  A
%line parallel to the base and intersecting both sides splits a triangle into
%two similar triangle. Many texts and an influential mathematics educator
%propagated an incorrect proof of this theorem by wrongly dealing with the
%case when the side lengths were incommensurable (\cite{Raimi}). Principal 5
%of \cite{Birkhoffbook}  essentially assumes the side-splitter theorem; so
%VI.2 follows.}
%\end{motiv}
%
%\begin{peda}\label{BMC}[Our Challenge] A prime objection to Hilbert's axioms
%is that their abstract nature is too hard to grasp for high school. Our aim
%is to amalgamate the axioms of Hilbert and Euclid to provide a more
%accessible account of Hilbert's foundation of both synthetic and analytic
%geometry on purely  geometric principles culminating in a proof of the VI.I
%side-splitter and so VI.2.
% For simplicity
%and succinctness, {\em we axiomatize only plane geometry}.
%\end{peda}
%

\begin{peda}\label{diagmeaning}
[SLO5, 7: Reading a diagram] {\rm There was a tradition that carried on from
pre-Euclidean time until late in the 19th century that the diagram carried
certain information that was part of the proof.
 %We will continue that
%tradition here.



{\bf What diagrams meant classically.}

% wrong in Rhodes:Straight lines are straight; circles are circles.

Inexact properties can be read off from the diagram: slightly moving the
elements of the diagram does not alter the property. Intersections,
betweenness and side of a line, inclusion of   segments  are inexact.

\medskip{\bf What  classical diagrams don't mean}

Anything about distance, congruence, size of angle (right angle!) may be
deceptive. Since incidence is exact, you can't read off whether a point is on
a line but you can read off that two lines intersect in a point and then name
that point and use the fact that it is on each line.

\medskip{\bf What  high school diagrams mean}
Classical diagrams are enhanced in modern texts. Besides the inferences
allowed above, SAT instructions say `All figures in this test are drawn to
scale unless otherwise indicated, e.g., `Figure not drawn to scale'. Students
are taught tick marks for congruent segments, angle marks for congruent
angles, right angle marks, parallel marks. Figures on one side of a line are
assumed to be in that half-plane. Points that appear on a line(s) can be
assumed to be on that (those) line(s). }
\end{peda}


\begin{sextend}[SLO1, SLO4, SL09: Supplemental Extension: Rules of Inference]\label{sdiagdetail} {\rm
%\begin{extend}[SLO1, SL04, SLO9: Introduction to Rules of Inference]\label{diagdetail}
Late 19th century mathematicians banished the drawn diagram from semi-formal
 and even informal mathematics. The narrative defines a theorem as `a statement that
can be proved from the axioms without regard to interpretation'. While
correct in spirit, it misses an essential point; how is `without regard to
interpretation' guaranteed?  The answer is to specify clear requirements on
what statements are and rules for deducing one statement from earlier ones..
These can be
found in any introductory logic text and many discrete math books.
\cite{BarwiseEtch} includes computer software that explains `truth in a model
in a very basic way. \cite{Lyndon} is old (My copy is stamped \$3.25) but
makes the distinctions immediately below very clearly.

Here is a short outline.  {\em Propositional logic} has variables $p,q
\ldots$ which stand for propositions (they are true or false). A sentence is
Boolean combination of propositions (combining by and,or, not, implies).

Every tautology is an axiom of propositional logic (check by truth tables).
The only rule of inference is modus ponens: from $\phi$ and $\phi \rightarrow
\psi$ infer $\psi$.

{\em Sentential Logic} replaces  variables $p,q \ldots$ with atomic formulas
of a first order language  (e.g. $I(A,\ell), B(C,A,E)$ and allows the same
sorts of Boolean combinations (e.g. $I(A,\ell)\wedge B(C,A,E)$ means $A$ lies
on $\ell$ and is between $C$ and $A$).  This sentence does not choose between
two contradictory extensions $I(A,\ell)\wedge B(C,A,E) \wedge I(C,\ell) $ and
$I(A,\ell)\wedge B(C,A,E) \wedge \neg I(C,\ell) $. The first implies $E$ is
on $\ell$ and the second implies it is not. In order to continue the proof
one may have to make case distinctions. See one of the many analyses online
of fallacious proofs that `all triangles are isosceles'.

We use the same rules of inference -- translating a sentence into a Boolean
combination of proposition by mapping each atomic formula with constants into
a unique propositional variable. Then checking to see if it is an axiom by
truth tables.


The {\em logic of geometry} is slightly more complicated. The construction
postulates below have  the form `Every set of point and lines satisfying
$\Delta_1$ can be extended a set satisfying $\Delta_2$'. Theorems (and
Euclid's 4th and 5th postulate)  are even easier; they have the form `Every
set of elements and lines satisfy $\Delta$'. That is, the most complicated
results can be stated in the form: for every $X$ satisfying $\phi$   there
exists a $Y$ such that $X$ and $Y$ both $\phi$ and $\psi$.


Now there are two more rules: In giving the general rules the constants
$a,b,c$ may be either points or lines.

\begin{enumerate}
\item {\bf Existential instantiation:} Given  a construction postulate and
    a sentence describing various points and lines some of which satisfy
    the hypothesis of a construction axiom. Choose a name for a witness to
    the construction postulate and deduce the conjunction of the given
    statement which the assert the conclusion of the postulate about the
    witness and the data which satisfies the hypothesis.
\item {\bf Universal generalization:} From any statement $\phi$ about named
    points and lines $A,B,C, \ldots , \ell_1, \ell_2 \ldots$, we can
    deduce: `$\phi$ holds for all $X,Y,Z, \ldots , x_1, x_2 \ldots$'.


\end{enumerate}}

{\em First order logic} permits iterated use of both existential and
universal quantifiers. `There is a line with seven points' is a permissible
sentence. {\em Second order logic} permits iterated use of both existential
and universal quantifiers.  The logical complexity of the continuity axioms
is explored in Section{ArchDed}.
\end{sextend}


%\begin{extend}\label{diagdetail} [Diagrams and proof] {\rm
% Late 19th century mathematicians banished the diagram from (informal)
%mathematics. The SLO4 narrative defines a theorem as `a statement than can be
%proved from the axioms without regard to interpretation'. While correct in
%spirit, it misses an essential point; how is `without regard to
%interpretation guaranteed'.  The answer is: clear requirements on what
%statements are and rules for deducing one from others while preserving truth.
%Without passing to the technicalities of formal systems, one give a useable
%specification. First fix a vocabulary as in Methodology~\ref{fundnot}. That
%is, `atomic formula' such $B(A,B,C)$, written in English as `$B$ is between
%$A$ and $C$ or $I(A,\ell)$ $A$ is on the line $\ell$.  Combinations of such
%atoms or their negations by using `and' and `or' are {\em basic statements}
%$\Delta$ that express diagrams. The construction postulates below have  the
%form `Every set of elements and lines satisfying $\Delta_1$ can be extended a
%set satisfying $\Delta_2$'. Theorem are even easier; they have the form
%`Every set of elements and lines satisfy $\Delta$'. Now the allowed rules of
%inference are a) manipulate {\em basic statements} by propositional logic
%\footnote{The college students may need supplemental work on propositional
%logic; it is not proposed the understanding in this comment is needed in high
%school; it is at the high end of Van Hiele 4.} (thinking of each atomic
%statement, e.g. $B(A,B,C)$ as a proposition) b) apply construction postulates
%by naming an instance\footnote{E.G. There is a line through $A$ and $B$
%becomes `Choose $\ell$ through $A$ and $B$).} c) from a proof of $\Delta(A_1,
%A_n, \ell_1, \ell_m)$ deduce $\Delta$ is true of any $n$ points and
%$m$-lines.}
%
%\end{extend}

%(See Definition~\ref{lo}.) Su








%We prefer `can be deduced from the axioms by the rules of logic'. The
%equivalence of these two statements is precisely G\"{o}del's completeness
%theorem for first order logic\footnote{The equivalence fails  for Birkhoff's
%system.}. We will examine such rules in XXXX/. Understanding this distinction
%is perhaps stronger than Van Hiele level 4.


\begin{extend}\label{fly}[The fly in the ointment]{\rm
In more complicated arguments (unlikely to appear in high school), the
location of the witness for a construction postulate in the existing diagram
force a different proof\footnote{See the `proof' that all triangles are
isosceles \cite[p 48-50]{Greenbergbook} and many explanations on the net.}


 Recent research  clarifies and formalizes the ways that
diagrams played an essential role in mathematical proof for 2000 years.
\cite{Manders} lays out the main issues and historical background.
\cite{avigad-dean-mumma} and \cite{MillerN} provide formal systems with the
diagram explicit and with methods to control the number of cases..
\cite{avigad-dean-mumma} show their diagram-based system is complete for a
set of sentences that include the results of Euclid.
 See \cite[\S 9]{Baldwinphilbook} for a summary.}
\end{extend}

\begin{peda}\label{infref} We don't have space in this chapter to describe the rules of
inference of propositional   and sentential logic. An excellent reference for
grasping these connections is \cite{BarwiseEtch}, which has very helpful
software (Tarski's world) to explore the connections between syntax and
syntax. We discuss the importance of the equivalence of an implication with
its contrapositive in Definition~\ref{contrap} through Pedagogy~\ref{tt}.
Understanding this equivalence and fact that such an equivalence fails for an
implication and its {\em converse} is very important; spelling out the
connection with inverse is a matter for logicians (of the 19th century).
\end{peda}







%A major obstacle to students understanding the axiomatic method is the
%proliferation of axioms in current high school texts.




%For each group of axioms we discuss some of the key theorems which rely on
%them.


%{\color {purple}\sidebar{Andreas 8/26: cleaned up the language in the above
%paragraph, please check if it's still what you meant.\color{red} changed
%several places. In particular the key point is that ABC are arbitrary, we
%don't say are in a plane because we are axiomatizing that we are doing plane
%geometry.}}

%{\color {purple}\sidebar{Andreas 8/28: I commented out "not on a line" since we use non-collinear}}


%{\color {green}\sidebar{Andreas 8/22: What are you trying to say with the
%previous paragraph?\color{red} jb: 8/23 Does it make sense now?} I made some changes, but I know you will work on this some more.}




% {\color{green} Andreas; check next: }
%
% Pasch's axiom can be seen as an axiom that is necessary if we describe {\bf
% plane} geometry.  It is clearly false in 3-space. But in higher dimensional
% geometry this axiom can be adapted as a definition of a plane





%\begin{activity} [$3^+$: Intersections]\label{circint}
%Euclid does not explicitly mention that  a pair of circles or a circle and a
%line actually intersect.  The following additions to Axiom 3 assert that
%either two circles or a circle and a line intersect.  But note that this
%follows from the `proper' reading of diagrams.

%In groups discuss some formulations of axioms to express these ideas. (Here
%are some our group came up with.)




% This is a reordering of some of Book 1 of Euclid with a
%restatement of the postulates in more modern English (than the Heath
%translation). In addition some additional axioms that Euclid omitted have
%been added. We begin by explaining why some of these axioms were added and
%then describe one group.




\subsection{Construction Postulates}\label{conspost}

Our vocabulary contains unary predicates $\bP, \bL$, binary  $\bI$ and
ternary $\bB$, standing for point, line, incidence and between. We introduce
further vocabulary such as predicates for congruence later. Here are Euclid's
first three postulates. Axiom I and II are implied by Hilbert's betweenness
axioms we don't list in detail.

\begin{axiom}[Euclid's first 3 axioms in modern language]\label{axI-III}
%\label{circexist}

%\smallskip
%\label{euc3}
\begin{itemize}  \mbox{} %Euclid's first 3 axioms in modern language

%\smallskip   {}

\item {\bf Axiom I} Given any two points there is a line segment connecting
    them.
\item {\bf Axiom II} Any line segment\footnote{If Euclid is being used as a
    supplement, emphasize to students that a line for Euclid is a line
    segment for us.} can be extended indefinitely (in either direction).

 The following is a translation of Euclid's Postulate II from a {\em rule}
    for a construction into a Hilbertian {\em assertion} that for any
    witness to Euclid's `given', there are further witnesses for his
    conclusion.

     For any point $A$ and $B$ and any $C$ with $B$ between $A$ and $C$,
    there is a $D$ such that $C$ is between $A$ and $D$.


    \item {\bf Axiom III} Given a point and any segment there is a circle
        with that point as center whose radius is the same length as the
        segment.

\end{itemize}
\end{axiom}

 Hilbert's
first three axioms assert that two points determine a line and there are
three non-collinear points. They follow from Euclid's first three,
(Axiom~\ref{axI-III}).

\begin{peda}\label{circ} {\bf Circles} {\rm Euclid chooses a fundamental notion that does not appear
in Hilbert.  Hence, we include I.3 which replaces \cite[Axiom
III,1]{Hilbertgeom}. In addition to grounding the work students will do with
circles, Axiom III is a much more tangible way to transfer distance than
Hilbert's. \cite[p 102-3]{Hartshornegeom} describes three  of Hilbert's
tools which somewhat awkwardly allow one to duplicate the constructions.}

       {\bf Fine historical point.} {\rm Euclid does not explicitly mention  that overlapping pairs of circles and
circles overlapping a line actually intersect and Hilbert never mentions
circles. Axiom~\ref{circint} makes the  assumption precise.  In thinking
about Exercise~\ref{EI1} consider why Euclid's notion of diagrams might have
caused him to think no further Postulate was necessary to prove Proposition
I.1. }
\end{peda}



\begin{exercise}\label{EI1}{\bf CCSS G-CO.13} Prove Proposition I.1 of Euclid: To construct an
 equilateral triangle on a given finite straight line. Check with
 \cite{Euclid}.
\end{exercise}

Following \cite{Hartshornegeom} we label this axiom $E$ for Euclid as he
treats circles while Hilbert doesn't.

\begin{axiom} [Axiom E: Circle  Intersections]\label{circint}
%
%
%\begin{enumerate}\mbox{}
%\item {\bf Axiom 3' } If a circle is drawn with radius $AB$ and center
%    $A$, it intersects any line through $A$ other than $AB$ in two points
%    $C$ and $D$, one on each side of $AB$.
% \medskip

%
%\item {\bf Axiom 3'}
If from points $A$ and $B$, circles with
    radius $AC$ and $BD$ are drawn such that each circle contains points
    both in the interior (those points that are connected to the center of the circle
    by segments that don't cross the circle)  and in the exterior of
the other, then they intersect in two points,  on opposite sides of $AB$.

\end{axiom}



%{\color {green}\sidebar{Andreas 8/22: I think it should say: ...that each circle contains points both in the interior and the exterior of the other, then...}}

As Hartshorne notes, one can conclude from $E$ a line circle axiom: If a line
contains a point inside a circle it intersects the circle (twice!).  In many
expositions (e.g. \cite[p. 80]{Greenbergbook}), Axiom~\ref{circint} is
deduced from the continuity axiom and used to prove the circle propositions
from Euclid's Books III and IV. But Hartshorne \cite[p 114,
203]{Hartshornegeom} shows that only the theory EG
(Notation~\ref{axnotation}) is needed for the circle theorems.


\begin{lemma}[Euclid's Proposition 2]\label{EP2}
To place a straight line (segment)\footnote{`line' in Euclid means `line
segment'} for equal to a given straight line segment with one end at a given
point. In modern language: Given any line segment $AB$ and point $C$, one can
construct a line segment of length $AB$ and end point $C$.
\end{lemma}


In straight-edge and compass constructions, we transfer segments by measuring
with the compass, then copy that length to any other place on the paper (that
is when we do the construction, our `rusty compass' does not change the
radius). The Rusty Compass Activity in the supplement lays out the geogebra
construction (SLO6) to prove Lemma~\ref{EP2}. See Euclid for the proof of
Lemma~\ref{EP2} from the axioms I-III.

% \sidebar{jb 8/25  - some rewriting but same idea.  }
 %entirely in the plane without postulating rigid motions.

%\sidebar{Suggestion: We put the construction on the computer without
%reasons and ask them to supply the argument.}
%
% \sidebar{We may want to
%make Remark~\ref{wA3} the official version or a series of problems
%for those interested in axiomatics.}

%\sidebar{Do we need this? \color{purple} AM 8/26: I don't think so
%
%\begin{remark}[Extension]\label{wA3}{\rm We can be more conservative in choosing our
%axioms, saying in Axiom III: Given two points $A$ and $B$, there is a circle
%with center $A$ and radius $AB$.
%
%Even with this restricted form of Axiom 3, but using the congruence axiom
%$SSS$, we can prove Lemma~\ref{EP2} and then recover the original Axiom III.}
%\end{remark}}


%See also
%Remark~\ref{origami}.

Exercise~\ref{linediv}.1 is now easy.
\begin{exercise}\label{doit} Using Axioms I-III and Lemma~\ref{EP2}
show the algorithm in Section~\ref{guideprob} can be carried out.
\end{exercise}

The following exercise   gives the student the chance to understand
satisfaction in a model in a fairly familiar example and to look at
independence where the models are straightforward. While the college students
have seen   analytic geometry over the reals, here we note that the
construction can act on {\em any} field. %Recall from
%Definition~\label{moddef} the construction of a Cartesian plane over any
%field $F$.
%
%\begin{definition}\label{carpl} The Cartesian plane over a field $F$ has a points $P$ the
%elements of $F\times F$ and as lines the solution sets in $P$ of any linear
%equation with coefficients in $F$. \end{definition}

\begin{exercise}\label{conind}
Prove the Cartesian plane over the rationals, defined as in
Definition~\ref{moddef}, models Axioms I and II from
    Axiom~\ref{axI-III} but not Axiom~\ref{circint} (Axiom E).
    Thus, Axiom E is independent from
    axioms I-III.

%Remark~\ref{origami} gives further results of this type.
\end{exercise}

There is a close relation between these independence results and properties
of fields.

\begin{definition}\label{pythag}
A field is Pythagorean if for every $a$, $\surd{1+a^2}$ exist and Euclidean
fields  if for every $a$, $\surd{a}$ exist.
\end{definition}

The geometric context is in e.g. \cite[\S 12]{Hartshornegeom}.
\begin{fact}\label{origami}
\begin{enumerate}
\item A field is  Pythagorean iff it coordinatizes a Hilbert plane (model
    of HP5).
    \item A field is  Euclidean iff it coordinatizes a Euclidean plane
        (model of EG).
\item Characterizations of fields satisfying cubic equation and connections
    with origami can be founds in \cite{Alperin,Makgeom}.
\end{enumerate}

Studying such examples integrates the geometry with elementary field theory
and gives very concrete examples of independent axioms.
    \end{fact}

%{\color {purple}\sidebar{Andreas 8/26: to me it's easier to read if you say Axiom 5.2.3 instead of Axiom E}}

%{\color {green}\sidebar{Andreas 8/22: Do you mean Axiom III nor Axiom E?}}

%
%\sidebar{8/8/23: Have to see how much of this we want and where. Should at
%least assert that Euclidean plane models EG.  But this hasn't been introduced
%yet.
%
%For the next exercise we need some definitions from algebra \cite[\S
%16]{Hartshornegeom}.
%
%\begin{definition}\label{fieldtypes}
%\begin{enumerate}
%\item A field $F$ is {\em formally real} if $-1$ is not a sum of squares in
%    $F$. \item  A field $F$ is {\em Pythagorean} if the sum of two squares
%    in $F$ has a square root.
%    \item An ordered field is {\em Euclidean} if every positive element has
%        a square root. \end{enumerate}
%\end{definition}}


\subsection{Betweenness,  Order, and Planarity}\label{bot}





 Hilbert's 2nd group of axioms \cite[\S I.3]{Hilbertgeom}, labeled {\em
Axioms of Order},  prescribe   the behavior of the primitive concept of
between. $B(x,y,z)$ means $y$ is between $x$ and $z$. His Theorem 6 roughly
describes a linear order derived from the `between' relation. Szmielew
\cite[\S 7.1]{Szmielew} gives ten axioms for betweenness (think of statements
that are true of a symmetric ($\bB(A,B,C) \leftrightarrow \bB(C,B,A)$)) and
then carefully derives the definition below of a relation $\leq$ that
linearly orders the line $\ell$ through $ABC$.





% They carefully analyze in terms of the betweenness
%predicate $\bB(x,y,z)$, read $y$ is between $x$ and $y$.  We only mention two
%explicitly. But they guarantee as (except for density) could be read off from
%diagrams.

%Because their consequences are propositions that can be read off from
%diagrams as described above, rather than listing each of the 11 axioms of
%betweenness and order, we simply report their impact for {\em plane
%geometry}: (\cite[\S I.4]{Hilbertgeom}


\begin{definition}[Linear Order]\label{lodef} A set $X$ is linearly ordered by $<$ if $<$ is asymmetric ($x<y$
implies $y\nless x$), irreflexive ($x \nless x$), transitive ($x<y$ and $y<z$
implies $x< z$), and satisfies trichotomy (for any $x,y$: $x<y$ or $x=y$ or
$y<x$); it is dense if between any two points there is another.
\end{definition}


%\sidebar{jb 8/25 10PM still not right.}

%{\color {purple}\sidebar{Andreas 8/26: Wikipedia
%\url{https://en.wikipedia.org/wiki/Total_order})
% Sorry messed up the wikipedia defn.  Nothing wrong with it; I just think this
%terminology more common.
 %strongly connected (which implies reflexive)}}

%\begin{definition}\label{lo}
\begin{definition}\label{lo}
\begin{enumerate}
\item Fix $\ell =\overline{ABC}$ and define  $\leq$  for $P,Q \in \ell$ by
$$ P\leq Q \leftrightarrow (\bB(P,Q,B) \wedge \bB(P,B,C)) \vee
(\bB(P,B,C) \wedge \bB(A,B,Q,)) \vee
(\bB(A,B,Q) \wedge \bB(B,P,Q,)).$$
\end{enumerate}
\end{definition}


%{\color {purple}\sidebar{Andreas 8/28: $\overline{0A}$}} {\color
%{purple}\sidebar{Andreas 8/28: $\overleftarrow{0A}$}} {\color
%{purple}\sidebar{Andreas 8/28: $\overrightarrow{0A}$}} {\color
%{purple}\sidebar{Andreas 8/28: $\overleftrightarrow{0A}$}} {\color
%{purple}\sidebar{Andreas 8/28: $\overline{0A}$}}

%{\color {purple}\sidebar{Andreas 8/28: It took me a long time to figure out what the definition means and
% how it works. I think it works well on a positive ray $\overrightarrow{0A}$, but for the negative side
% (when we add the additive inverses) the P and Q would be reversed, i.e. $Q \leq P$.
% But if we assume just the positive ray  $\overrightarrow{0A}$, then we can simply
%  say $P \leq Q \leftrightarrow$ if there exist a point C such that $(B(P,C,Q)\wedge B(0,P,C)$).
%
%\color{red} jb 8/28: You have hit on the crucial point but drawn the wrong
%conclusion; She gives a careful argument fixing this.  I commented out the
%rays and I hope I said enough in Remark\ref{whylo} for our purposes.
%
%  }}

In fact, this definition can define  a linear order in either direction. By a
tricky argument, treating the rays in each direction separately, Szmielew
proves:



\begin{theorem}\label{ordthm} \cite[\S
7.1]{Szmielew} For any distinct $A,B,C$ with $\bB(A,B,C)$  the relation
$\leq$
% ($\leq_{ABC}$ if it matters)
  in Definition~\ref{lo} is a linear order
of $\ell$. Assuming for all $A,C$ there exists a $B$ such that  $\bB(A,B,C)$
the order is dense.
\end{theorem}

%If $A$ and $C$ are reversed in the axioms the resulting linear order is the
%converse of the first.

\begin{peda}\label{whylo} {\rm The difficulty of the argument for Theorem~\ref{ordthm} illustrates the
intricacy of using the betweenness relation.  Thus, Hilbert's axioms are not
used in high school texts. However, {\em we will just use
Theorem~\ref{ordthm} in our development}. So an alternative axiomatization
would be to replace Hilbert's order axioms with our Theorem~\ref{ordthm} and
certainly this would be a reasonable high school postulate. }
\end{peda}

%Fix two constants $0,1$ on a line $\ell$  and define  $A<_{0,1}B$ for $A,B
%\in \ell$  by
%$$ A< B \leftrightarrow (\exists u \in \ell) \bB (A,B,u)\wedge (\forall y \in \ell)\bB(A,u,y) \rightarrow
%\bB(A,B,u) \wedge A \neq B.$$



%{\color {purple}\sidebar{Andreas 8/26: Suggestion: While Euclid always compares two arbitrary figures in a relative way, fixing 0, 1 allows to compare ALL figures in a absolute way.}}
%The necessity of fixing $0,1$ is ???????????????????????

%Rather than  listing Hilbert's order axioms, we will rely on the following
%assertion which follows from them and Axiom~\ref{axI-III}.  So one could
%regard this an axiom which is reflects the intuitions from the diagram but
%makes density clear.
%
%
%
%
%\begin{theorem}\label{conordax}
%$<_{01}$ is a dense linear order of $\ell$.
%\end{theorem}
%
%Proof. Transitivity is easy to check and antisymmetry follow from the last
%two conditions; trichotomy follows from Hilbert's axiom (or thinking of the
%diagram) that any three points satisfy $\bB$ (in exactly one order) and
%density is explicit for $\bB$ in \cite{Hilbertgeom}.
%
%\begin{remark}\label{direction} {\rm The definition of $<$ doesn't determine
%the direction of the order. Fixing the order of a pair $0,1$ does.}
%\end{remark}

%{\color {green}\sidebar{Andreas 8/22: The second point of the definition doesn't make sense to me. If A and B are on $\ell$, then any segment between A and B are on $\ell$. What am I missing?}}

\begin{definition}\label{ray} Given a line $\ell$ and   points $A, B$ on
$\ell$ and $D,E$ not on $\ell$.
\begin{enumerate}
\item  the ray $\overrightarrow {AB} $ is all points $C$ on $\ell$ the same
    side of $A$ as $B$ (i.e. $\bB(A,C,B)$ or $\bB(A,B,C)$.

    \item A region is {\em connected} if any two points can be connected by
        a polygonal path (a sequence of segments such that successive
        segments share one endpoint).
    \item $D$ and $E$ are in the same half-plane determined by $\ell$ if
        the line segment between $D$ and $E$ does not intersect  $\ell$.
\end{enumerate}
\end{definition}

  Like Euclid, Hilbert develops geometry of dimension 3 with plane as a
fundamental notion and so a ternary predicate $\bP$ for coplanar is in his
formal vocabulary and the axiom holds when $\bP(A,B,C)$. We guarantee the
universe is plane by requiring Pasch's axiom to hold for {\em for any}
triplet of points; there is no predicate for plane in our system. There are
two equivalent formulations of Pasch.
%
%{\color {green}\sidebar{Andreas 8/8:  ...Pasch's Axiom, which is implicitly
%used by Euclid but cannot be derived from his axioms.}}
\begin{axiom}\label{Pasch}[Planarity Axioms]
\begin{description}
 \item [Pasch's Axiom:] Let $A$, $B$, $C$ be three non-collinear points
%that do not lie on a line
and let $\ell$ be any line
  which does not meet any of the points $A$, $B$, $C$.
 If $\ell$ passes through a point of the segment $AB$,
 it also passes through a point of segment $AC$, or through a point of segment
 $BC$.


\item [Separation Principle] The points of a plane not on a line $\ell$ are
    divided into two disjoint connected regions. Two points are in
    different regions exactly if the line connecting them intersects
    $\ell$.
\end{description}

\end{axiom}

\begin{exercise}\label{bpcon}[Betweenness and Pasch consistent]  Check that for any field $F$, $\Pi(F)$ satisfies the
betweenness and the Pasch axioms.
\end{exercise}
%\subsection{Angles}\label{angles}


We give a stipulative definition of angle, one of the indicative definitions
in Euclid.



%{\color {purple}\sidebar{Andreas 8/26: Can you use a different font for the between function "B" to distinguish from point "B"? And say that A is included in the ray.}}

\begin{definition}\label{angledef} An angle $\angle ABC$ is a pair of distinct %non-collinear
rays from a point $B$. The rays $BA$ and $BC$ split the plane into two
connected regions.  The region such that any two points are connected by a
segment entirely in the region is called the {\em interior} of the angle.
 Two angles are {\em adjacent} if they share a ray but no interior points.
\end{definition}

%{\color {purple}\sidebar{Andreas 8/28: added "but no interior points" to exclude properly contained angles sharing a ray.}}

%{\color {green}\sidebar{Andreas 8/22: any points are connected => any points can be connected (is that more correct?)}}

\begin{activity}\label{anglemeas}  What are at least three different units for
measuring the size of an angle?  (Answers include, degree, radian, turn,
grad, house (astrology), Furman.)
\end{activity}

\begin{activity}\label{meascald}  Measure, don't calculate
the circumference of a convenient cylinder.  Compare the result if you
measure the radius or the diameter and
 then calculate the circumference. We have found
this a useful exercise for  college freshman; we urge future teachers to
clarify this distinction for their students.
\end{activity}


\begin{remark}{\rm We differ from Euclid here in allowing straight
angles. Thus, we avoid the awkward locution of the `two right angles' for
`straight angle'. To define `right angle', we must consider congruence.}
\end{remark}




\medskip
%\begin{exercise} Construct an equilateral triangle using only the
%first three postulates.
%\end{exercise}




\subsection{Congruence Axioms}\label{congpost}

%{\color {green}\sidebar{Andreas 8/22: what is congpost?\color{red} I had
%forgotten the label}}

This section fills what is generally agreed to be a true gap in Euclid. In
Proposition I.4, he purports to prove SAS.  His argument implicitly relies on
the superposition principle (Remark~\ref{superposition}).  As in Euclid, we
take the notions of segment congruence ($AB \cong A'B'$)  and angle
congruence  ($\angle ABC \cong \angle
A'B'C'$) as primitive. %But rather than relying on the common notions,
We follow Hilbert \cite[\S 6]{Hilbertgeoma} and assert:


\begin{axiom}[Congruence Axioms]\label{congax}{\rm  {\em Congruence} is an
equivalence relation on undirected line segments (or angles) (reflexive,
symmetric, transitive and the sum (difference) of congruent (line segments,
angles) is congruent.}
\end{axiom}

\begin{method}\label{oncong}[On congruence axioms]
{\em The symmetry of angle congruence arises because, following Euclid and
Hilbert we are comparing angles not measuring rotation. We stated this axiom
in English. Formally, for angles we would add a $6$-ary predicate ($4$-ary
for segments) and write $\bC(A,B,C,D,E,F)$ to translate
 the axiom for two angles $ABC$ and $DEF$. Euclid uses `equal' for our `congruent' for segments and angles. }\end{method}

%{\color {purple}\sidebar{Andreas 8/28: For figures (2D), congruent and equal area/content are not the same. By the nature of things, with segments and angles, the two concepts of equal (same magnitude) and congruent (same shape) overlap completely. So when Euclid talks about equal angles and segments, we immediately equate that with congruence.}}

%
%but not symmetric  (Why?). \sidebar{jb 8/25 11pm. Are we sure about that.
%For us, it isn't because we are measuring rotation so it depends on which
%way we rotate.But Euclid is looking at congruence -this codes only the
%absolute value of the `number of degrees'.}
%
%{\color {purple}\sidebar{Andreas 8/26: If you use that argument, then we start having the same issue with directed segments and AB is not congruent to BA. Our definition of angles does not include rotation of one ray to get the other, and therefore are not directed.}}
%








%{\color {green}\sidebar{Andreas 8/14: If we're only given point D, Euclid
%does not postulate that we can draw a line through D. Or am I missing
%something?}  {\color{red}jb: 8/17 I think you are missing something. In
%more detail, Choose any $B$ not equal to $D$ and draw a circle with center
%$D$ and radius $DB$. Choose $C$ where the circle intersects $DB$ extended.}
%
%{\color {green}\sidebar{Andreas 8/22: I guess I was questioning if we can
%assume that such a point B exists unless we postulate that there exist at
%least a certain number of points (more than one). \color{red} This seems to
%be an axiom missing from not only Euclid but Hilbert.   We may want to say
%this. Or maybe Euclid always has a least two points in his hypothesis?}}}
%
%
%{\color {purple}\sidebar{Andreas 8/25: It's Hilbert's 8th postulate in the Incidence Group}}





%{\color {green}\sidebar{Andreas 8/14: From this construction we don't get right
% angles, since we don't know that the two angles are equal (unless we have SSS).
%  Perhaps we can change the note as a second part of the exercise:
%  "Prove that the line segment from D to the vertex of the triangle is
%  perpendicular to the base." That will lead to the discussion of the note.}

%\color{red} jb 8/17: I agree. That is, why I said note we {\bf can't} prove
%the line segment from $D$. On the other hand, proving the independence
%would be asking  a lot.  But your version is asking to prove what we can't
%prove yet.  I suspect, it is best to skip this now and just add your
%exercise after the congruence postulates.}



%\sidebar{jb sometime: Here I am taking `equal angles' to mean `congruent
%angles'. Do you have a better explanation? \color {green}\sidebar{Andreas
%8/14: I don't know what you mean.} {\color{red}jb: 8/17: I thought you were
%arguing that `equal' meant `coincide'.}}



%Euclid assumes the following postulate
%
%
%\begin{axiom}[4.Euclid's 4th postulate]\label{ax4}
% {\bf CCSS G-C0-1} {All right angles are equal}
%\end{axiom}
%


%\begin{com}[Dependent axioms]\label{depax}
%After we introduce the congruence Axiom~\ref{sss} (SSS), we see in
%Exercise~\ref{4thpostdep} that Euclid's 4th postulate, {\em All right angles
%are equal}, {\bf CCSS G-C0-1} is a theorem.  This represents a dependency in
%his system since SSS is his Proposition I.8.
%\end{com}

\begin{lemma}\label{concongax} The congruence axioms are true in any geometry
satisfying the $F$-ruler axiom and $F$-protractor axiom, e.g. $\Pi(F)$.
\end{lemma}
Proof: Define $AB$ on $\ell$ is congruent to $A'B'$ on $\ell'$  if
$d(f_\ell(A),f_\ell(B))$ on $\ell$ equals $d(f_{\ell'}(A),{\ell'}(B))$ on
$\ell'$  and similarly for angles.$\qed_{\ref{concongax}}$.








As in Euclid, we take the notions of segment congruence ($AB \cong A'B'$)
and angle congruence  ($\angle ABC \cong \angle
A'B'C'$) as primitive. %But rather than relying on the common notions,
We follow Hilbert \cite[\S 6]{Hilbertgeoma} and assert:





%\begin{axiom}[Congruence Axioms]\label{congax}{\rm   {\em Congruence is an
%equivalence relation on undirected line segments (or angles) (reflexive,
%symmetric, transitive and the sum (difference) of congruent (line segments,
%angles) is congruent.}}
%\end{axiom}


%{\color {green}\sidebar{Andreas 8/14: It occurred to me that we don't need
% "correspondence" in the definition. If we have three distinct pairs of
% equal sides and three distinct pairs of equal angles, then a
% correspondence necessarily exists. {\color{red}jb: 8/17: I disagree: If we
% have two isosceles triangles we have two ways to make the
% correspondence.}{\color{green}AM 8/22: true, but we still have triangle congruence. Same for equilateral triangles.}}}

\begin{definition}\label{rmdef} A {\em rigid motion} is a bijection from points to points that
preserves betweenness, collinearity (so it induces a bijection on lines), and
congruence of segments and angles.

A rigid motion is a reflection about $\ell$ if it fixes $\ell$ pointwise and
sends a point $A$ not on $\ell$ to an $A'$ such that $AA' \perp \ell$ and
$AA'$ is bisected at the point that it intersects $\ell$.
\end{definition}



\begin{method}\label{labeltri}[Labeled triangle congruence] {\rm Some mathematicians and some high school texts treat congruence
as a property of labeled triangles  (But  then  under some permutations of
the names of the vertices of a scalene triangle the resulting labeled
triangles may not be congruent). By looking at the statement of I.4, it is
clear this is not Euclid's intent.He specifies `some correspondence'; in
particular, reflected triangles are congruent.
% Requiring labeling says that
%under certain labeling the reflection (Remark~\ref{rmlist}) of a triangle is
%not congruent to the original;
Since rigid motions preserve congruence, under labeling reflections are no
longer rigid motions.
 Hilbert treats a weakening of SAS, \cite[Appendix
II]{Hilbertgeom} to act only on oriented triangles (so rigid motions must
preserve orientation).

While congruence is a property of triangles not of labeled triangles it is a
useful convention to require that $\triangle ABC \cong A'B'C'$ implies that
the primes indicate the correspondence. Often, in describing  polygon
ABCDE... any consecutive letters in the name are consecutive (connected by a
side) vertices in the polygon.}
\end{method}


%{\color {green}\sidebar{Andreas 8/22: Suggestion: (If you
%permute...)=>(non-circular permutaions of the vertices of a scalene
%triangle render the triangles not congruent anymore)\color{red} jb 8/23: I
%said it a little different to avoid parsing `non-circular permuation'}}



%{\color {green}\sidebar{Andreas 8/14:
%Comment 3.6.9. Some mathematicians and some high school texts treat congruence
%	as a property of labeled triangles  (If you permute  the names of the
%	vertices of a scalene triangle the resulting labeled triangles may not be
%	congruent.) By looking at the Euclid's Proposition I.4, it is clear this is not
%	Euclid's intent. Doing so means the set of rigid motions (translation,
%reflection, rotation) is redefined as no longer including reflection as a
%rigid motion.} \color{red} See change. Probably can still be cleaned up a
%bit.

%}



\begin{method}[Axiom Choice]\label{axchoice} {\rm Just as we had a choice of which
 concepts to specify as basic, we have choices to make for
axioms.  Euclid's Theorem I.4 (SAS) has been known since antiquity to rely on
an implicit `principle of superposition'. In modern language we express this
by saying the group of rigid motions (below) acts transitively on congruent
angles.
 Hilbert chose to do this by simply making SAS an axiom.  Euclid uses
 superposition (unnecessariy)
again to prove I.8 SSS and proved without any hidden assumptions that SAS
implies ASA and AAS. We chose SSS and prove SSS implies SAS. Here are two
reasons for choosing SSS. 1) It is very practical: any three sticks that can
form a triangle will always form the same triangle.
% (note: in real-life
%reflection is not an issue).
It is minimalistic: SSS only uses segments in
its statement, all others use segments and angles, and defining angles is not
trivial.}

\end{method}

\begin{peda}\label{redund} [Too many axioms] {\rm
 A major weakness
of many high school texts is to think the equivalence proofs of the
congruence propositions  are too hard for high school.
%Some high school
%geometry texts (e.g. 29 postulates in \cite{Larson} extending SMSG,  while
%there are  22 in  \cite{Rhoad}) (roughly Hilbert)
 %McDougal Littel 2007
%\url{https://www.stcs.org/files/page/21947/Geometry\%20Textbook\%20Student\%20Resources.pdf})
 Some high school
geometry texts list many of the congruence theorems (SSS, SAS, ASA, HL etc.) as separate
axioms. This destroys one of the main features of axiomatics: the search for
a small number of (ideally independent) assumptions from which the theory can
be deduced. The cost is  that students  think mathematics is about
memorization. This objection is not mere pedantry; calling a known theorem a
postulate destroys the concept of axiom system. If to cover certain material
(for reasons of time or perceived difficulty) one has to skip proofs,
announce that. Don't pretend a new hypothesis has to be introduced. }
\end{peda}



%{\color {green}\sidebar{Andreas 8/14: ...small number of... => ...number of
%minimal and independent...} {\color{red} No! minimal and even independent
%is too much to ask. It took 2000 years to show that 5th postulate was
%dependent.}

%}




\begin{axiom}\label{sss} [The triangle congruence postulate: SSS]
{\bf CCSS   G-C0-8} Let $ABC$ and $A'B'C'$ be triangles with $AB \cong A'B'$
and $AC \cong A'C'$ and  $BC \cong B'C'$ then $\triangle ABC\cong \triangle
A'B'C'$
\end{axiom}


\begin{method}\label{sasind} [Independence of SAS/SSS] With the interpretation of the congruence predicate as in
Lemma~\ref{concongax}, we clearly verify SSS; so it is consistent with the
previous axioms. To show SSS is independent from the earlier axioms, we must
show   the negation
        of SSS is consistent.  For this, following \cite[112]{Moise} we show
        the negation of SAS is  consistent. By Theorem~\ref{sas}, this suffices.
         Namely, use $\Pi(F)$ with the usual protractor
         and angle measure indicating congruence except on one line where $d'(f_{\ell'}(A),f_{\ell'}(B))$
          equals $2|f_{\ell'}(A)-f_{\ell'}(B) |$. Now if $ABC$ and $DEF$ are
          congruent triangles with congruence defined normally, under $d'$ we
          have $BC \cong EF$, $AC \cong DE$, and $\angle ACB \cong DEF$, so the triangles satisfy SAS
          in the new interpretation but
          they are not congruent in the new interpretation since $d'(AB) = 2d'(DB)$.
        \end{method}

Here is Moise's diagram.


\begin{center}
\includegraphics[width=4in]{Moise617.jpg}
\end{center}


%{\color {purple}\sidebar{Andreas 8/28: As far as I know, Euclid has the same
% naming convention for polygons. In addition he uses the diagonal endpoints to describe a parallelogram or rectangle.
%\color{red} jb 8/28  That is, exactly why I said he doesn't require that
%convention.  Nevertheless, I took it out.}}

%{\color {purple}\sidebar{Andreas 8/26: We might also add: Oftentimes $\triangle ABC
%		\cong DEF$ also implies correspondence.}}

%{\color {green}\sidebar{Andreas 8/14: do we need to add that we're using
% the convention that the congruence symbol requires correspondence in the
% labels? \color{red} jb 8/18: I specifically did not use such a convention
% by stating the correspondence.  We should discuss how to handle the
% convention.
% {\color {green}AM 8/22: We could say something to the effect: In English it is ok to say the two triangles ABC and
%  CBA (two different names for the same triangle) are congruent, but with the congruent symbol we must say $\triangle ABC\cong
% 	\triangle ABC$ to indicate corresponding parts.\color{red}jb 8/23 I strong
% disagree with this.  Congruence of figures is not a property of the way
% they are listed but of the figures.  It is convenient and sometimes
% required (Of course Euclid doesn't have the congruence symbol.  I do agree
% that if one names the second triangle by priming then that can be taken as
% establishing the correspondence.  Although Hilbert doesn't in his
% statement of SAS on page 12. }}}


%{\color {purple}\sidebar{Andreas 8/28: The following paragraph sounds repetitive, most has been said above.}}
%
%In Euclid this result, SSS, is proved from SAS (Proposition 1.4). The proof
%is 4 steps: Euclid Propositions 1.5 to 1.8. These 4 steps are  not hard and
%are correct. But his proof of SAS  Proposition 4 has  a gap, so we have to
%add {\bf one} congruence axiom; we choose to add SSS. All the other
%criteria for congruence (SAS, ASA, HL \ldots) are theorems.
%At the suggestion of Curie High School teacher Andreas Mueller, we
%choose to assume SSS and prove SAS.
%\begin{thrm}[ Move Angle]\label{moveang} {\bf CCSS   G-C0-8, G-C0-10}
%Let $ABC$ be an angles and $DE$ a segment. There is a point $F$ so
%that $\angle CAB \cong \angle FDE$.
%\end{thrm}


\begin{definition}[ Right Angle]{\bf CCSS G-C0-1}\label{ra} When a straight line standing on a
straight line makes the adjacent angles equal to one another, each of the
equal angles is {\em right}, and the straight line standing on the other is
called a {\em perpendicular} to that on which it stands.
\end{definition}

\begin{activity}  Fold paper to make a right angle.
\end{activity}

\begin{extend}[All right angles are equal]\label{4thpostdep}The 4th
postulate of Euclid becomes a theorem of Hilbert (\cite[Theorem
15]{Hilbertgeoma}\cite[9.6]{Hartshornegeom}.
\end{extend}

%\sidebar{\color{red} jb 8/28 10:12  I don't see it after a day I think; do we
%need a hint?}
% That is an interesting challenge. Andreas  noticed this although
%Hilbert apparently had as well.  The argument uses some constructions
%we study below but no other postulates than the first 3 and SSS.
%\end{remark}

\begin{thrm}[ SAS]\label{sas} {\bf CCSS   G-C0-8, G-C0-10}
Let $ABC$ and $A'B'C'$ be triangles with $AB \cong A'B'$ and $AC \cong A'C'$
and $\angle CAB \cong        \angle C'A'B'$ then $\triangle ABC\cong
\triangle A'B'C'$
\end{thrm}

%Challenge problem. Prove SAS from the axioms given for Oct. 27.

%\bibliography{ssgroups}
%\bibliographystyle{plain}
%\end{document}




\begin{peda}\label{colpar} We prove Theorem~\ref{sas} twice to illustrate the close connections
between two styles of presenting proofs. The paragraph style allows the use
of English to smooth and emphasize the particular inferences. The
`two-column' style regiments giving a reason for each step.
\end{peda}


Proof. %Let $ABC$ and $A'B'C'$ be triangles with  $AB \cong A'B'$ and $AC
%\cong A'C'$ and $\angle A \cong        \angle A'$.
We must show $\triangle ABC\cong \triangle A'B'C'$.  Draw circles with radius
$AC$ from $A'$ and with radius $BC$ from $B'$ using Axiom 3. Let  them
intersect at a point $D$ on the same side of $A'B'$ as $C'$.  Note that
triangle $A'DB' \cong ACB$ by SSS. ($AB \cong A'B'$, $BC \cong B'D$ and $AC
\cong A'D$). So $\angle CAB \cong \angle DA'B'$.
 But then by transitivity of
congruence, $\angle C'A'B' \cong \angle DA'B'$. But then $D$ lies on $A'C'$
and in fact $D$ must be $C'$. So we have proved the theorem.
$\qed_{\ref{sas}}$

$$\begin{array}{lll}
 1 & AB \cong A'B', AC \cong A'C', \angle CAB \cong C'A'B' & given\\
2 & \text{Draw circle with radius } $AC$ \text{ from } $A'$  & Axiom~\ref{axI-III}.III\\
3 &  \text{Draw circle with radius }  $BC$ \text{ from }$B'$ & Axiom~\ref{axI-III}.III\\
 % \text{} &\text{ Require the new arcs to be on the same side of }  A'B' \text{ as } C'   & Axiom~\ref{axI-III}.III\\
4 & \text{Choose  the point of intersection $D$  of the circles on  the same side $A'B'$ as $C'$.} & Axiom~\ref{circint}\\
5 & AD \cong AC & \text{Def  circle}, 2,3\\
6 &\triangle A'DB' \cong \triangle ACB & SSS, 5\\
7 & \angle CAB \cong \angle DA'B' & Def of Congruence\\
8 & \angle C'A'B' \cong \angle DA'B' & Axiom~\ref{congax}\\
9 &   D \text{ lies on A'C' } & \text{Def: Congruence}\\
10 & D = C' & DA' \cong CA' \\

11 & C'B' \cong CB& 6,10\\
12 &\triangle ABC\cong \triangle A'B'C'& SSS, 1, 10
 \end{array}$$

%Challenge problem. Prove SAS from the axioms given for Oct. 27.




%{\color {green}\sidebar{Andreas 8/22: I fixed the proof.}}





\begin{definition}\label{erm}[ERM] A plane $\Pi$ has enough rigid motions if
\begin{enumerate}
\item For any $A,A' \in \Pi$, there is a rigid motion $\phi$ with $\Phi(A)
    = A'$.
    \item For any three points $O, A,A' \in \Pi$, there is a rigid motion
        $\phi$  that fixes $O$ and sends the ray $\overrightarrow{OA}$ to
        $\overrightarrow{OA'}$ and \item for any line $\ell$ there is a
        rigid motion $\phi$ that reflects $\Pi$ over $\ell$.
\end{enumerate}
\end{definition}




Note that preserving the first three implies preserving congruence of angles
by use of SSS. %The existence of enough
%%\footnote{`enough' means the group of
%%rigid motions ERM is sufficiently transitive: transitive on points and two
%%further conditions.}
%rigid motions (ERM) is proved in any Hilbert plane in
%\cite[\S 17]{Hartshornegeom}. In fact, $HP -{SAS} \vdash ERM \Leftrightarrow
%SAS$.

\begin{method} \label{superposition} {\rm As we noted in Methodology~\ref{axchoice}
 rigid motions are defined to
clarify the concept of superposition: if a rigid motion takes one figure to
another, then they are congruent. This makes Euclid's argument rigorous.
\cite[\S 17]{Hartshornegeom} shows `enough  rigid motions' (ERM) in any
Hilbert plane   with SAS and conversely that from the axioms for a Hilbert
plane without SAS, ERM implies SAS. This is essentially Euclid's proof of
Proposition I.4. Thus the problem of superposition can be solved by adding
any one of SAS, ERM, SSS to Hilbert planes without SAS.

  The most immediate formalization of rigid motions is to
add second order quantifiers over arbitrary permutations of the set of
points. But one can add a new sort $\bf M$ for motions and a ternary relation
$\bf R$ on $\bP\times \bP \times \bf M$ that  for each $f$ in $\bf M$ the
pairs $\langle a,b\rangle$ such that $\bf R(a,b,f)$ is the graph of a rigid
motion.}
\end{method}

\begin{thrm} \label{rmlist} Every  rigid motion  is a composition of reflections,
translations and rotations.
\end{thrm}

\begin{proof} A  rigid motion $\phi$ falls into one of four disjoint classes according to the number
of points they fix.
\begin{enumerate}
\item $\phi$ fixes all points; $\phi = \psi^2$ where $\psi$ is a
    reflection.



\item $\phi$ fixes at least two points $A,B$ but not all. In that case
    $\phi$ fixes the line $\ell$ through $AB$ setwise. So under $\phi$ each
    $X$ on $\ell$ remains the same distance from $A$ and $B$; thus $\ell$
    is pointwise fixed.

Suppose $C\not \in \ell$ and $\phi(C) = C''$  with $C'' \neq C$ is on the
    same side of $\ell$ as $C$. As $\phi$ takes the segment $AC$ to $AC''$.
    But one is congruent to a proper subset of the other. So $C\not \in
    \ell$
implies $\phi(C) = C'$ is on the opposite side of $\ell$ from C. Then for
    any $X \in \ell$,   $XC \cong  \phi(X)C'$ and $\phi(X) \in \ell$. In
    particular $AC \cong  A\phi(C)$ and $BC \cong BC'$

    Let $\ell'$ be the line extending $CC'$.  It is distinct from $\ell$,
    so intersects $\ell$ only in one point $D$. But since $\phi$ fixes all
    lines setwise $\phi(D)$ is on $\ell \cap \ell'$, i.e, $\phi(D) =D$. So
    $DA\cong DB$ and $DC \cong DC'$. Thus $\triangle DBC \cong \triangle
    DBC'$ and $\triangle DAC \cong \triangle DAC'$. So $\angle CDB$ is a
    right angle and $\ell \perp \ell'$.  Now we can see that $\phi$ is a
    reflection in $\ell$.




    Let $\ell''$ denote the image of $\ell$ under $\phi$.

  %  \sidebar{jb 8/9   \color{red} Do I need more detail?}

    %Claim either $\phi$ reflects over $\ell$ or in $\ell'$.

\item $\phi$ fixes a single point $A$. Then since $\phi$ preserves lines,
    it must be a rotation around $A$ (not equal to a full turn).

    \item $\phi$ fixes no point. Since $\phi$ sends lines to lines and no
        points are fixed; if for any $\ell$, $\ell \parallel\phi(\ell)$;
        $\phi$ is a translation, if not it is   a glide reflection \cite[p
        82]{ClimKatok}.
        \end{enumerate}
        \end{proof}

        %\sidebar{We need to show/claim translations act transitively on
%        line and quote that fact in the proof of Theorem~\ref{formbirk}.}


%{\color {purple}\sidebar{Andreas 8/28: I put the below comments back in. It's still not clear to me. Maybe on a zoom talk}}
%
%{\color {purple}\sidebar{Andreas 8/26: Several thoughts on this. 1) You exclude the identity
% rigid motion, but then list 1. fixes all points, which is the identity. 2) to point 4.:
%  I think there are many composite rigid motions besides the translation that fix no poin.
%  a) Translate, then rotate about a random point; b) glide reflection; etc.. The transformed line can still intersect the original one,
% but point A' does not end up on point A, but rather on a different point B on the original
% line. That happens for example in rotations of lines not going through the point of rotation.
%\color{red} jb 8/28: I had added glide rotation.  Your example has only one
%fixed point.
%
% }}

%{\color {green}\sidebar{Andreas 8/22: the last one is a translation. Can we put that in?}}

%\sidebar{\color{red}jb: 8/17:  Can we say anything sensible about proving
%this `fact'?}

%{\color {purple}\sidebar{Andreas 8/28: The following remark seems repetitive
% and could be integrated where we talk about superpostion previously.
%\color{red}jb 8/28. I think this is the only serious discussion of
%superposition.
% }}




\begin{peda}\label{vhtrans} [SLO1: Van Hiele level of Transformational geometry] {\rm Taking into account the necessity for a deep understanding of the
notion of abstract function\footnote{See \cite{Harelcc} for an argument
against the use of transformation-based systems in high school; the
unfamilarity of sophomores with functions is a key point.}, one might posit a
further `Van Hiele' level (thought not geometric): Ability to work with
abstract functions. This may not be an issue for college students but
additional work on functions might be helpful (and appear in the supplement).

The HS teacher testifies against this, `At the HS level we successfully work
with transformations without using functions. Working in the coordinate
system, given two possibly congruent shapes, visually draw a series of
transformations of that shape to find out if the two coincide after the
transformations.'}

\end{peda}
The method of proving the following important exercise is embedded in the
proof of Theorem~\ref{sas}.

\begin{exercise}[Move Angle]\label{moveangle} Let $ABC$ be an angle.  For any segment $DE$, choose a
point $F$ so that $\angle ABC \cong \angle DEF$.
\end{exercise}






\begin{const}[Constructing perpendiculars]\label{cp1} {\bf CCSS   G-C0-12}
Given a line $AD$ there is a line perpendicular to the line through $AD$ at
$D$.
\end{const}

Proof.  Extend $AD$ and let $B$ be the intersection of that line with the
circle of radius $AD$ centered at $D$. Now construct an equilateral triangle
with base $AB$  by using  Axiom~\ref{axI-III} twice to construct the vertex
$C$.  Draw $CD$. SSS implies $\triangle ACD \cong \triangle BCD$; so $\angle
CDA \cong \angle CDB$ and therefore $CD \perp AB$. $\qed_{\ref{cp1}}$

\begin{extend}[Independence of Congruence Axioms] {\rm In the proof we constructed an
equilateral triangle using only the first three postulates. We seem to need
SSS to finish. \cite[p 39]{Hilbertgeom} shows by varying the distance formula
in the real plane, that the congruence axioms are independent from first two
groups.}
\end{extend}





\begin{definition}[ Straight Angle]
An angle $\angle ABC$ is called a {\em straight} angle if $A,B, C$ lie on a
straight line and $B$ is between $A$ and $C$.
\end{definition}

Since Euclid does not introduce a measure for angles, he has names for the
most important, straight and right, and a rough indications of size such as
acute and obtuse.


%{\color {green}\sidebar{Andreas 8/14: Why is there never talk of a zero angle
% ($\angle BAC$) if $A,B, C$ lie on a straight line and $B$ is between $A$
%and $C$? \color{red} jb 8/21:  I have put this in text. Because all
%Euclidean angles are strictly between 0 and 180. More important because he
%doesn't measure angles - he has adjectives like straight and right and
%acute, obtuse but not measure.
% \color{green} AM 8/22: I couldn't find a better word than zero. How about a collapsed angle? Not important, just my own quirk.}}


Note a perpendicular creates two right angles on each side of a line.
Constructing a perpendicular at the vertex of a straight angle and applying
Euclid's fourth postulate yields:

\begin{thrm}\label{stangle} {\bf CCSS   G-C0-9}
 All straight angles are equal (congruent).
\end{thrm}

Proof. Let $\angle ABC$ and $\angle A'B'C'$ be straight angles. Construct
lines $BD$ and $B'D'$ perpendicular to $AC$ and $A'C'$, respectively.  Now
$\angle ABD + \angle DBC = \angle ABC$ and $\angle A'B'D' + \angle D'B'C' =
\angle A'BC'$. By Axiom~\ref{congax}, $\angle ABD =\angle A'B'D'$ and $\angle
DBC = \angle D'B'C'$. %By Common Notion 2, $\angle ABC=\angle A'B'C'$.
$\qed_{\ref{stangle}}$

%{\color {green}\sidebar{Andreas 8/14: After we make the perpendiculars,
% could we simply say that each angle is two right angles, and since right
% angles are congruent, so are the straight angles?} }


Theorem~\ref{stangle} is statement about the uniformity of the plane. In
terms of transformations, it says any point and a line through it can be
moved by a rigid motion to any other point and any line through it.



\begin{definition}\label{vertang}   If two distinct lines intersect,  non-adjacent (Definition~\ref{angledef}) angles that have only the vertex in common are called vertical angles. \end{definition}

%{\color {green}\sidebar{Andreas 8/14: Problem with definition: according to the
%definition the two straight angles with vertices at the intersection are also vertical angles. Alternate definiton:
% If two lines cross, the angles that have only the vertex in common are called vertical angles.}}

%{\color {green}\sidebar{Andreas 8/22: I still feel the definition includes
%the two straight angles as being vertical angles, which is not true.
%Solution: ...have only the vertex and no interior points in common... (for
%all practical purposes probably not important) \color{red} jb 8/23 see my
%new try}}

%{\color {purple}\sidebar{Andreas 8/25: I don't think we ever defined 'adjacent angles'}}



\begin{exercise}  [ CCSS   G-C0-9]
Deduce from Theorem~\ref{stangle} that vertical angles are equal.
\end{exercise}

%{\color {green}\sidebar{Andreas 8/14: .}}


\begin{definition}[Isosceles]
A triangle is {\em isosceles} if at least two sides have the same length. The
angles opposite the equal sides are called the {\em base angles}. (Note some
textbooks require exactly two sides have the same length).
\end{definition}



\begin{activity}\label{gealgconst}[SLO8, 10: G-CO 11,12] Make two Geogebra  constructions using  transformations so that
  a) one takes always yields an isosceles triangle but it may not be equilateral and b) the other also yields
  an equilateral triangle.

\end{activity}

\begin{activity}{\bf G-CO 10}  Activity: Prove the isosceles triangle and exterior
angle theorems. Compare `paragraph' and `two column' proof.
\end{activity}

%{\color {green}\sidebar{Andreas 8/14: Activity: Prove the isosceles triangle theorem and the exterior angle theorem...}}


\begin{thrm}\label{isosbase} {\bf CCSS    G-C0-10} The base angles of an isosceles triangle are equal
(congruent).
\end{thrm}
 Proof.  Let $ABC$ be an isosceles triangle with $AC \cong BC$. We will
 prove $\angle CAB \cong \angle CBA$.  The trick is to prove $\triangle ABC  \cong
 \triangle BAC$.  ($\triangle BAC$ is obtained from $\triangle ABC$ by flipping the triangle over its
 altitude.)  We have two ways to prove the congruence.  We know $BC \cong
 AC$ and $AC \cong BC$ .  We can  also note $AB \cong BA$ and use SSS or
 $\angle ACB \cong \angle BCA$ and use SAS.  In any case, since the
 triangles are congruent $\angle CAB \cong \angle CBA$.
$\qed_{\ref{isosbase}}$

%{\color {green}\sidebar{Andreas 8/14: ...We know $BC \cong
%		AC$ and $AC \cong BC$...}\color{red} jb 8/21   I now see where your proof differs from mine and I think mine is correct.
%D is chosen from circles centered and A' and B' so it is on the primed
%picture.

%You may be thinking of a further subtlety. Depending on which side was
%longer D might be on  tjhe C' side of A'B'  and one side or the other of
%C'B'.  My implicit claim was that the argument was identical in each case.
%But it might be worth making a point about cases.

%It might also be worth having a picture -- but with two side by side to
%save space.}


\begin{activity} Prove the angles of an equilateral triangle are
equal. (Note that there are two proofs, using either SSS or SAS, and they are
distinguished by which correspondences are made in defining the congruence.
Explain this by considering the theorem in terms of rotational or reflective
symmetry.)
\end{activity}



We include the proof of the following result to show a typical use of {\em
proof by contradiction}.

\begin{theorem}\label{asa} [ASA]
{\bf CCSS   G-C0-8, G-C0-10} If two triangles have two angles and the
included side congruent, then  the triangles are congruent.
\end{theorem}

Proof. Suppose $ABC$ and $A'B'C'$ satisfy $\angle ABC = \angle A'B'C'$,
$\angle ACB = \angle A'C'B'$ and $BC = B'C'$.  We will show the triangles are
congruent.


\begin{center}
\includegraphics[width=4in]{asa2.jpg}
\end{center}



Choose $D$ on $A'B'$ so that $AB \cong DB'$ (We'll assume $D$ is between $A'$
and $B'$ for contradiction. If $A'$ is between $B'$ and $D$, there is a
similar proof.)  Now, $AB \cong DB'$, $BC \cong B'C'$ and  $\angle ABC \cong
\angle A'B'C'$ so by SAS, $\triangle ABC \cong \triangle DB'C'$. Since the
angles correspond, $\angle DC'B' \cong \angle ACB$ and so by Common Notion 1,
$\angle DC'B' \cong \angle A'C'B'$. But this is absurd since $\angle DC'B'$
is a proper subangle of $\angle A'C'B'$. $\qed_{\ref{asa}}$
%{\color {green}\sidebar{Andreas 8/14: I think the proof needs fixing as follows:
		
%Choose $D$ on $A'B'$ so that $AB \cong B'D$ (We'll assume $D$ is between
%$A'$ and $B'$ for contradiction. If $A'$ is between $B'$ and $D$, there is
%a similar proof.)  Now, $AB \cong B'D$, $BC = B'C'$ and  $\angle ABC =
%\angle DB'C'$ so by SAS, $\triangle ABC \cong \triangle DB'C'$.  Since
%the angles correspond, $\angle DC'B' \cong \angle ACB$ and so by Common
%Notion 1, $\angle DC'B' \cong \angle A'C'B'$. But this is absurd since
%$\angle DC'B'$ is a proper subangle of $\angle A'C'B'$.}

%\color{red} I think the only mistake was the typo $\triangle ABC \cong
%\triangle AB'C'$ for $\triangle ABC \cong \triangle DB'C'$. fixed that

%Again, this is something it would be easier if you just pointed to the
%mistake and changed to two = to $\cong$}



\bigskip

\begin{thrm}[Constructing Perpendicular Bisectors]\label{cp2} {\bf CCSS    G-C0-12}
For any line segment $AB$ there is a line $PM$ perpendicular to $AB$ such
that $M$ is the midpoint of $AB$.
\end{thrm}

% \begin{center}
%    \includegraphics{perpendicularbisectorc.jpg}
%    \end{center}
%    \end{document}

\begin{center}
\includegraphics[width=3in]{perpendicularBisector2.jpg}
\end{center}

%
%{\color {purple}\sidebar{Andreas 8/23: Simpler version: For any line
%segment $AB$ there is a line $PM$ perpendicular to $AB$ such that $M$ is
%the midpoint of $AB$. }}




Proof.  Set a compass at any length at least that of $AB$ and draw two equal
circles centered at $A$ and $B$ respectively.  Let the two circles
intersect at $P$ and $Q$ on opposite sides of $AB$ and let $M$ be the
intersection of $AB$ and $PQ$.

%{\color {green}\sidebar{Andreas 8/14: ...at least that of $AB$... =>
%...more than $AB/2$...\color{red} jb 8/18: That assume we already know how
%to bisect the line, which is the second half of the theorem.}}
%
%{\color {green}\sidebar{Andreas 8/14: I don't like "above" and "below", and it's not necessary.
% Can we simply say Let the two circles intersect at P and Q (on opposite sides of $AB$)?}}


To show $PQ$ perpendicular to $AB$, note first that $\triangle APQ\cong
\triangle BP Q$ by SSS.  So  $\angle APM \cong \angle BPM$. Then by SAS,
$\triangle APM \cong \triangle BPM$.  Thus $\angle AMP \cong \angle BMP$.
And therefore these are each right angles by Definition~\ref{ra}. But
$ \triangle APM \cong \triangle BPM$ also implies $AM \cong BM$ so $M$ bisects
$AB$. $\qed_{\ref{cp2}}$


\begin{remark}  Note we could be more prescriptive and just as
correct by requiring in the proof of Theorem~\ref{cp2} that the circle have
radius $AB$.  But this is an unnecessary additional requirement.
% just makes it harder to construct
%perpendicular bisectors: we don't need to be precise about the
%radius.
\end{remark}
%
\begin{definition} If $D$ is in the interior of angle $\angle ACB$, line $CD$ bisects the angle $\angle ACB$ if
$\angle ACD \cong \angle BCD$.
\end{definition}




\begin{thrm}\label{exang}[Exterior Angle Theorem, Euclid I.16]
An exterior angle of a triangle is greater than either of the interior and
opposite angles
\end{thrm}

Some modern texts write  remote interior angles for   interior opposite.



\begin{center}
\includegraphics{Exterior Angle1.jpg}
\end{center}
 Proof.

Here is Euclid's proof.
\url{http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI16.html}
%There is an even better picture and the proof is very nice.
But there is a subtle dependence on betweenness.  See the treatment in
\cite{Hartshornegeom}  on page 36.



%\medskip


\subsection{The Parallel Postulate}

Of course, the change in viewpoint of what axioms mean
(Methodology~\ref{axsys})  stems from the proof of the independence of the
parallel postulate. We do not rehearse here the well-known history but do
discuss a subtle shift in meaning of the phrase `the parallel postulate'.

\begin{definition} Two lines are parallel if they do not intersect.

\end{definition}

%\sidebar    {jb: 3/18:should make our own picture here and label
%transversal}


%\begin{notation}
%[Alternate Interior Angles]\label{altint}
%
%When a line crosses two others, it is called a transversal.


 %If a transversal crosses to lines the angles
%between the lines and the transversal that are on opposite side of the
%transversal are called {\em alternate interior angle}.

  % see the following diagram.
%%\begin{center}
%%\includegraphics[width=3in]{alternate-interior-angles.jpg}
%%\end{center}
%%\end{definition}
%
%%
%The are spelled
%out in the diagram below.
%
%\begin{center}
%\includegraphics[width=3in]{Geometry_transversal_angles1.jpg}
%\end{center}
%\end{notation}


The difference between several statements which are close to the parallel
postulate provides interesting historical and pedagogical background. The
most succinct statement is: For a line $\ell$ and point $A$ not on $\ell$,
there is at most one line parallel to $\ell$ through $A$. Observe that Euclid
proved the existence of parallel lines (Remark~\ref{parex}). So spherical
geometry, which was studied by the Greeks, could not have been seen as
example to show the independence. Playfair and Hilbert rephrased the
postulate as the existence of unique parallel lines which was confused even
by prominent mathematicians \cite{Hentai}.

%{\color {green}\sidebar{Andreas 8/14: Where does Euclid prove the existence of parallel lines?}}


The definitions of corresponding, interior, and exterior angles can be found
in any geometry text.

\begin{thrm}\label{I.27}
[Euclid I.27] If two lines are crossed by a third and  alternate interior
angles are equal, the lines are parallel.
\end{thrm}

\begin{center}
\includegraphics[width=3in]{Theorem5-5-2.jpg}
\end{center}
%%\end{definition}

%{\color {green}\sidebar{Andreas 8/14: Should we be pointing out here that this is the postulate proving the existence of parallel lines?}}


Proof. Assume the lines are not parallel and intersect in point $B$. The
hypothesis says the exterior angle $EFG$ to triangle $BFE$ is equal to the
interior angle $FEB$. That contradicts the exterior angle
theorem~\ref{exang}. So our assumption is wrong.
%\url{http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI27.html}





%{\color {green}\sidebar{Andreas 8/14: Do we need the picture from clarku.edu so %the proof can make sense?

%\color{red} jb 8/17: Yes, can you copy it?}}

%{\color {purple}\sidebar{Andreas 8/23: file Theorem5-2-2.jpg}}

\begin{remark} [Parallels Exist]\label{parex} Since the hypothesis of
Theorem~\ref{I.27} is easily constructed, Euclid has proved the existence of
parallel lines.
\end{remark}





%{\color{blue} How much logic should we go into?  at least a reference to
%truth tables for contrapositive.}


%{\color {green}\sidebar{Andreas 8/14: Yes, a truth table inserted here would be great as a proof, other than that I wouldn't go further into details.}}


\begin{axiom}\label{HE5}{Heath's statement of Euclid's 5th postulate:}

 If a straight line crosses two straight lines in such a way that the
interior angles of the same side are less than two right angles, then, if the
two straight lines are extended, they will meet on the side on which the
interior angles are less than two right angles.
\end{axiom}

\begin{center}
\includegraphics[width=3in]{euc5jpg.jpg}
\end{center}


\begin{thrm}\label{parun} Axiom~\ref{HE5} implies there is  most one parallel to $\ell$ through
$P$.
\end{thrm}

Proof. Suppose two distinct lines $\ell_1, \ell_2$ through $P$ are parallel
to $\ell$. Fix a transversal $m$ that intersects $\ell$ with $P$ on $m$.
Since they are distinct the sum of the interior angles for the two lines must
be different and so for one of $\ell_1,\ell_2$, say $\ell_1$, and for one
side of $m$, the sum of the interior angles must be less than a straight
angle. Then by Axiom~\ref{HE5}, $\ell$ is not parallel to $\ell_1$, as
required. \qed{parun}

This establishes the distinguishing feature of HP5. For any $\ell$ and $P$,
there is a unique line parallel to $\ell$ through $P$. In Theorem 5.5.9 of
the supplement, we prove that in HP5 the sum of the angles of a triangle is
180 degrees (a straight angle).


%\subsection{Degrees in a triangle and classifying quadrilaterals}\label{degclass}

A key equivalent to the parallel postulate is that the measures of the angles
in a triangle sum to $90^o$. In fact, the simplest definition of a degree is
$\frac{1}{90}$ of a right angle.  Non-Euclidean geometries can be classified
by whether that sum is more (semi-elliptic) or less
(semi-hyperbolic\footnote{Elliptic is used when any two lines intersect and
Hartshorne reserves hyperbolic for semi-hyperbolic satisfying the limiting
parallels axiom.}) than a straight angle  \cite[p 311]{Hartshornegeom}.

%{\color{blue}8/2/23: 9pm Take something from Hartshorne page 310/311. ?????
%remember HP doesn't have 5th.}
%
%We  now discuss   Euclid's treatment of the sum of the angles of a triangle,
%using degree notation,
 %we point to the situation in non-Euclidean geometries
%in Section~\ref{noneuc}


\begin{thrm}\label{sumdeg} [HP5] {\bf CCSS    G-C0-10}
The sum of the angles of a triangle is $180^o$.
\end{thrm}

Proof. That is, we must show the sum of the angles of a triangle is a
straight angle.

\begin{center}
\includegraphics[width=3in]{tridegree6.jpg}
%{alternate-interior-angles.jpg}
\end{center}
Draw $EC$ so that $\angle BCE \cong \angle DBC$. (Exercise~\ref{moveangle})
 Then $EC \parallel AD$. (Theorem~\ref{I.27})
So $\angle BAC \cong \angle ACE$ (Axiom~\ref{E5}  )
 So $\angle BAC + \angle ACB = \angle DBC$
 But $\angle ABC + \angle DBC$ is a straight angle.
 So $\angle ABC + \angle BAC + \angle ACB$ is a straight angle.
$\qed_{\ref{sumdeg}}$


Now consider the converse of Theorem~\ref{I.27}.


\begin{prop}\label{E5}
 If two  parallel lines     are  cut by a transversal then each pair of
alternate interior angles contains two equal angles.
\end{prop}

 The rest of this subsection
illustrates the use of contraposition with an intriguing result: in HP,
Proposition~\ref{E5} is equivalent to Axiom~\ref{HE5}. Thus the crucial
theorems showing the independence of the parallel postulate, incidentally
give an example of a sentence and its converse that are not equivalent. We
begin with by observing the relation between alternate and adjacient interior
angles that depends only on the fact that all straight angles are equal.

\begin{lemma}\label{anglesaway} For any pair of lines and a transversal, the following are equivalent:

\begin{enumerate} \item One pair of alternate interior angles are equal iff
the other is.

\item One pair of adjacent interior angles sum to a straight angle  iff the
    other does

\item There is a pair of equal alternate interior angles

\item There is a pair of adjacent interior angles  that sum to a straight
    angle

\end{enumerate}
\end{lemma}

The next argument uses the logical notion of contraposition twice.

\begin{definition}[Contraposition] \label{contrap}

Let $A$ and $B$ be mathematical statements. The {\em contrapositive} of '$A$
implies $B$' is '$\neg B$ implies $\neg A$'
\end{definition}

\begin{fact}[Logical fact]
Any implication is {\em equivalent} to its contrapositive.
\end{fact}

%{\color{red} jb 8/21/23
\begin{peda} \label{tt} {\rm SLO1 This is easily checked by truth tables. High school geometry texts
sometimes ask students to memorize the names of the four variants on a
conditional (if-then) statement. One is the inverse that I know only from
such books. This is counter-productive; only the conditional, converse and
contrapositive are used frequently.
% More important is to stress the importance of these
%notions by example, hence Exercise 3.8.6.
 A frequent difficulty is to
understand why `A implies B' is declared true when both A  and B are false.
The first author found it useful in undergraduate logic courses to emphasize
that we are formalizing English.  The ambiguity between inclusive or (either
one or both) and exclusive or (but not both)  or
 is easy to illustrate. Logicians decided use $\vee$ to mean
inclusive or. A similar decision was made for implication $\rightarrow$.  Of
course if the instructor finds explanations that convince students that's
even better.}
\end{peda}


The first direction of the next proof uses the contrapositive of Proposition
\ref{E5}, which is easy to read off. For the other direction we have to
untangle the contrapositive of Axiom~\ref{HE5}.

\begin{theorem} Axiom~\ref{HE5} is equivalent to Proposition \ref{E5}.
\end{theorem}
Proof. Proposition~\ref{E5} implies Axiom~\ref{HE5}: Now suppose
Proposition~\ref{E5} and the hypothesis of Axiom~\ref{HE5}. We have two lines
and the sum of the interior angles on one side of a transversal sum to less
than a straight angle. By Lemma~\ref{anglesaway} neither pair of alternate
interior angles equal. Now, by the contrapositive of Theorem~\ref{1.27}, the
lines are not parallel; we have shown the conclusion of Axiom~\ref{HE5}

 The contrapositive (and so
equivalent) to  Heath's version of Euclid's 5th postulate reads: If the two
lines crossed by a straight line do not meet on one side of that straight
line, then the interior angles on that side are not less than two right
angles.

Axiom~\ref{HE5} implies Proposition~\ref{E5}: Suppose Axiom~\ref{HE5} and two
lines are parallel, satisfying the hypothesis of Proposition~\ref{E5}. By the
contrapositive to Axiom~\ref{HE5}
 each pair of adjacent interior angles sum to at least a straight angle
and so both pairs sum to a straight angle since the sum of all four is two
straight angles. By Lemma~\ref{anglesaway} the alternate interior angles are
equal yielding Proposition~\ref{E5}.




%Using the earlier axioms, we now show  Axiom~\ref{HE5}  is equivalent to
%Proposition~\ref{E5}. Applying the contrapositive to the angles on each side
%of the transversal, the  two   interior angles on each side of the
%transversal  are not less than two right angles. But the sum of the four
%interior angles is two straight angles (considering the top and bottom
%pairs.) So each pair on a given side are supplementary. Now for each pair of
%alternate interior angles, both of the angles are supplemental to the same
%angle; so the alternate interior angles are equal.


\begin{center}
\includegraphics[width=3in]{euc5jpg.jpg}
\end{center}


%{\color {green}\sidebar{Andreas 8/14: We should clarify that this is NOT what Euclid says, but Heath's statement is. Perhaps 3.7.3 and 3.7.7 should be reversed, i.e. first Euclid, then the equivalent version.}}


%\sidebar{Is this a useful exercise? \begin{exercise}  Write the statement
%of Euclid's 5th postulate in first order logic.
%
%Write `there exists a unique parallel' in first order logic
%\end{exercise}
%}
%
%{\color {green}\sidebar{Andreas 8/14: I'm not sure the topic of first order logic needs to be stressed here.}}


  %It will not be covered on the midterm.

%\sidebar{We need a separate discussion about how much we digress into
%logic; that an implication and its contrapositive are equivalent is
%indeed a theorem of logic. But I didn't want to confuse theorems of
%logic with theorems of geometry; hence fact.}






%{\color{red} next para added 8/21:}
%A key equivalent to the parallel
%postulate is that the measures of the angles in a triangle sum to $180^o$.
%In fact, the simplest definition of a degree is $\frac{1}{180}$ of a
%straight angle. Non-Euclidean geometries can be classified by whether that
%sum is more (semi-elliptic) or less than a straight angle
%(semi-hyperbolic\footnote{Elliptic is used for any two lines intersect and
%Hartshorne reserves hyperbolic for semi-hyperbolic satisfying the limiting
%parallels axiom.}) \cite[p 311]{Hartshornegeom}.


% DUP IN SECTION 6
%\begin{definition} \label{defpar} A parallelogram is a quadrilateral such that the
%opposite sides are parallel.
%\end{definition}
%
%\begin{thrm}\label{eqpar}{\bf CCSS G-CO.11} If the opposite sides of a quadrilateral are
%equal, the quadrilateral is a parallelogram. \end{thrm}
%
%Proof. Suppose $ABCD$ is the parallelogram; draw diagonal $AC$.  Then
%$\triangle ABC$ and $\triangle ACD$ are congruent by SSS.  Therefore $\angle
%BAC \cong \angle ACD$. Now since alternate interior angles are equal,
%$AB\parallel DC$.  Similarly (which angles?) $BC \parallel AD$.
%$\qed_{\ref{eqpar}}$
%
%\begin{thrm}[Euclid I.34]\label{oppsideeq}{\bf CCSS G-CO.11}
% In any parallelogram the opposite sides and angles are equal. Moreover each
%  diagonal splits the parallelogram into two congruent triangles.
%\end{thrm}
%
%Proof. Immediate from our results on parallelogram and the congruence
%theorems.
%
%\begin{exercise}\label{exercise565}{\bf CCSS G-CO.11}
%	
%	If one pair of opposite sides of a quadrilateral  are
%equal and parallel, the figure is a parallelogram .
%\end{exercise}

%{\color {green}\sidebar{Andreas 8/14: a pair => one pair}}





\section{ Proof that the division of a line into n equal parts
succeeds}\label{proofsuc} We began this excursion into axiomatic geometry by
trying to prove that for any $n$ we could divide a line into $n$ equal
segments. The construction (Figure~\ref{divdia}) used only Euclid's first 3
axioms. {\em We need to show the segments cut off by the  $C_i$ are actually
equal.} We use the methods of Section~\ref{bk1} to {\em almost} prove the
procedure in Exercise~\ref{linediv} works. We will discover that entirely
different methods are needed for the last step in the proof -- the
side-splitter theorem \ref{sidespl}.



%{\color {green}\sidebar{Andreas 8/14: ...constructed above => constructed at the beginning of the chapter}}




 Looking at the diagram from our guiding problem, since a quadrilateral
   whose opposite sides are equal is a parallelogram (Theorem~\ref{eqpar}), $ABCD$ is a
   parallelogram.  We DO NOT know  that $A_4B_4CD$ is
   a parallelogram.  In order to establish that it is, we need some more
   information about parallelograms.




%{\color {green}\sidebar{Andreas 8/14: Since... =>  since...}}

%{\color {green}\sidebar{Andreas 8/14: changed $A_4B_4BD$ to $A_4B_4CD$}}

%{\color{red} I now understand (sort of ) what you are doing in commenting
%on Lemma getpar (now 6.02).

%The original diagram for that lemm~\ref{getpar} was not labeled in
%agreement with the diagram for the guiding problem Exercise~\ref{linediv}.

%I guess you swapped letters to make it agree with the diagram for the
%guiding   problem   giving something that made no sense for the diagram
%given for lemm~\ref{getpar}

%I suppose that if you relabel that diagram then with your proof we will
% have a better presentation.  The red goes down through both proofs and
% diagrams.


%  {\color{green}\sidebar{Andreas 8/14: The proof below is faulty, mainly
% using D instead of C. To get everything in line with the picture of the
% guiding problem, I'm putting the points X and Y on AD and BC and am
% writing the correct (please check) proof for that scenario.}




%Parallelograms usually arise while studying the classification of
%quadrilateral. We make a couple of pedagogical suggestions about
%classification before presenting the result we need about parallelograms.

\begin{peda}\label{class}{\rm The classification of quadrilaterals is a
 major topic in high school
geometry. It is essential to first clarify the notion of `classify'; it does
not help to say `a square is a rectangle just as a parallelogram is a
quadrilateral' (heard from a high school teacher). The analogy the student
needs is  `dogs and cats are animals'.

Classifications may be `exclusive' or `inclusive'. Euclid requires an
isosceles triangle to have {\em exactly} two equal sides while modern texts
include classifications that are  inclusive; equilateral triangles are
isosceles.}
\end{peda}

\begin{definition} \label{defpar} A parallelogram is a quadrilateral such that the
opposite sides are parallel.
\end{definition}



\begin{thrm}\label{eqpar}{\bf CCSS G-CO.11} If the opposite sides of a quadrilateral are
equal, the quadrilateral is a parallelogram. \end{thrm}

Proof. Suppose $ABCD$ is the parallelogram; draw diagonal $AC$.  Then
$\triangle ABC$ and $\triangle ACD$ are congruent by SSS.  Therefore $\angle
BAC \cong \angle ACD$. Now since alternate interior angles are equal,
$AB\parallel DC$.  Similarly,  $BC \parallel AD$. $\qed_{\ref{eqpar}}$


The argument also shows:
\begin{thrm}[Euclid I.34]\label{oppsideeq}{\bf CCSS G-CO.11}
 In any parallelogram the opposite sides and angles are equal. Moreover, each
  diagonal splits the parallelogram into two congruent triangles.
\end{thrm}



\begin{lemma}\label{ex565}{\bf CCSS G-CO.11}
	If one pair of opposite sides of a quadrilateral $ABCD$, labeled as in
Figure~\ref{divdia},   are equal and parallel, the figure is a parallelogram.
\end{lemma}


Proof. Draw the diagonal $AC$.  By alternate interior angles $\angle BCA
\cong DAC$.  The triangles $ACB$ and $ACD$ are congruent by SAS, using the
hypothesis and that they share a side. So $\angle BAC \cong \angle ACD$. Now
viewing $AC$ as a transversal of $BA$ and $CD$, they are parallel and we
finish.
%\sidebar{\color{red} Andreas: Propositions 6.0.7 and 6.0.8 have the similar
%statement (and same label).
%
%One has a long proof and the other short. However 6.0.8 doesn't make sense as
%connected to Figure 1. However, it seems to me that the proof of 6.0.8 as
%written is a shorter proof of 6.0.7.  We can therefore delete the long proof
%and the statement of 6.0.8. }

\begin{lemma} \label{getpar} If $ABCD$ is a parallelogram, labeled
as in Figure~\ref{divdia}, and
 two points $X,Y$ are chosen on the
opposite sides $BC$ and $AD$ so that $XC \cong YD$ then $XCDY$ is a
parallelogram. \end{lemma}

Proof. Apply Lemma~\ref{ex565} taking $X$ for $A$ and $Y$ for $C$.



%END  CHECK BEFORE MAILING
%%\bigskip
%%
%%Proof. Draw the diagonals $XC$ and $YD$.  Since $AD \parallel BC$, by
%%alternate interior angles $\angle XCY \cong\angle DXC$ and $\angle DYC \cong
%%\angle XDY$. Label the intersection of the diagonals as $E$. Since $XD \cong
%%YC$ by ASA, $\triangle YEC \cong \triangle DEX$.  So by corresponding sides,
%%$DE \cong YE$ and $XE \cong CE$.  $\angle XEY \cong \angle CED $ since they
%%are vertical angles. By SAS, $\triangle XEY \cong \triangle CED $.  By
%%corresponding sides again $XY \cong CD$. So $XYCD$ is a parallelogram and $XY
%%\parallel CD$. $\qed_{\ref{getpar}}$
%
%	Proof. {\rm $XC$ and $YD$ lie on the parallels $AD$ and $BC$ and are
%therefore parallel. By construction, they are equal. Hence, by Exercise
%\ref{exercise565}, $XCBY$ is a parallelogram and $XY \parallel BC$.}
%	 $\qed_{\ref{getpar}}$
%
%%\sidebar{jb 8/8/23: 3:30 PM At this point I think. Exercise~\ref{Varthm} is
%%{\em motivation}, not a step in the proof that the construction works.}
%%%This should contain several proofs of the division; deduce from
%%%side-splitter but show not necessary.
%%
%%\begin{exercise}\label{Varthm} {\rm Let ABCD be an arbitrary quadrilateral?  Let DEFG be the midpoints of
%%the  sides AB, BC, CD and DA, respectively. What can you say about the
%%quadrilateral DEFG? ([Varignon's Theorem\footnote{See
%%\url{http://en.wikipedia.org/wiki/Varignon's_theorem}.}}
%%    %Note generalizations to 3 dimensions.}] )
%%\end{exercise}
%%
%%%{\color {green}\sidebar{Andreas 8/14: clarify: Let D, E, F and G be the
%%midpoints of}}
%
%
%%Here are some possibilities that came up in class. See side-splitter
%% Exloration (side-splitter motivationjb2.docx):
%%\begin{enumerate}
%%\item The area of the inner quad is 1/2 the area of the outer.
%%\item The inner quadrilateral is a parallelogram.
%%\item Under further conditions on outer quad (rectangle?, square?), the
%%    inner quadrilateral is a rectangle.
%%    \end{enumerate}
%
%
%
%
%%We began this excursion into axiomatic geometry by trying to prove that we
%%could divide a line into $n$ equal segments.  We did the construction  from
%%Exercise~\ref{linediv} in class.  The diagram is on the first page of the
%%notes. This construction used only Euclid's John T Baldwin is inviting you to a scheduled Zoom meeting.
%
%
%
% {\em We need to
%%show the segments cut off by the  $C_i$ are actually equal.}
%
%%\sidebar{jb 8/8/23: 3:30 To finish the proof we need very strong result:
%%the side-splitter theorem. The proof of it requires a central new result.
%%The entire next section is devoted to proving that result. Hilbert and
%%Euclid prove it entirely different ways. The next section is devoted to
%%giving a geometric proof.}
%
%%     In the side-splitter motivation activity we gave several arguments for
%%   this. Here is one which is easy but uses a powerful tool. The next two
%%   sections will prove:
%%
%%\begin{thrm}{Euclid VI.2}\label{sidespl} {\bf CCSS   G-SRT.4}
%%If a line is drawn parallel to the base of triangle the corresponding sides
%%of the two resulting triangles are proportional and conversely.
%%\end{thrm}
%\sidebar{the proof below is a purported shorter proof of the first statement
%of the lemma.  The statement and proof did not use your convention that a
%parallelogram should be named consecutively and so didn't make sense in
%connection with the diagram for the guiding problem.
%
%The second statement should be deleted.  The question is whether the proof (I
%have permuted the letters to correspond to the diagram) is indeed a correct
%shorter argument for Lemma 6.0.6, as I think.}
%
%   \begin{lemma}\label{getpar}  If $ABCD$ is a parallelogram and two points $X,Y$
%   are chosen on the opposite sides $AB$ and $CD$ so that $XB \cong YC$
%   then $XBCY$ is a parallelogram.
%   \end{lemma}
%}
%
%%   {\color {purple}\sidebar{Andreas 8/23: Simpler proof: $XB$ and $YC$ are
%%   parallel and congruent, so by Theorem 5.6.4 $XYBC$ is a parallelogram.
%%    \color{red} We are not assuming they are parallel. We are proving it.}}
%
%
%%   {\color {purple}\sidebar{Andreas 8/23: Today I'm pretty sure that the bulk of the confusion
%%    about 6.0.2 came from the faulty diagram where C and D were switched (and as a c
%%    onsequence some other things in the proof, which I hope to have now
%%     corrected). I'm sending updated file Lemma6-0-2.jpg. \color{blue} jb
%%     8/24: Don't we want BCDA diagram to agree with the one in the guiding
%%     problem?}}
%
%  % \begin{center}
%%    \includegraphics[width=3in]{newpar.jpg}
%%    \end{center}
%
%%{\color {purple}\sidebar{Andreas 8/24: Exercise \ref{exercise565}}}
%	Proof. {\rm $XC$ and $YD$ lie on the parallels $AD$ and $BC$ and are
%therefore parallel. By construction, they are equal. Hence, by Exercise
%\ref{exercise565}, $XCBY$ is a parallelogram and $XY \parallel BC$.}
%	 $\qed_{\ref{getpar}}$
%
%%    Proof. Draw the diagonals $XC$ and $YB$.  Since $AB \parallel CD$, by
%%    alternate interior angles $XBY \cong BYC$ and $BXC \cong XCY$. Label
%%    the intersection of the diagonals as $E$.
%
%% \begin{center}
%%    \includegraphics[width=3in]{newpardiag.jpg}
%%    \end{center}
%
%%    \begin{figure}[ht]
%%	%\begin{minipage}[b]{0.45\linewidth}
%%\begin{minipage}[b]{0.30\linewidth}
%%	\centering
%%	\includegraphics[width=\textwidth]{newpar.jpg}
%%	\caption{Lemma 4.3}
%%	%\label{fig:figure1}
%%	\end{minipage}
%%	\hspace{0.5cm}
%%\begin{minipage}[b]{0.30\linewidth}
%%	\centering
%%	\includegraphics[width=\textwidth]{newpardiag.jpg}
%%	\caption{Draw the diagonals}
%%	%\label{fig:figure2}
%%	\end{minipage}
%%	\end{figure}
%
%
%
%%    Since $XB \cong YC$ by ASA, $\triangle YEC \cong \triangle BEX$.  So by
%%   corresponding sides, $BE \cong EY$ and $XE \cong CE$.  $\angle XEY \cong
%%   \angle BEC $ since they are vertical angles. By SAS $\triangle XEY \cong
%%   \triangle CEB $.  By corresponding sides $XY \cong BC$. So $XYBC$ is a
%%   parallelogram and $XY \parallel BC$.
%% $\qed_{\ref{getpar}}$
%
%Assuming the side-splitter theorem, we now show:
%
%\begin{lemma}\label{cutn} The segments $C_iC_{i+1}$ constructed in Exercise~\ref{linediv} all have
%   the same length.
%   \end{lemma}



\begin{motiv}\label{sspreview} [SLO1, SLO2] {\rm We are giving the proof of
our guiding problem in reverse to show how the
abstract side-splitter theorem  is needed to solve  a concrete problem. The
proof of it requires a new central idea - proportionality. The next two
sections are devoted to providing a firm  foundation for proportion.  By
using Hilbert's proof rather than Euclid's we avoid reliance on the
Archimedean axiom.}
\end{motiv}

To finish the proof we need a very strong result:

\begin{thrm}{Euclid VI.2: Side-splitter}\label{sidespl} {\bf CCSS   G-SRT.4}
If a line is drawn parallel to the base of a triangle the corresponding sides
of the two resulting triangles are proportional and conversely.
\end{thrm}



{\bf  Proof of the guiding problem assuming sidesplitter:} By repeating the
argument for Lemma~\ref{getpar}, we show all the lines $A_iC_iB_i$ are
parallel.  In particular the line $C_4B_4$ %cuts the triangle $B_3C_3C$  and
is parallel to the base $B_3C_3$. Applying Theorem~\ref{sidespl},  we
complete our proof as follows:

$$\frac{CB_4}{CB_3}
= \frac{CC_4}{CC_3}.$$ But we constructed $B_4C \cong B_3B_4$,  so  $C_4C
\cong C_3C_4$, which is what we are trying to prove.  Now move along $AC$,
successively applying this argument to each triangle. $\qed_{\ref{linediv
}}$


%\begin{motiv}\label{sspreview} SLO1,SLO2 We are giving the proof in reverse to show how the
%abstract side-splitter theorem  is needed to solve  a concrete problem. The
%proof of it requires a new central idea - proportionality. The next two
%notions are devoted to providing a firm  foundation for proportion.  By using
%Hilbert's proof rather than Euclid's we avoid reliance on the Archimedean
%axiom.
%\end{motiv}

To finish the proof we need a very strong result:

\begin{thrm}{Euclid VI.2: Side-splitter}\label{sidespl} {\bf CCSS   G-SRT.4}
If a line is drawn parallel to the base of a triangle the corresponding sides
of the two resulting triangles are proportional and conversely.
\end{thrm}



{\bf  Proof of the guiding problem assuming sidesplitter:} By repeating the
argument for Lemma~\ref{getpar}, we show all the lines $A_iC_iB_i$ are
parallel.  In particular the line $C_4B_4$ cuts the triangle $B_3C_3C$  and
is parallel to the base $B_3C_3$. Applying Theorem~\ref{sidespl},  we
complete our proof as follows:

$$\frac{CB_4}{CB_3}
= \frac{CC_4}{CC_3}.$$ But we constructed $B_4C \cong B_3B_4$,  so  $C_4C
\cong C_3C_4$, which is what we are trying to prove.  Now move along $AC$,
successively applying this argument to each triangle. $\qed_{\ref{linediv}}$









%\sidebar{jb 8/27: do we keep this?} The next exercise is provided as an
%alternative motivation for the side splitter theorem.
%
%\begin{exercise}\label{Varthm} {\rm Let ABCD be an arbitrary quadrilateral?  Let DEFG be the midpoints of
%the  sides AB, BC, CD and DA, respectively. What can you say about the
%quadrilateral DEFG? ([Varignon's Theorem\footnote{See
%\url{http://en.wikipedia.org/wiki/Varignon's_theorem}.}}
%    %Note generalizations to 3 dimensions.}] )
%\end{exercise}
%
%
%
%
%Here are some answers to  Exercise~\ref{Varthm} that came up in class. See
% side-splitter Exloration (side-splitter motivationjb2.docx):
%\begin{enumerate}
%\item The area of the inner quad is 1/2 the area of the outer.
%\item The inner quadrilateral is a parallelogram.
%\item Under further conditions on outer quad (rectangle?, square?), the
%    inner quadrilateral is a rectangle.
%    \end{enumerate}}










   %{\em Now we return to the proof of Lemma~\ref{cutn}: the construction
%   divided the line segment $AB$ into n equal pieces.}
%By repeating the argument for Lemma~\ref{getpar}, we show all the lines
%   $A_iC_iB_i$ are parallel.  In particular the line $C_4B_4$ cuts the
%   triangle $B_3C_3B$  and is parallel to the base $B_3C_3$. By
%   Theorem~\ref{sidespl}, the side-splitter theorem,   $$\frac{BB_4}{BB_3}
%   = \frac{BC_4}{BC_3}.$$
%
%   But we constructed $B_4B \cong B_3B_4$,  so  $B_4B \cong C_3C_4$, which
%   is what we are trying to prove.  Now move along $AB$,
%    successively applying this argument to each triangle.
%$\qed_{\ref{cutn}}$

\section{Finding the underlying field}\label{num}
\numberwithin{thrm}{section} \setcounter{thrm}{0}

We reduced our cutting the line problem to the side-splitter theorem VI.2;
that is, to the fundamental result about the similarity of triangles. Hilbert
defines a (semi)-field of segments (addition and multiplication on the
positive elements of an ordered field). He thus has the modern algebraic
theory of proportion and VI.2 follows easily (Section~\ref{prop}).  Then
(Section~\ref{area}) he defines a measure of area function which recovers
Euclid's theory of area and connects it with numerical measures of area.






\begin{motiv}\label{incom}[SLO8 {\bf Irrationality: the Pythagorean scandal}] {\rm
The geometry course is an excellent place to organize historically and
conceptually the college students understanding of irrational and
transcendental numbers (Section~\ref{ArchDed}). Two or more magnitudes are
{\em commensurable} if they share a common
 measure. Two feet and three feet are commensurable, each being a multiple
of a foot; but the diagonal and side of a square are incommensurable. Thus,
the irrationality of $\sqrt 2$ is usually attributed to 5th century BCE
Pythagoreans.  A solution to comparing irrationals was developed by Eudoxus
in the 4th century BCE and expounded in Euclid Book V on proportion, perhaps
a century later. Crucially, this was a study of `magnitudes' of various
dimensions.
% \footnote{Adopted from \cite{Piercecom}.}.
The notion of ascribing a number to a measure of area was only adopted in
geometry during the 19th century AD and put on a firm footing by Stolz and
Pasch as expounded in \cite{Hilbertgeoma}. A beauty of Hilbert's approach is
that he shows that (a suitable translation) of the (first order) axioms of
Euclidean geometry allow the measure of area in any Euclidean
 plane (Notation~\ref{axnotation}) by interpreting a field into the plane.
% We describe now that development which requires only first order axioms.
In Section~\ref{ArchDed}, we will note how the real numbers provide the most
commonly used example.
 For further background on Greek study of irrational numbers
  see \cite{Smorynskihist}.} \end{motiv}





 The
proof of  the side-splitter theorem (Theorem~\ref{sidespl}.) is difficult
because the meaning of ratio between two incommensurable sides is obscure at
best. To solve this problem, Hilbert  defines {\em geometrically} a
multiplication of line segments. Identify
    the collection of all congruent line segments
    and choose a representative segment $OA$ for this class. There are then
three distinct historical steps. (For SLO7, see \cite{gg} and Heath's notes
to Euclid VI.12
(\url{http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI12.html}.)
In Greek mathematics numbers (i.e. 1, 2, 3 \ldots) and magnitudes (what we
would call length of line segments) were distinct kinds of entities and areas
were still another kind.  Numbers simply count the number of some unit; the
unit varies from situation to situation. For them the notion of a assigning a
number as the length of the diagonal of a unit square is incomprehensible.


 We first introduce an addition and multiplication on line segments and then
 prove the geometric theorems to show that these operations satisfy
the field axioms except for the existence of an additive inverse. % We show in
%the supplement how to remedy this difficulty  by  passing from segments to
%points as in stage 3.





\begin{notation}\label{segeq}  Note that congruence forms an equivalence relation
on line segments. We fix {\em a ray} $\overrightarrow{\ell}$ with end point
$0$. For each equivalence class of segments, we consider the
 unique segment $0A$ on $\overrightarrow{\ell}$ in that class as the representative of that
class. We will often denote the class (i.e. the segment $0A$) by $a$.
 We say a segment (on any line) $CD$ has
length $a$ if $CD \cong 0A$.% Note that we could equally well choose
%the element $A$ as the representative.
\end{notation}

\begin{definition}[Segment Addition]\label{segadddef}
Consider two segment classes $a$ and $b$. Fix representatives of $a$ and $b$
as  $OA$ and $OB$ in this manner: Extend $OB$ to a straight line, and choose
$C$ on $OB$ extended (on the other side of B from A) so that so that $BC
\cong OA$.  $OC$ is the sum of $OA$ and $OB$.

%{\color {green}\sidebar{Andreas 8/14: did you mean on the other side of $B$
%from $O$? It seems more intuitive but both work.} \color{red} actually, I
%was thinking `beyond A'.}


\end{definition}

%\bigskip


{\bf Diagram for adding segments}



 \begin{center}
    \includegraphics[width=2in]{segadd.jpg}
    \end{center}


\begin{activity} Prove that this addition is associative and
commutative.
\end{activity}

Of course there is no additive inverse if our `numbers' are the lengths of
segments which must be positive. We discuss finding an additive inverse after
Definition~\ref{pointadd}.
% We now return to
%our mainline of defining a field structure on segments.
 Following Hartshorne \cite{Hartshornegeom}, here is our official
definition of segment multiplication.

%\begin{exercise} Extend the ray $\ell$ in the other direction from $O$. Show
% the additive inverse of $a$ is $a'$
%provided that $a'0 \cong 0a$ where $a'$ is on $\ell$ but on the
%opposite side of $0$ from $a$. \end{exercise}
%
%\sidebar{Need more on the additive inverse-see transformation
%section.}





\begin{definition}\label{segmultdef}[Multiplication]
  Fix a unit segment class $1$. Consider two segment classes $a$ and $b$.
        To define their product, define a right triangle\footnote{The right
        triangle is just for simplicity; we really just need to make the
        two triangles similar.} with legs of length $1$ and $a$. Denote the
        angle between the hypotenuse and the side of length $1$ by
        $\alpha$.


        Now construct another right triangle with base of length $b$ with
        the angle between the hypotenuse and the side of length $b$
        congruent to $\alpha$. The length of the leg opposite $\alpha$ is $ab$.
\begin{figure}[ht]
 \begin{centering}
    \includegraphics[width=4in]{mult3.jpg}
    \caption{Multiplication}
    \label{figure1two}
    \end{centering}
\end{figure}




\end{definition}


\begin{exercise}\label{scamult}
We now have two ways in which we can think of the product $3a$. On the one
hand, we can think of laying 3 segments of length $a$ end to end. On the
other, we can perform the segment multiplication of a segment of length $3$
(i.e. 3 segments of length $1$ laid end to end) by the segment of length $a$.
Prove these are the same.
\end{exercise}











Before we can prove the field laws hold for these operations, we introduce a
few more geometric facts. The crux of the argument is to prove that the
multiplication is associative and commutative. Hilbert and many successors
give this argument as arising from the Desargues and Pappus theorems which
hold in HP5 (neutral geometry plus the parallel postulate).  Because the
techniques of its proof are more similar to standard high school material, we
rely on the cyclic quadrilateral theorem.


\begin{theorem}\label{ceninsang}[Euclid III.20] {\bf CCSS   G-C.2} In a circle, if a central angle and an inscribed
angle cut off the same arc, the inscribed angle is congruent to half the
central angle.
\end{theorem}


\begin{exercise} Do the activity: Determining a curve  (determinecircle.pdf).
\end{exercise}


%{\color {green}\sidebar{Andreas 8/14: what do you mean by proposition 5.8? Euclid? Check please.}}


\begin{activity} Prove a central angle is twice an inscribed angle
that inscribes the same arc.  How many diagrams (cases) must you consider?
This activity is on the website in both java and geoalgebra.
\end{activity}

We need  (Corollary~\ref{cquad})  of \cite[Proposition 5.8]{Hartshornegeom}
(Corollary~\ref{cquad}), which is a routine (if sufficiently scaffolded) high
school problem.







\begin{cor} \label{cquad} [{\bf CCSS   G-C.3: Cyclic Quadrilateral Theorem}]
Let $ACED$ be a quadrilateral.  The vertices
  of  $ACED$ lie on a circle  (the ordering of the name of the quadrilateral
implies $A$ and $E$ are on the opposite sides of $CD$) if and only if $\angle
EAC \cong \angle CDE$.
\end{cor}
 \begin{center}
    \includegraphics[width=2in]{cycquad2.jpg}
    \end{center}


Proof.   Given the conditions on the angle draw the circle determined by
$ABE$. Observe from Lemma~\ref{ceninsang} that $D$ must lie on it.
Conversely, given the circle, apply Lemma~\ref{ceninsang} to get the equality
of angles. $\qed_{\ref{cquad}}$
%The proof of this theorem and the next are in the supplement.

%\begin{activity} Do activity Segment arithmetic (multpropact.pdf).
%\end{activity}

%Depending on prerequistes at the particular university more or less material
%will have to be added about rings and fields.  We basically use only the
%definition.



\begin{theorem}\label{mult2works}  The multiplication defined in Definition~\ref{segmultdef} satisfies:
\begin{enumerate}
\item For any $a$, $$a \cdot 1 = a$$
\item For any $a$, $b$  $$ab = ba.$$
\item For any $a,b,c$  $$(ab)c = a(bc).$$
\item For any $a$ there is a $b$ with $ab=1$.
\item $a(b+c) = ab +ac$.
\end{enumerate}
\end{theorem}

Proof. We prove item 2 (Figure below), since that requires some work. The
slight variants for associativity and distributivity are in
\cite[19.2]{Hartshornegeom}.

Given $a,b$, first make a right triangle $\triangle ABC$ with legs $1 $ for
$AB$ and $a$ for $BC$.  Let $\alpha$ denote $\angle BAC$. Extend $BC$ to $D$
so that $BD$ has length $b$. Construct $DE$ so that $\angle BDE \cong \angle
BAC$ and $E$ lies on $AB$ extended on the other side of $B$ from $A$.  The
segment $BE$ has length $ab$ by the definition of multiplication.

Since $\angle CAB \cong \angle EDB$ by Corollary~\ref{cquad}, $ACED$ lie on a
circle.  Now apply the other direction of Corollary~\ref{cquad} to conclude
$\angle DEA \cong \angle DCA$ (as they both cut off arc ${AD}$). Now consider
the multiplication beginning with triangle $\triangle DAB$ with one leg of
length $1$ and the other of length $b$. Then since $\angle DAB \cong \angle
BCE$ and the leg adjacent to $\angle BCE$ has length $a$, the length of $BE$
is $ba$. Thus, $ab = ba$.

The key point for proportionality is 4): the ability to find inverses. This
is done by noting that in Figure~\ref{figure1two}, if multiplication by $a$
is given by the angle $\alpha$,
 multiplication by $a^{-1}$ comes from $\beta$, the other acute angle in the
triangle.

     \begin{center}
    \includegraphics[width=3in]{ab=ba.jpg}
   % \caption{Diagram for commutativity}
%    \label{comdia}
    \end{center}

$\qed_{\ref{mult2works} }$


We have a {\em semi-field} because the addition does not form a group because
there are no additive inverses (negative segments). This is important for
Hilbert because he is giving an entirely geometric proof.
%\cite[Proposition 19.3]{Hartshornegeom} gives a more algebraic proof for the
%field.
The above semi-field can be modified to become a field by taking points on a
line rather than a ray, and then have both positive and negative numbers,
therefore getting additive inverses. With this geometrically based field we
give in the next section an algebraic basis for the theory of proportion
which allows us to prove side-splitter.

%Supplemental details:

\begin{definition}[Adding points] \label{pointadd} Recall that a line is a set of points.
Fix a line $\ell$ and a point $0$  on $\ell$. We define an operations $+$ on
$\ell$. Recall that we identify a with the (directed length of) the segment
0a.

 For any points $a,b$ on $\ell$, we define the operation $+$ on $\ell$:

$$a + b = c$$ if $c$ is constructed as follows.

\begin{enumerate}
\item Choose $T$ not on $\ell$ and $m$ parallel to $\ell$ through $T$.
    \item Draw $0T$ and $bT$.
    \item Draw a line parallel to $0T$ through $a$ and let it intersect $m$
        in $F$.
 \item Draw a line parallel to $bT$ through $F$ and let it intersect $\ell$
     in $c$.
     \end{enumerate}

\end{definition}

%{\color {purple}\sidebar{Andreas 8/26: changed BT to bT; in 4. changed $a$ to $F$.
% We could further explain (if you think it's necessary): $\triangle 0Tb \cong \triangle aFc$ we have $0b\cong ac$,
%  so $0a + ac = 0c$ means $a + b = c$}}

%{\color {green}\sidebar{Andreas 8/14: Why are we not using the same
%procedure as in 5.0.7?  jb 8/18/ \color{red} See revised paragraph before
%the definition}}




{\bf Diagram for point addition}

 \begin{center}
    \includegraphics[width=3in]{addpointgrid.jpg}
    \end{center}



    $$0b \cong ac$$
    That is, $0a + ac = 0c$ which means $a + b = c$.

    After extending multiplication to the whole line by requiring that multiplication by
    a negative reverses orientation we have proved:

%{\color {purple}\sidebar{Andreas 8/26: What does the above line
%say?\color{red}jb 8/8/27: first note now gone;  fixed part of your
%statement the proof and commented out your suggestion; second: Replaced .
%by : to (I hope) answer the second.}}


\begin{thrm}\label{intfield} If $\Pi$ is a model of $HP5$, then, fixing any two points in
$\Pi$ as $0,1$, there are  first order formulas defining $<,+,\times$ such
that $\langle \ell, < , +, \times\rangle$ is an ordered field.
\end{thrm}

\begin{method}\label{biint} {\rm Definition~\ref{cpdef} showed we could define a
coordinate plane in any field. Combined with Theorem~\ref{intfield}, we have
a bi-interpretation of fields and planes, described informally  in
Methodology~\ref{infint}  and formally in the Appendix to the supplement.
This means that  the algebraic proofs in high school analytic geometry can
(but not easily) be converted to synthetic proofs in first order geometry.}
\end{method}


\begin{problem} Add $a$ and $b$ (i.e. construct $c$)  when $a$ is to the left of $0$ on
$\ell$.
%\end{problem}
%
%\begin{problem}
 What is the inverse of $a$?
%\end{problem}
%
%\begin{problem} Prove addition of points is associative and commutative with identity element
%
The additive inverse of $a$ is $a'$ provided that $A'0 \cong 0A$ where $a'$
is on $\ell$ but on the opposite side of $0$ from $A$. That is, if $a$ is the
directed segment $\overrightarrow{0A}$, $-a$ is  the directed segment
$\overleftarrow{A'0}$ that is congruent to $0A$.

\end{problem}

%{\color {green}\sidebar{Andreas 8/14: This problem doesn't make sense to
%me. "What is the inverse of a? O." jb 8/21/ \color{red} See further info in
%the problem statement and new theorem.}}







%\begin{method}\label{thint}{\rm SL01,SL09: Interpretation of theories} We have shown that
%in model each  model we can define a field. This is expressed by the
%assertion that theory of fields $\Tscr$ is {\em interpretable} in the theory
%HP5. But the usual construction of a plane over a field
%(Definition~\ref{carpl} constructs the (same -this must be checked) back.
%Thus we say that $\Tscr$ and $HP_5$ are {\em biinterpretable}. Thus if one of
%them is consistent (has a model) so does the other.
%
%\end{method}


\section{Similarity, Proportion, and Side-splitter} \label{prop}

In this section, we define proportion   using Section~\ref{num} and then
prove the side-splitter theorem. We need a couple of definitions. Recall that
in Section~\ref{num} we defined a field whose elements were line segments on
a fixed line $\overline{01}$. So we make the following definitions using $a$,
$b$ etc. to range  segments $(O,A), (O,B)$ etc. Most texts will have
identified these segments with real numbers. We  emphasize that the results
are much more general than that.

\begin{definition} Let $a,b,a',b'$ be segments on a fixed line
$\overleftrightarrow{01}$.  Then we say the ratios $a:b$ and $a':b'$ {\em
satisfy the
 proportion} $a \colon b = a' \colon b'$ (also written  $a \colon b\ \sd
\sd \  a' \colon b'$ or $\frac{a}{b} = \frac{a'}{b'}$) if $ab' = ba'$.
\end{definition}


\begin{definition} Two triangles $\triangle ABC$ and $\triangle A'B'C'$ are similar
if under some correspondence of angles, corresponding angles are congruent;
e.g. $\angle A' \cong\angle A$,  $\angle B' \cong\angle B$, $\angle C'
\cong\angle C$.
\end{definition}

%{\color {green}\sidebar{Andreas 8/14: I fixed A'B'C'}}


\begin{activity}  Various texts define `similar' as we did, or as
corresponding sides are proportional or require both.  Discuss the advantages
of the different definitions. Why are all permissible?
\end{activity}



\begin{theorem}\label{simprop} Similar
triangles have proportional sides.
\end{theorem}
%\begin{thrm}{Euclid VI.2}\label{sidespl} {\bf CCSS   G-SRT.4}
%If a line is drawn parallel to the base of triangle the corresponding sides
%of the two resulting triangles are proportional and conversely.
%\end{thrm}

%T%he proof is the `side-splitter theorem' from pages 313 and 315 of CME
%geometry \cite{CMEgeo} (Side-splitter activity--Week\#3.pdf.
%
%Here is the CME reformulation of the first part of Euclid VI.2; we will
%discuss the converse later.
%
%%{\bf The activity in CME will be assigned   and then this detailed
%Recall Theorem~\ref{sidespl}.
%\begin{thrm}{Side-splitter theorem} %\label{sidespl} {\bf CCSS   G-SRT.4}
%If a segment with end points on two sides of a triangle is parallel to the
%third side of the triangle, then it splits the sides it intersects
%proportionally.
%
%% the corresponding sides of the two
%%resulting triangles are proportional and conversely.
%\end{thrm}


Proof. Suppose $SVW$ and $SRT$ are similar triangles as displayed  in the
diagram below we show
%if $VW
%\parallel RT$ then
$$\frac{SV}{SR} = \frac{SW}{ST}.$$

%{\color {purple}\sidebar{Andreas 8/26: changed VR to SR and WT to ST
%(corresponding sides of the similar triangles)}}

%\begin{center}
%    \includegraphics[width=1.5in]{newsidespl1.jpg}
%    \end{center}

\begin{center}
    \includegraphics[width=2.5in]{Theorem8-4.jpg}
    \end{center}




%\begin{figure}[ht]
	%\begin{minipage}[b]{0.45\linewidth}
%\begin{minipage}[b]{0.30\linewidth}
%	\centering
%	\includegraphics[width=\textwidth]{sidespl4.jpg}
%	\caption{multiply by $a$}
	%\label{fig:figure1}
%	\end{minipage}
%	\hspace{0.5cm}
%\begin{minipage}[b]{0.30\linewidth}
%	\centering
%	\includegraphics[width=\textwidth]{coraltint.jpg}
%	\caption{multiply by $c$}
	%\label{fig:figure2}
%	\end{minipage}
%	\end{figure}



Consider the special case that $\angle RST$ is a right angle. Label $SW$ as
 $a$, $ST$ as $b$, $SV$ as $a'$, $SR$ as $b'$, Then think of $S$ as $0$ and
 pick a point $X$ of $ST$ with $SX\cong 01$. Now using segment
 multiplication the diagram shows $ab' =ba'$. So by definition $a:b =
 a':b'$ or $\frac{SW}{ST} = \frac{SV}{SR}$. \cite[p. 56]{Hilbertgeom} gives
 the half page argument that the restriction to a right angle is
 unnecessary.
    $\qed_{\ref{sidespl}}$
%{\color {purple}\sidebar{Andreas 8/26: added a sentence to above proof.}}





   % In the figure below triangles $SVW$ and $RVW$ have the same height
%    $WX$.
%
%    \begin{center}
%    \includegraphics[width=2in]{newsidespl2.jpg}
%    \end{center}
%
%
%
% $\triangle SVW$ and $\triangle RVW$ share a vertex $W$ and their bases
%$SV$ and $RV$ are on the straight line $SVR$. So the height of each
%triangle is $WX$. Thus by Theorem~\ref{htareaprop},

%{\color {green}\sidebar{Andreas 8/14: It seems a bit odd to justify with a theorem later in the text.
%
%\{color{red}  jb 8/21:  When we wrote this the first time, we were
%unfolding the proof of the guiding problem -- reduce to side-splitter in
%what is now section 6, reduce side-splitter to VI.2 area proportional to
%height in section 8 and prove VI.2 in section9.  This may work better in a
%class than in a text.  Maybe we should a) swap 8 and 9  or b) rather than
%following cme who wanted to show how Euclid used area (but still needed
%proportion do the following which I think works. At the end of 5 (when we
%have the field can't we prove side-splitter with no mention of area. Then do
%the area section. If this works it seems more efficient and the more modern
%way. Pace CME. }}
%
%
%$$\frac{\hbox{\rm area}(\triangle SVW)}{\hbox{\rm area}(\triangle
%RVW)}= \frac{SV}{VR}.$$
%
%Now consider the diagram:
%
%
%    \begin{center}
%    \includegraphics[width=2in]{newsidespl3.jpg}
%    \end{center}
%
%
%$\triangle SVW$ and $\triangle TVW$ share a vertex $V$ and their bases $SW$
%and $WT$ are on the straight line $SWT$. So the height of each triangle is
%$VY$. So we have  by Theorem~\ref{htareaprop},
%
%$$\frac{\hbox{\rm area}(\triangle SVW)}{\hbox{\rm area}(\triangle
%TVW)}= \frac{SW}{WT}.$$
%
%Now $\frac{\hbox{\rm area}(\triangle SVW)}{\hbox{\rm area}(\triangle TVW)}$
%and $\frac{\hbox{\rm area}(\triangle SVW)}{\hbox{\rm area}(\triangle RVW)}$
%are two fractions with the obviously the same numerator.  But since
%$\triangle TVW$ and $\triangle RVW$ share the same base and are between
%parallel lines, they also have the same area.  So since the two ratios of
%areas are the same, so are the two ratios of sides.
%
%$$\frac{SW}{WT}= \frac{SV}{VR}.$$
%
%$\qed_{\ref{sidespl}}$

%We now have a hard and an easy exercise.


%\end{document}

%\begin{center}
%    \includegraphics[width=3in]{sidespl2.jpg}
%    \end{center}
%
%{\bf $\triangle SVW$ and $\triangle TVW$ share a vertex $V$ and their
%bases $SW$ and $WT$ are on the straight line $SWT$. So the height of
%each triangle is the length of a line segment through $V$
%perpendicular and perpendicular to $SWT$. It will intersect $SWT$
%between $S$ and $W$.}
%
%\begin{center}
%    \includegraphics[width=3in]{sidespl2.jpg}x
%
%    \end{center}




%\vfill\newpage

%{\bf Solution  to 4.11 of CME \cite{CMEgeo}}
% (To read this you must have a copy of the CME excerpt from pages
% 313-314.)
%assignment; it is on the web and what you handed in will be handed
%back.)
%\begin{exercise}\label{extendproport} We are given from the first part of the
%problem that $\frac{SV}{VR}= \frac{SW}{WT}$.  Show
%$$\frac{SR}{SV}= \frac{ST}{SW}.$$
%
% Note that Exercise~\ref{extendproport} is most easily done entirely as
% algebra.
%\end{exercise}

%To emphasize that this  part of the problem is completely
%algebraic\footnote{We are proving $\frac{a}{b} = \frac{c}{d}$ if and
%only if $\frac{a}{a+b} = \frac{c}{c+d}$; the result is about
%proportionality not geometry.}, I introduce variables a, b, c, d to
%represent the lengths of the sides
%%\footnote{I am doing this mainly because it is easier to
%%type; almost everyone did this part of the problem perfectly}.
%So $a
%=SV, b = VR, c = SW, d = WT$. We are given from the first part of the
%problem that
%
%$$\frac{SV}{VR}= \frac{SW}{WT}.$$
%
%That is,
%$$\frac{a}{b}= \frac{c}{d}.$$
%
%We have to show
%$$\frac{SR}{SV}= \frac{ST}{SW}.$$
%
%That is,
%$$\frac{a+b}{c}= \frac{b}{d}.$$
%
%Proof. We are given
%
%$$\frac{a}{b}= \frac{c}{d}.$$
%
%Multiply both sides by $bd$ and divide both sides by $ac$ (and use
%symmetry of equality. (You could also say invert both sides).
%
%This gives
%
%
%$$\frac{b}{a}= \frac{d}{c}.$$
%
%Add 1 to both sides of the equation.
%
%$$1+ \frac{b}{a}= 1 +\frac{d}{c}.$$
%
%Add the fractions on each side.
%
%$$\frac{a+b}{a}= \frac{c+ d}{c}.$$
%
%
%We are finished.



%\section{The Hilbert contribution}


\begin{thrm}{Euclid VI.2: Side-splitter}\label{sidespl} {\bf CCSS   G-SRT.4}
If a straight line is drawn parallel to one of the sides of a triangle, then
it cuts the sides of the triangle proportionally; and, if the sides of the
triangle are cut proportionally, then the line joining the dividing points %of section
is parallel to the remaining side of the triangle.
%before 12/14/23 -replaced with Euclid's phrasing
%If a line is drawn parallel to the base of a triangle the corresponding sides
%of the two resulting triangles are proportional and conversely.
\end{thrm}







Proof. On $\triangle SVW$ draw $VW$ parallel to $RT$. As in the following
diagrams, extend $VW$ to a line and pick points
    $X$ and $Y$ on $VW$ on opposite sides of the triangle.

\begin{center}
    \includegraphics[width=2.5in]{Lemma8-5.jpg}
    \end{center}


     Now $\angle XVR$ and $\angle VRT$ are alternate interior angles for
    the transversal $RS$ crossing the two lines $XY$ and $RT$.  So $\angle
    XVR \cong \angle VRT$ if and only if $VW \parallel RT$.  But $\angle XVR
    \cong \angle SVW$ since they are vertical angles.  So $\angle SVW \cong
    \angle VRT$ if and only if $VW \parallel RT$. So we have the parallel implies proportional direction.

      Suppose we only
    know $VW$ cuts each side proportionally. Choose $W'$ with  $VW' \parallel RT$.
The parallelism implies $VW'$ is to $ST$ as $SV$ is to $ST$.  But we know
$SW'$ satisfies the same proportion so $W=W'$. Thus, $VW\parallel RT$ as
required. $\qed_{\ref{sidespl}}$

%\begin{exercise} Prove the converse to the side-splitter theorem.
%{\bf CCSS   G-SRT.4} If a segment with end points on two sides of a
%triangle splits the sides it intersects proportionally, then it is parallel
%to the third side of the triangle.
%\end{exercise}
%
%\medskip

%The little box $\qed_{\ref{simpar}}$ signals that we have completed
%the proof of Theorem~\ref{simpar}.

\medskip

%\sidebar{jb 8/24 I am inclined to drop these --some may no longer make
%sense. \color{purple} Yes we can drop these
%
%\begin{remark} Note that what we have really proved is that for a transversal cutting two lines
%corresponding angles are equal if and only if alternate interior angles are
%equal.  If we accepted that fact, the proof of Lemma~\ref{simpar} would
%just be to notice that the equalities between the pairs of corresponding
%angles $\angle SWV \cong \angle STR$ and $\angle SVW \cong \angle SRT$ hold
%if and only if $VW \parallel RT$ if and only if $\triangle SVW$ is similar to $\triangle SRT$.
%\end{remark}












%Proof. We have done most of the hard work. The trick is to put it together.
%Here are the four big steps.



%\begin{enumerate}
%\item Triangles in the same parallels have the same area.  (We can
%    abbreviate this as $A = \frac{1}{2}bh$.  (Euclid I.35, I.38)
%    \item Theorem ~\ref{sidespl}, if a segment with endpoints on two
%        sides of a triangle is parallel to the third side of the
%        triangle, then it splits the sides proportionally.
%\item Suppose two triangles, $\triangle S'V'W'$ and $\triangle SRT$ are
%    similar. Construct a triangle congruent to the smaller on the larger.
%    (See picture below.)
%
%
%\begin{center}
%    \includegraphics[width=3in]{twotri.jpg}
%    \end{center}
%
%\item By the side-splitter theorem we have that the sides of $\triangle
%    SVW$ and $\triangle SRT$ are proportional. Since $\triangle S'V'W'
%    \cong \triangle SVW$ the sides of $\triangle  S'V'W'$ and $\triangle
%    SRT$ are proportional.
%
%    \end{enumerate}
%
%This completes the proof that similar triangles have proportional sides.
%Note that there is no use of limits in the proof.  We have shown the
%theorem holds for whatever segment lengths happen to be in the geometry
%under consideration.  Of course, the proof that the real numbers actually
%include `all' the irrationals requires the completeness axiom and
%constructing a model explicitly requires a theory of limits.


%\begin{exercise} Use the same ideas as in the proof of Theorem~\ref{simprop} to show
%its converse:  If corresponding sides of two triangles are proportional,
%the triangles are similar.
%\end{exercise}}

As we will sketch in Section~\ref{area},  Euclid developed the notion of area
(he says equal figure.) in I.35-I.48, {\em Commentators agree that this was
specifically to avoid the use of proportion in the proof of Pythagoras.} In
particular, Euclid needed the Archimedean axiom for his theory of proportion
and so to prove the side-splitter.  Hilbert  grounds  the theory of
proportion {\em purely geometrically} without assuming Archimedes' axiom.


\begin{exercise}[Euclid VI.31 CCSS G-SRT4] Prove the Pythagorean theorem using
similarity.
\end{exercise}


%{\color {purple}\sidebar{Andreas 8/28: The following graphic is distorted (should show squares). I'm sending a nicer one, Exercise8-7.jpg}}

\begin{center}
    \includegraphics[width=1.5in]{Exercise8-7.jpg}
    \end{center}


The supplement suggests several other proofs of Pythagoras including one due
to President Garfield.

    %\begin{activity}\label{Garfieldproof} Consider various proofs of the Pythagorean Theorem
%Activity: Pythagorean Theorem (pythag.pdf). Reconstruct President
%Garfield's diagram (Garfield.pdf has a copy of the original article.) and
%work out his proof of the Pythagorean theorem.  (`On the hypoteneuse $cb$
%of the right angled triangle $abc$, draw the half-square $cbe$', means
%`draw the right triangle $cbe$ such that $be$ is the diagonal of a square
%with side $cb$.)
%\end{activity}

%\begin{activity} The activity incenter.pdf contains some `real-world'
%applications of incenter and  Hartshorne's direct proof of the
%side-splitter theorem  for segment arithmetic (Proposition 20.1 of
%\cite{Hartshornegeom}) without using area.
%\end{activity}

\section{Area of Polygons}\label{area}

\begin{peda}\label{whyarea} {\rm SL01, 02,05,07:  Experience with college students in
precalculus and calculus who react to min-max problems by saying `I know the
formula is $lw$ or $2l + 2w$ but I don't know which' motivates this section.
The connection between (equi)-decomposition and area needs to be made in high
(if not middle school). While the argument in argument in the supplement is
too technical for high school, it provides future high school teachers with a
necessary perspective.}
\end{peda}

This section has both methodological and pedagogic content. We reserve the
details of the methodological concerns to the supplement.

\begin{method}[SLO4: What is area?]{\rm This section expounds the differences
among three methods
 of computing area that are frequently conflated in high school texts.
 Euclid begins by (implicitly) defining what it means for two figures
  to have same area (Euclid-equal).
 By this means, he is able to prove the Pythagorean theorem without invoking the
 notion of proportion -showing it is a fully {\em geometric} result.
In contrast, calculus based notions of measuring area rely fundamentally on
 approximating figures by infinitely many smaller figures and taking limits.

 Using the field defined in Section\ref{num}, Hilbert defines `equal area' by
a slightly different notion (Hilbert-equal) and introduces a finite procedure
of assign a numeric value as the area of a polygon. In fact, these three
notions of equality are the same. However, they cannot be proved the same as
equi-decomposable (scissors-congruent) without the use of the Archimedean
axiom.}
\end{method}
%{\color {purple}\sidebar{Andreas 8/26: Or we might say: Often, a smaller
%rectangle cannot be properly contained by a bigger one.} \color{red} I
%think a jokey specific case is more effective than raising questions about
%what a math term like `properly contained' might mea}



%{\color {purple}\sidebar{Andreas 8/26: "where area makes sense" doesn't sound right. What do you mean?}}

We established a linear order on (congruence classes) of segments by $[AB]<
[CD]$ if $AB\cong A'B'$ for some proper subsegment $A'B'$ of $CD$.  This is
not so easy in two dimensions; a long skinny rectangle might or might not `be
bigger' than a short fat one. What sorts of objects we can assign area to and
when two `figures' have the same area?







\begin{definition}\label{rectilineal}
\begin{enumerate}
\item A {\em (rectilineal) figure}
%\footnote{This definition from \cite{Hartshornegeom}
 is a subset of the plane that can be expressed as a finite union of
disjoint triangles (Sides may overlap; interiors can't.).
\item A {\em  polygon} is a closed figure whose sides are  line segments
    that intersect only at their endpoints and each endpoint is shared by
    exactly two segments. Closed means you can trace the outer edges and
    come back to where you started without any repetition.
\end{enumerate}
\end{definition}

The term figure is introduce to allow for various types of decomposition.
%The term figure is introduce to allow for various types of decomposition.

%{\color {purple}\sidebar{Andreas 8/26: This definition sounds like polygons don't have to be closed.
% But then each endpoint isn't shared by two segments.
% I think most HS texts will say that open polygonal paths are NOT polygons, i.e. they have to be closed.
% Also: should be be more descriptive about the "connected" part (sets of disconnected polygons are usually
% not considered single polygons in HS geometry)? And add that polygons with polygonal 'holes' cut out are
% also polygons (not sure what the HS stand is on that, we simply avoid it altogether)?
%
%\color{red} This is the definition including with  closed separate in CME
%geometry, Glencoe has closed as part of the definition; the old mcdougal
%littel gives examples and non-examples but not a definition.
%
%Actually i think cme was simply the only one to define closed.
% }}

%We do not need to restrict to `convex' or `connected' polygons. Common
%sources often use such general definitions but give only convex connected
%examples.

%\sidebar{Andreas: surely the definition of polygon can be cleaned up a
%little.}


%There are essentially three way to clarify when to polygons have the same
%area.

% two general methods for clarifying `bigger'.  Euclid
%employed the method 1: Define an equivalence relation $E(P,P')$  on figures
%and define $[P_1]< [P_2]$ if some representative of $[P_1]$ is congruent to a
%proper subset of a representative of $[P_2]$.  It is difficult to ensure that
%this notion is well-defined; perhaps one representative of an equivalence
%class is congruent to a proper subset of another (\cite[p
%201]{Hartshornegeom}). The 19th century developed Method 2: Define an area
%function $\alpha$ from figures into `numbers' and say $P$ is `smaller' than
%$P'$ if $\alpha(P) < \alpha(P')$. The Method 2 approach gives a method 1
%approach: $E(P,P')$ if and only $\alpha (P) = \alpha(P')$.

%{\color {purple}\sidebar{Andreas 8/26: Do you mean $[P_1] = [P_2]$ since you are talking about equivalence? Or did you want to say "properly contained by" instead of "congruent to"?}}

However, there are at least two ways to implement Method 2.

\begin{definition}\label{assmeas}[Two ways to measure]\mbox{}
{\rm \begin{description}
\item [1: `equal' area] Define an equivalence relation\footnote{In the
    supplement we define two such equivalence relations, Euclid-equal and
    Hilbert-equal, and prove they each agree with geometric measure.}
    $E(P,P')$
    on
    figures
    and define $[P_1]< [P_2]$ if some representative of $[P_1]$ is
    congruent to a proper subset of a representative of $[P_2]$.

    We give three different  equivalence relations of this sort in
    Definition~\ref{Eeq}, \ref{scon}, \ref{congax}. We see below that the first
    and third are the same for HP5; Scissors congruence becomes
    equivalent in Archimedean geometries.


\item [2: equal numerical measure]\mbox{}

\begin{description}
 \item {\bf  Analytic measure} Fix  a unit of area; say, a square; tile the
     plane with congruent squares. Then to measure a figure,  continually
     (perhaps infinitely often) refine the measure by cutting the squares
     in quarters and counting only those (possibly fractional) squares
     which are contained in the figure.
\item {\bf Geometric measure} (Hilbert) Decompose the figure into finitely
    many disjoint triangles, which are each assigned area $\frac{bh}{2}$,
    and add those areas. \end{description}
\end{description} }
\end{definition}

We call the last geometric area because the multiplication is the geometric
multiplication of Section~\ref{num}. We consider now the three  ways to
implement Method 1.  Before giving the formal definition we see how two of
these methods are abstracted from the proof of Euclid I.35.

%{\color {purple}\sidebar{Andreas 8/26: i'm sure you meant to put Proposition I.35 on a new line. I'm not sure how that should be done in tex.}}

\begin{theorem}\label{I35} {Proposition I.35} Parallelograms which are on the same base and in
the same parallels equal one another.
\end{theorem}

\begin{figure}[h]%\label{figI35}
\begin{center}
 \includegraphics[height=1.5in]{Slide12NewPic2.jpg}

 \caption{Euclid I.35}
 \label{fig:0prim}
\end{center}
\end{figure}
%\end{remark}

Proof. There are two ways of understanding the proof. The terms `Euclid
equal' and `Hilbert equal' are defined below (generalized from this argument.
Euclid says triangle 1 + 4 is congruent to triangle 3 + 4 . Subtract 4 from
the first to get trapezoid 1 and from the second to get trapezoid 3. So 1 and
3 have the same area. Add  2 to each to see the two parallelograms, 1 + 2 and
3 + 2, have the same area.

Hilbert says adding triangle 3\&4 to parallelogram 1\&2 gives the same as
adding triangle 1\&4 to parallelogram 2\&3, and 1\&4  and 3\&4 are
equidecomposable (in this case congruent) so we can conclude the two
parallelograms have equal area. The distinction is that the weaker condition
`equidecomposablity' on the triangles 1\&4 and  3\&4 allows him to build
scissors decomposition into his notion. $\qed_{\ref{I35}}$

Both understandings of the proof required {\em both adding and subtracting
area} rather than scissors congruent. One way of expressing the Archimedean
postulate is to say `every line segment is finite'.  We show in
Theorem~\ref{nonarch} of the supplement there are non-Archimedean planes that
satisfy HP5. Neither understanding of the proof  of Theorem~\ref{I35}
requires finite line segments. But we now see that scissors congruence does.


\begin{example}\label{nonarchex} Suppose the lines $BE$ and $CF$ are infinitely long.
 The parallelograms $ABCD$ and $EBCF$ are not equidecomposable.
\end{example}

Proof. The sides of  $ABCD$ are all finite and so a decomposition must be
into finitely many triangles, each with all side finite.  But a finite
decomposition of $EBCF$ requires infinitely many finite triangles because the
entire line $EB$ must be covered by edges of the decomposing triangles.
However, $ABCD$ and $EBCF$ have the same altitude and same base so they have
the same geometric measure. $\qed{\ref{nonarchex}}$

\begin{peda}\label{arcane}{\rm  The distinction described in this section is not
high school material. But it is background to avoid fallacious assertions. It
is natural in K-12 education to describe equal area in terms of scissors
congruence and certainly scissors congruent figures have the same area. But
Example~\ref{nonarchex} shows that  in some models of $HP5$ there are
parallelograms of equal area that are not scissors congruent.  Thus their
putative equivalence is still another example of an independent proposition.
This is not a topic for high school. But teachers can remember to say
`scissors congruent figures have the same area' while not saying `figures
with the same area are scissors congruent'.}
\end{peda}


\begin{definition}\label{Eeq}[Euclid-equal polygons]
For figures $A$ and $B$:
\begin{enumerate} \item $A$  has $1$-equal area with
$B$ there is a figure $C$ such that $A + C$ is congruent to  $B+C$   or
there is a $C$ such that $ A -C$ congruent to $B-C$.
\item {\em Euclid-equal} (provably same as equi-complementable) is the
    transitive closure of the symmetric and reflexive relation $1$-Equal
    content.
    \end{enumerate}
\end{definition}



% We consider three further ways to implement
%Method 1. Before giving the formal definition we see how these methods are
%abstracted from the proof of Euclid I.35.
%
%%{\color {purple}\sidebar{Andreas 8/26: i'm sure you meant to put Proposition I.35 on a new line. I'm not sure how that should be done in tex.}}
%
%\begin{theorem}{Proposition I.35} Parallelograms which are on the same base and in
%the same parallels equal one another.
%\end{theorem}
%
%\begin{figure}[h]%\label{figI35}
%\begin{center}
% \includegraphics[height=1.5in]{Slide12NewPic2.jpg}
%
% \caption{Euclid I.35}
% \label{fig:0prim}
%\end{center}
%\end{figure}
%%\end{remark}
%
%Proof. The terms `Euclid equal' and `Hilbert equal' are defined below
%(generalized from this argument. Euclid says triangle 1 + 4 is congruent to
%triangle 3 + 4 . Subtract 4 from the first to get trapezoid 1 and from the
%second to get trapezoid 3. So 1 and 3 have the same area. Add  2 to each to
%see the two parallelograms, 1 + 2 and 3 + 2, have the same area.
%
%Hilbert says adding triangle 3\&4 to parallelogram 1\&2 gives the same as
%adding triangle 1\&4 to parallelogram 2\&3, and 1\&4  and 3\&4 are
%equidecomposable (in this case congruent) so we can conclude the two
%parallelograms have equal area. The distinction is that the weaker condition
%`equidecomposablity' on the triangles 1\&4 and  3\&4 allows him to build
%scissors decomposition into his notion.
%
%\begin{definition}\label{Eeq}[Euclid-equal polygons]
%For figures $A$ and $B$:
%\begin{enumerate} \item $A$  has $1$-equal area with
%$B$ there is a figure $C$ such that $A + C$ is congruent to  $B+C$   or
%there is a $C$ such that $ A -C$ congruent to $B-C$.
%\item {\em Euclid-equal} is the transitive closure of the symmetric and
%    reflexive relation $1$-Equal content.
%    \end{enumerate}
%\end{definition}


\begin{definition}[Scissor Congruence]\label{scon}
Two polygons are {\em scissor-congruent} or {\em equidecomposable} if one can
be cut up into a finite number of triangles which can be rearranged to make
the second.
\end{definition}

%{\color {purple}\sidebar{Andreas 8/28: I'm not sure we have to specify "by straight lines" since we're making triangles.}}

SLO7: It is a sign of Euclid's genius that he realized that a type of
refinement of scissors-congruent, dubbed {\em equal content}  by Hilbert
around 1900, allowed the proof of proportionality of area to base and height
without appeal to Archimedes axiom.

\begin{definition}[Equal content]\label{Eqcon}
Two figures $P,Q$  have {\em equal content aka equicomplementable} or {\em
Hilbert equal}\footnote{The diagram is taken from \cite{Hilbertgeom}.} if
there are figures $P'_1 \ldots P'_n$, $Q'_1 \ldots Q'_n$ such that none of
the figures overlap, each $P'_i$ and $ Q'_i$ are scissors congruent and $P
\cup P'_1 \ldots \cup P'_n$ is scissors congruent with $Q \cup Q'_1 \ldots
\cup Q'_n$.
\end{definition}

\begin{center}
\includegraphics{equalcontenthilb.jpg}
\end{center}

Here is Hilbert's finite scheme for measuring area.

\begin{lemma}\label{measwork}\cite[\S 23]{Hartshornegeom}
For any $n$ and any triangulation of a figure  by $n$ triangles with base
$b_i$ and height $h_i$  the sum $\Sigma_n \frac{b_ih_i}{2}$ is the same. That
value is the geometric measure of the area of a polygon. So, the equivalence
relation imposed by `same geometric measure' is well-defined.
\end{lemma}


While Euclid-equality is transitive by definition, it is considerably more
difficult \cite[p 199-201]{Hartshornegeom} to prove that Hilbert-equality is
transitive.


\begin{thrm}\label{equivequiv}  \cite[\S 23]{Hartshornegeom} In any plane
 satisfying HP5, figures that have equal area under either  Hilbert's or Euclid's notion of equal
 area if and only if they have the same geometric measure.
\end{thrm}

However the analytic method of Definition~\ref{assmeas} is an outlier.

\begin{definition} Two figures are {\em analytically equivalent} if they have
the same analytic measure.
\end{definition}
The supplement contains an example showing the Archimedean hypothesis is
essential for the next result.

\begin{fact}[Wallace-Bolyai-Gerwien Theorem\footnote{The forward direction  was proven in the 19th century by
William Wallace (not one of the progenitors of calculus), Farkas Bolyai (his
son discovered non-Euclidean geometry) and P. Gerwien. See wikipedia.}]
\label{wbg} Two polygons {\em in
 an Archimedean plane} are equidecomposable (scissors congruent) if and
only if  they have the same analytic measure.
\end{fact}






Note that the Archimedean hypothesis is essential. If the line $BE$ in
Figure~\ref{fig:0prim} is infinite (Invert the segment $\overline{AB}$
created in Remark~\ref{ccthm}.), while all lines in $ABCD$ are finite then
the parallelograms $ABCD$ and $EBCF$ are not equidecomposable even though
they are Hilbert and Euclid equal. This equivalence  often appears in high
school text books without making it clear that  it requires a vastly stronger
hypothesis than any of the other results on polygons.

Interestingly, not all polyhedra  (3D figures with plane surfaces) are
scissors congruent, for example a regular tetrahedron cannot be cut up into
polyhedral and rearranged into a cube.


\begin{fact}[Dehn-Sydler Theorem]\label{DehnS}
Two polyhedra in $\Re^3$ are scissors congruent iff they have the same volume
and the same Dehn invariant.
\end{fact}
 Dehn [D] proved in 1901 that equality of the Dehn invariant is necessary
for scissors congruence.  Sydler proved the converse forty years later. We
return to one of our original targets.


\begin{thrm}[Euclid VI.I]\label{htareaprop}  If two triangles have the same height,
 the ratio of
their areas equals the ratio of the length of their corresponding bases.
\end{thrm}

Proof. Definition~\ref{assmeas} gave the geometric measure of a triangle to
be $\frac{bh}{2}$ and Theorem~\ref{equivequiv} showed geometric measure is
equivalent to Euclid equal. So the result follows from realizing that $A =
\frac{bh}{2}$ can be read as `the area is jointly proportional to the base
and the height. $\qed_{\ref{htareaprop}}$



In Euclid this result holds for irrationals only by the method of Eudoxus,
which is a precursor of the modern theory of limits, but did not envision the
existence of arbitrary real numbers. He deduces side-splitter from the
proportionality while Hilbert goes in the other
direction\footnote{\cite{CMEgeo} shows the area of one of two similar figures
is $r^2$ times the area of the other, where $r$ is the constant of
proportionality between lengths. They deduce this from side-splitter.  It was
Al Cuoco of the CME team who alerted the first author to Euclid going in the
other direction.}. The development here shows that for any triangles which
occur in a geometry satisfying the axioms here\footnote{Crucially, neither
Archimedean, nor Dedekind complete, is assumed.} the areas and their ratios
are represented by line segments in the field.






%\section{Area of Parallelograms and triangles}\label{area}
%
%
%
%%{\color{green} 8/4/23 9am: I doubt we want to go into the difference
%%between Euclid's proof I.35 and Hartshorne's.  The picture of I.35 and
%%Archimedes should be somewhere. But perhaps this kind of summary is
%%useful.}
%
%
%
%\begin{notation}[3 ways to `measure' area]
%
%\begin{enumerate}
%\item (Euclid et al) Define an `equal-area' equivalence relation and
%    order the classes
%\item analytic/metric 19th century {\bf limit} method
%
%\item Decompose each figure into triangles with area $\frac{bh}{2}$ and
%    assign the sum to the figure.
%\end{enumerate}
%
%\end{notation}
%
%
%
%
%%(Each equivalence relation can be modified for higher dimension and
%%non-Euclidean geometries but with different results.)
%
%%In particular, Dehn's theorem shows that even in Archimedean 3-space, one
%%needs both equicomplementation and the Dehn invariant to determine the
%%equicomplementation class.
%
%
%
%
% \begin{remark} [Euclid's `definition' of area]
%
% Euclid and Hilbert approach method 1  in totally different ways. Euclid
% does not really define or measure area. Euclid proceeds by (implicitly)
%defining two polygons to have equal area (He says `are equal') if by a
%sequence of adding and {\bf subtracting} congruent figures one can pass
%from one to the other. Hilbert builds into his notion of
%equicomplementation the notion of equidecomposition (scissors congruence).
%As the next diagram shows these two notions are not equivalent in a
%non-Archimedean plane (Section~\ref{ArchDed}). But Euclid's and Hilbert's
%notions are equivalent from Hilbert's first order axioms.
%
%{\color {green}\sidebar{Andreas 8/14: We should point out that Euclid
%doesn't define the concept of area (or content).} \color{red} done}
%
%
%
%The respective equivalence relations arise from different ways to argue
%that the parallelograms.
%
%{Proposition I.35} Parallelograms which are on the same base and in the
%same parallels equal one another.
%
%
%
%\begin{figure}[h]
%\begin{center}
% \includegraphics[height=1.5in]{Slide12NewPic2.jpg}
%\label{fig:0prim}
% \caption{Euclid I.35}
%\end{center}
%\end{figure}
%\end{remark}
%
%Euclid says triangle 1 + 4 is congruent to triangle 3 +4 . Subtract 4 from
%the first to get trapezoid 1 and from the second to get trapezoid 3. So 1
%and 3 have the same area. Add  2 to each to see the two parallelograms, 1 +
%2 and 3 + 2, have the same area.
%
%
%
%
%Hilbert says adding triangle 3 + 4 to parallelogram 1 + 2 gives the same as
%adding triangle 1 + 4 to parallelogram 2 + 3, and 1 + 4  and 3 + 4 are
%equidecomposable (in this case congruent) so we can conclude the two
%parallelograms have equal area. The distinction is that the weaker
%condition `equidecomposablity' on the triangles 1 + 4 and  3 + 4 allows him
%to build scissor decomposition into his notion. With a harder proof of
%transitivity, he builds an equivalence relation.
%
%  We show below how Hilbert defines figures to have the same measure just
%if they are decomposed into triangles that have the same area -- given by
%the formula $A=\frac{bh}{2}$. Thus, the result depends on his defining the
%(semi)-field of segments.
%
%
%%\section{Area of Parallelograms and triangles}\label{area}
%%
%%
%%
%%%{\color{green} 8/4/23 9am: I doubt we want to go into the difference
%%%between Euclid's proof I.35 and Hartshorne's.  The picture of I.35 and
%%%Archimedes should be somewhere. But perhaps this kind of summary is
%%%useful.}
%%
%%
%%
%%\begin{notation}[3 ways to `measure' area]
%%
%%\begin{enumerate}
%%\item (Euclid et al) Define an `equal-area' equivalence relation and
%%    order the classes
%%\item analytic/metric 19th century {\bf limit} method
%%
%%\item Decompose each figure into triangles with area $\frac{bh}{2}$ and
%%    assign the sum to the figure.
%%\end{enumerate}
%%
%%\end{notation}
%%
%%
%%
%%
%%%(Each equivalence relation can be modified for higher dimension and
%%%non-Euclidean geometries but with different results.)
%%
%%%In particular, Dehn's theorem shows that even in Archimedean 3-space, one
%%%needs both equicomplementation and the Dehn invariant to determine the
%%%equicomplementation class.
%%
%%
%%
%%
%% \begin{remark} [Euclid's `definition' of area]
%%
%% Euclid and Hilbert approach method 1  in totally different ways. Euclid
%% does not really define or measure area. Euclid proceeds by (implicitly)
%%defining two polygons to have equal area (He says `are equal') if by a
%%sequence of adding and {\bf subtracting} congruent figures one can pass
%%from one to the other. Hilbert builds into his notion of
%%equicomplementation the notion of equidecomposition (scissors congruence).
%%As the next diagram shows these two notions are not equivalent in a
%%non-Archimedean plane (Section~\ref{ArchDed}). But Euclid's and Hilbert's
%%notions are equivalent from Hilbert's first order axioms.
%%
%%{\color {green}\sidebar{Andreas 8/14: We should point out that Euclid
%%doesn't define the concept of area (or content).} \color{red} done}
%%
%%
%%
%%The respective equivalence relations arise from different ways to argue
%%that the parallelograms.
%%
%%{Proposition I.35} Parallelograms which are on the same base and in the
%%same parallels equal one another.
%%
%%
%%
%%\begin{figure}[h]
%%\begin{center}
%% \includegraphics[height=1.5in]{Slide12NewPic2.jpg}
%%\label{fig:0prim}
%% \caption{Euclid I.35}
%%\end{center}
%%\end{figure}
%%\end{remark}
%%
%%Euclid says triangle 1 + 4 is congruent to triangle 3 +4 . Subtract 4 from
%%the first to get trapezoid 1 and from the second to get trapezoid 3. So 1
%%and 3 have the same area. Add  2 to each to see the two parallelograms, 1 + 2 and 3 + 2, have
%%the same area.
%%
%%
%%
%%
%%Hilbert says adding triangle 3 + 4 to parallelogram 1 + 2 gives the same as adding triangle 1 + 4 to parallelogram 2 + 3, and
%%1 + 4  and 3 + 4 are equidecomposable (in this case congruent) so we can conclude the two parallelograms
%%have equal area. The distinction is that the weaker condition
%%`equidecomposablity' on the triangles 1 + 4 and  3 + 4 allows him to build
%%scissor decomposition into his notion. With a harder proof of transitivity,
%%he builds an equivalence relation.
%
%  We show below how Hilbert defines figures to have the same measure just
%if they are decomposed into triangles that have the same area -- given by
%the formula $A=\frac{bh}{2}$. Thus, the result depends on his defining the
%(semi)-field of segments.
%
%
%%{\color {green}\sidebar{Andreas 8/14: I expanded the above a bit, see if you agree}}
%
%
%%\begin{description}
%% \item[global method] Fix  a unit; say, a square; tile the plane with
%%     congruent squares. Then to measure a figure,  continually refines
%%     the measure by cutting the squares in quarters and counting only
%%     those (possibly fractional) squares which are contained in the
%%     figure.
%%\item[local method] (Hilbert) Triangulate a figure   with finitely many
%%    triangles, which are each assigned area
%%%\begin{description}
%%%  \item[Euclidean Geometry] $\frac{bh}{2}$
%%%  \item[Hyperbolic  Geometry] $(0, \delta)$ or $(1,\delta)$ depending
%%%      on the size of the defect $\delta$
%%%  \end{description}
%% and  the area of the figure is the sum of the areas of the triangles.
%%\item[representative method] (Euclid and Hilbert) Define an equivalence
%%    relation `equal area'. Fix a representative of each equivalence
%%    class.
%%\end{description}
%%\end{notation}
%
%
%{\color {green}\sidebar{Andreas 8/14: We have to be careful with language
% here. Hilbert defines "equal area" as equidecomposable and "equal content"
% as equicomplementable. Then he shows that equal content is equivalent to
% equal measure of area as defined by him. After that he proves DeZolt by
% using his measure of area function. \color{red} changed first `same area'
% to `same measure'.}}
%
%
%
%An activity (Area of triangle week\#3.pdf), based on one of Mark Driscoll,
%uses area to emphasize that an altitude of triangle does not have to lie
%inside the triangle.
%
%
%We begin with thinking about where area makes sense and when two `figures'
%have the same area.
%
%\begin{definition}\label{rectilineal} A (rectilineal) figure is a finite union of
%disjoint triangles (sides may overlap).
%\end{definition}
%
%{\color {green}\sidebar{Andreas 8/14: do we need to clarify here that
%"disjoint" allows for common parts of the perimeter, i.e. only applies to
%the interior of the triangles? \color{red} Done}}
%
%
%
%\begin{definition}[Scissor Congruence]\label{scon}
%Two polygons are {\em scissor-congruent} if you can cut one up (on straight
%lines) into a finite number of triangle which can be rearranged to make the
%second.
%\end{definition}
%
%While this notion appears even in Greek times, it became central in the
%19th century and the term equidecomposable was coined by Hilbert in the
%second edition of \cite{Hilbertgeoma}.
%
%{\color {green}\sidebar{Andreas 8/14: We could mention here that this is
%Hilbert's notion of "equidecomposable". \color{red} done}}
%
%
%  See exercises on scissors-congruence from pages 174-175 of CME
%geometry \cite{CMEgeo}. Cut and Paste Activity Week\#3.pdf  (These illustrate {\bf CCSS 6.G.1})% \cite{ccss}.)
%
%
%%\sidebar{This is confused: equal content is only the same as scissors
%%congruent for Archmidean planes.}
%
%
%
%
%
%\begin{definition}[Equal content]\label{ec}
%
%
%
%Two figures $P,Q$  have {\em equal content aka
%equicomplentable}\footnote{The diagram is taken from \cite{Hilbertgeom}.}
%if there are figures $P'_1 \ldots P'_n$, $Q'_1 \ldots Q'_n$ such that none
%of the figures overlap, each $P'_i$ and $ Q'_i$ are scissors congruent and
%$P \cup P'_1 \ldots \cup P'_n$ is scissors congruent with $Q \cup Q'_1
%\ldots \cup Q'_n$.
%\end{definition}
%
%%{\color {green}\sidebar{Andreas 8/14: we should mention here that this is the concept of equicomplementability}}
%
%
%
%\begin{center}
%\includegraphics{equalcontenthilb.jpg}
%\end{center}



%\begin{thrm}[Euclid I.35, I.38]\label{I.35 I.38}
%
% Parallelograms on the same base and in the same parallels have the same
% area.
%
% Triangles on the same base and in the same parallels have the same area.
%
%\end{thrm}
%
%In doing the next exercise, you will have to interpret the meaning of `same
%area' in Theorem~\ref{I.35 I.38}. Hilbert eventually showed either works.
%
%
% {\color {green}\sidebar{Andreas 8/14: We have not yet defined what we mean
%by "equal area" (unless you meant "equal content" here). We need to be
%super
% careful with vocabulary, especially if it's different from
% Hilbert.\color{red}  modified the transition }}
%
%
%
%\begin{activity} Prove Theorem~\ref{I.35 I.38} in your group.
% Did you use scissors-congruence or equal content?\end{activity}
%
%
%%I can't do better than Euclid.
%
%
%\url{http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI35.html}
%
%\url{http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI38.html}
%
%
%{\color {green}\sidebar{Andreas 8/14: Since the proof is in those
%references, maybe ask specifically for a high school type two-column
%proof.\color{red} jb 8/18 Something to think about. Part of the larger
%question of how we handle the excess material.
%
%8/21: I asked whether they were using equidecomposition or equal content --
%the proof in Euclid uses neither (except the step 1 case of equal content)
%which no one except us should recognize as that. The point was for them to
%(I hope) discover equidecomposition fails. Maybe we should just explicitly
%ask that.
%
%}}


%{\color{red} I propose to deep six the following just over two pages that
%are in red. I am open to the idea that some of them, specifically some
%discussion of units and 9.17, might be worth saving. Some has become
%gibberish as I have moved paragraphs elsewhere.
%
%{\color {purple}\sidebar{Andreas 8/28: I'm on board with that. Perhaps a reference to an online page could be added here instead.}}
%
%
%We want to  define a formula to compute the area of a polygonal figure;
%this will take  two steps. First show that
% equal content is an equivalence relation that satisfies the intuitive
% properties (Axiom~\ref{areaax}) for figures to have the same area. Then we
% define the area of a unit square to be 1 (sq unit) and then show that this
% justifies the standard formulas (with multiplication as segment
% multiplication) for the  area of rectangles, parallelograms, and triangle.
%
%
%
%\begin{axiom}[ Area Axioms]\label{areaax}
%The following  properties of area are used in Euclid I.35 and I.38. We take
%them from pages 198-199 of \cite{CMEgeo}.
%
%\begin{enumerate}
%\item Congruent figures have the same area.
%\item The area of two `disjoint' polygons (i.e. meet only in a point or
%    along an edge) is the sum of the two areas of the polygons.
%    \item Two figures that have equal content \footnote{CME reads
%        `scissor-congruent' but relies on the  assumption about the real
%        numbers just before the statement of Postulates 3.3 and 3.4. That
%        is, on Hilbert's argument \cite{Hilbertgeom} that for geometries
%        over Archimedean fields, scissors-congruent and equal content are
%        the same.} have the same area.
%        \item \footnote{Hartshorne (Sections 19-23 of
%            \cite{Hartshornegeom}) proceeds in a  more expeditious manner
%            and avoids the need to axiomatize the properties of area.} If
%            one figure is properly contained in another then they cannot
%            have the same area.
%
%   % \item The area of a rectangle whose base has length $b$ and
%      %  altitude is $h$ is $bh$.
%\end{enumerate}
%\end{axiom}
%
%%{\color {green}\sidebar{Andreas 8/14: Point 4 suggests that area is a numeric
%%concept (positive-negative). Are we sure we want to do that?
%%How about ...then the area of the difference is non-empty.
%%Or even better: "...then they cannot have the same area."
%%This would make the proof of 7.0.10 easier understandable as well (the contradiction).}}
%
%
%Note that the first of these is really common notion 4.
%
%
%%\begin{exercise} Draw a scalene triangle such that only one of the three altitudes
%%lies within the triangle. Compute the area for each choice of the base as
%%$b$ (and the corresponding altitude as $h$).
%%\end{exercise}
%%
%%Our argument below shows that the function assigning $bh$ as the area of a
%%triangle does not depend on which choice of base and altitude is made. The
%%argument would have worked just as well if we had taken $17bh$ as the
%%function. The reason we choose $bh$ is so that we generalize the simple
%%counting argument that a $3 \times 5$ rectangle contains 15 squares, each
%%with area 1 square unit.
%%
%%
%%{\color {green}\sidebar{Andreas 8/14: The above paragraph does not make sense to me
%% Are you sure you don't want to talk about triangles instead of rectangles?
%% In a rectangle the bh is merely the product of the sides, and multiplication is
%% commutative, so not a big deal. For triangles, however, it IS a big deal.
%%  Also, the argument below does not address independence of base in
%%  rectangles. \color{red} jb 8/18: Your argument makes sense. But I chose
%%  bh because a) Lemma \ref{areadiag} is about rectangles and b) I wanted to
%%  refer to the counting argument for area.}}
%%
%%
%%%For this discussion, we again have to be careful about the distance
%%%between a point and a line.
%%%
%%%\begin{definition} The {\em distance between  a point $A$ and a line $\ell$} is
%%%length of the segment $AB$ where $AB$ is perpendicular to $\ell$ at
%%%$B$.  We denote this distance by $d(A,\ell)$ or for any distinct
%%%$X,Y$ on $\ell$, $d(A,XY)$.
%%%\end{definition}
%%%
%%%
%%%\begin{thrm}\label{dstpar}
%%%Two lines $m$ and $\ell$ are parallel iff they are {\em always} the
%%%same distance apart.
%%%\end{thrm}
%%%
%%%
%%%That is, for any $A$ and $B$ on $\ell$, the distance from $A$ to $m$
%%%and the distance from $B$ to $m$ is the same.
%%%
%%%Proof. Let $A$ and $B$ be on $\ell$; choose $C$, $D$ on $m$ so that
%%%$AC$ is perpendicular to $m$ at $C$ and $BD$ is perpendicular to $m$
%%%at $D$. By the parallel postulate, $AC$ and $BD$ are parallel so by
%%%Theorem~\ref{oppsideeq} $AC$ and $BD$ have the same distance.
%%%$\qed_{\ref{dstpar}}$
%%%
%%%\sidebar{The next development uses properties of comparing areas
%%%informally in the Euclidean tradition.}
%%
%%The activity, A crucial lemma,  cruclemma.pdf gives teachers an opportunity
%%to work on Lemma~\ref{areaddiag} before seeing the solution.  This lemma
%%uses the 4th of the area axioms. The goal is prove Claim~\ref{diagmult}.
%%
%%\begin{lemma}\label{areadiag}  If two rectangles $ABGE$ and $WXYZ$ have equal content there is a
%%rectangle $ACID$, congruent to  $WXYZ$ and satisfying the following
%%diagram. Further the diagonals  $AF$ and $FH$ are collinear.
%%\end{lemma}
%%
%%Proof. Suppose $AB$ is less than $WX$ and $WZ$ is less than $AE$. Then make
%%a copy of $WXYZ$ as $ACID$ below. The two triangles are congruent.  Let $F$
%%be the intersection of $BG$ and $DI$.  Construct $H$ as the intersection of
%%$EG$ extended and $IC$ extended.  Now we prove $F$ lies on $AH$.
%%\begin{center}
%%   \includegraphics[width=4in]{diagrect.jpg}
%%   \end{center}
%%
%%{\color {green}\sidebar{Andreas 8/14: changed $YZ$ to $WZ$ \color{red} jb
%%8/8: about to take a  break. But I can't make sense of this; I am guessing
%%there is convention about where ABGE go on a diagram and we using it see
%%where F or may be I is. But ??? }}
%%
%%{\color {green}\sidebar{Andreas 8/14: Change first sentence of proof: Suppose $AB$ is less than $WX$. If$WZ$ is greater than or equal to $AE$, then $ABGE$ is properly contained in $ACID$ and they cannot have equal areas. So $WX$ must be less than $AE$.}}
%%
%%
%%
%%Suppose  $F $ does not lie on  $AH $. Subtract  $ABFD $ from both
%%rectangles, then  $DFGE $ and  $BCI $F have the same area.  $AF $ and
%% $FH $ bisect  $ABFD $ and  $FIHG $ respectively. So $AFD \cup DFGE \cup
%%FHG$ has the same content as $ABF \cup BCIF \cup FIH$,  both being half of
%%rectangle $ACHE$ (Note that the union of the six figures is all of $ACHE$.
%%Here, $AEHF$ is properly  contained in $AHE$ and $ACHF$ properly contains
%%$ACH$. This contradicts Axiom~\ref{areaax}.4; hence $F$ lies on $AH$.
%%$\qed_{\ref{areadiag}}$
%%
%%
%%\begin{claim}\label{diagmult} If $ABGE$ and $ACID$ are as in the diagram (in particular, have the same area, then
%%in segment multiplication $(AB)(BG) = (AC)(CI)$. \end{claim}
%%
%%Proof.  Let the lengths of  $AB$, $BF$, $AC$, $CH$, $JK$ be represented by
%%$a$, $b$, $c$, $d$, $t$ respectively and let $AJ$ be $1$. Now $ta = b$ and
%%$tc = d$, which leads to $b/a = d/c$ or $ac = bd$, i.e.$ (AB)(BG) =
%%(AC)(CI)$.
%%
%%\begin{center}
%%   \includegraphics[width=2in]{multondiag.jpg}
%%   \end{center}
%%
%%By congruence, we have $(AE)(AB) = (WZ)(XY)$ as required.
%%$\qed_{\ref{diagmult}}$
%%
%%{\color {green}\sidebar{Andreas 8/14: I changed $(AE)(AB) = (WZ)(XY)$ to $(AC)(CI) = (WX)(XY)$. I think that's what you meant, right?}}
%
%
%We have shown that for any rectangles with equal areas the products (in
%segment arithmetic) of the base and the height are the same. This condition
%would be satisfied if the area were $kbh$ for any $k$ representing a
%segment class. In order to agree with the intuitive notion that this area
%should be same as the number of unit squares in a rectangle we define.
%
%%{\color {green}\sidebar{Andreas 8/14: We could add: "In that case the unit square would become a unit rectangle with %sides $1$ and $k$."}}
%
%
%\begin{definition} The area of a square 1 unit on a side is the (segment
%arithmetic) product of its base times its height, that is one square unit.
%\end{definition}
%
%%{\color {green}\sidebar{Andreas 8/14: That definition doesn't make sense to me the way it is written. "The area of a %rectangle is the product (segment arithmetic) of its base and height. The area of a square with side $1$ is the unit %of area."}}
%
%%{\color {green}\sidebar{Andreas 8/14: Claim 7.0.11 gives the rational for defining area of rectangles as base x %height. Making the area of the unit square the unit of area makes sense for the field since it has the property that %1 x 1 = 1. Now of course Theorem 7.0.13 is folded into the definition and can be eliminated.}}
%
%
%\begin{theorem}\label{areaformrect} The area of a rectangle is the (segment
%arithmetic) product of its base times its height.
%\end{theorem}
%
%Proof.  Note that for rectangles that have integer lengths this follow from
%Exercise~\ref{scamult}.  For an arbitrary rectangle with side length $c$
%and $d$, apply the identity law for multiplication and associativity.
%$\qed_{\ref{areaformrect}}$
%
%\begin{activity} The activity fndef.pdf explores some examples of
%`well-defined' notions.
%\end{activity}
%
%We can show that any triangle is scissor congruent to half of a rectangle.
%So the area of a triangle should be $\frac{1}{2}$ base x height. But why is
%this well-defined?  Could the value of $\frac{1}{2}$ base x height depend
%on the choice of the base?
%
%%{\color{blue} 8/2/23 9pm  ANDREAS: Do we still want
%%Theorem~\ref{triformula}? Our idea that it avoided proportion was wrong.
%%But it is still a pretty neat argument for the proposition claimed.}
%%
%%{\color {green}\sidebar{Andreas 8/14: I think we're still wrong or at least incomplete. We would need a theorem or lemma stating that if two rectangles are equidecomposable/equicomplementable, then they have the same area
% function, or at least then they can be arranged as in figure of Lemma 7.0.10. It's not hard to do by contradiction and might be worth adding.}}
%

%
%\begin{theorem}\label{triformula}  Any of the three choices of base for a triangle give
%the same value for the product of the base and the height.
%\end{theorem}
%
%
%Proof. Consider the triangle $ABC$ is figure 1.  The rectangles in figures
%1,3, and 5 are easily seen to be scissors congruent.  By
%Claim~\ref{diagmult}, each product of height and base for the triangle is
%the same. That is,  $(AB)(CD) = (AC)(BJ) = (BC)(AM)$. But these are the
%three choices of base/altitude pair for the triangle $ABC$.
%
%
%\begin{center}
%   \includegraphics[width=4in]{areaformtriinv.jpg}
%   \end{center}
%$\qed_{\ref{triformula}}$
%%%The following argument has a big hole.
%
%%\begin{lemma}\label{arearect}  The choice of base and altitude of a parallelogram does
%%not change the value of $bh$.
%%\end{lemma}
%%
%%Proof. We have prove that segment multiplication is commutative.
%%
%%
%%\begin{lemma}\label{areatri} For any triangle, the area $\frac{bh}{2}$ does not
%%depend on the choice of the base and altitude.
%%\end{lemma}
%%
%%Proof. Consider the triangle $ABC$. Choose $D$ to form the
%%parallelogram $ABCD$.  Choose $B'$ and $D'$ on $BD$ which are
%%congruent so the rectangle $AB'D'C$ has the same area as the
%%parallelogram $ABCD$. Now the product of $d(B'D',AC) = d(BD,AC)$ (the
%%altitude on $AC$) with $AC$ is the same as the product of $d(AB',CD')
%%= d(AB,CD)$ (the altitude on $AB'$) with $AB=AB'$ by
%%Lemma~\ref{arearect}. It remains to show the same value results from
%%multiplying the altitude on $BC$ by $BC$. For this note, choose $E$
%%so that triangle $ACE$ is congruent to $ABC$. that the parallelogram
%%$ABCE$.  The altitude on $BC$ is $d(BC,AE)$. \footnote{X is not
%%marked on the current provisional diagram.} is scissor congruent with
%%$FDEB$ and its area is computed with this choice of altitude.
%%
%%\begin{center}
%%    \includegraphics[width=2in]{areaform1.jpeg}
%%    \end{center}
%%
%%
%%$\qed{\ref{areatri}}$
%
%% Consider the triangle $BDE$. Choose $F$ to form the
%%parallelogram $FDEB$. Now the product of $d(FB,DE)$ (the altitude on
%%$DE$) with $DE$ is the same as the product of $d(BE,FD)$ (the
%%altitude on $DE$) with $BD$ by Lemma~\ref{arearect}. It remains to
%%show the same value results from multiplying the altitude on $BE$ by
%%$BE$.  For this note, that the parallelogram $BDXE$ \footnote{X is
%%not marked on the current provisional diagram.} is scissor congruent
%%with $FDEB$ and its area is computed with this choice of altitude.
%
%% In the next section we will
%%show how to  justify the meaning of $`length$ as a number and the
%%meaning of the product  $bh$.  It might be pedagogically useful to
%%rewrite 4) as: The area of a square one unit on a side is one square
%%        unit.
%
%
%
%
%
%
%
%
%
%
%%Actually the axiomatic treatment of `scissor-congruent' was
%%introduced by Hilbert \cite{Hilbertgeom} and gets around some
%%difficulties with irrational numbers that we are not being very
%%careful about here.
%
%\bigskip
%
%
%
%\medskip
%
%%In normal language\footnote{This is where we are depending on
%%Hilbert. He proves that every geometry satisfying Euclid's axioms can
%%be coordinatized by a division ring. When we switch to the algebraic
%%formulation the numbers are the elements of this ring.}, Euclid I.35
%%says: the area of a parallelogram is the base times the altitude.
%%
%%$$A = bh$$
%%
%%\medskip
%%
%%Euclid I.35 says: the area of a triangle is $\frac{1}{2}$  the base
%%times the altitude.
%%
%%$$A = \frac{bh}{2}$$
%
%We have the following immediate corollary which is the key to what CME
%calls the side-splitter theorems.  Note that proof of this lemma is {\em
%purely algebraic} (once we have established the area formulas) and requires
%using the {\em associative law} several times as well the existence of
%multiplicative inverses.}


\section{ Archimedes,  Dedekind, and Completeness}\label{ArchDed}

 We quoted in
Methodology~\ref{axsys}, Hilbert's desire `to choose for geometry a simple
and complete set of independent axioms'. In this section we first discuss
Hilbert's continuity axioms in the context introduced in
Methodology~\ref{axcrit}: $T$ is {\em descriptively complete} \cite{Detax} if
$T$ implies all the statements in our preexisting list of `true geometrical
statements'. Then we consider more formal notions of `complete' which were
developed in the first third of the 20th century.



A main theme of the preceding sections is that Hilbert (1899) showed
descriptive completeness of his first four groups of axioms (not only for
Euclid's plane geometry but establishing Descartes' analytic geometry
\cite[\S 20-23]{Hartshornegeom}). Hilbert's continuity axioms (Group V) aimed
at establishing
\begin{enumerate}
\item a {\em geometric} basis for what is variously called
    Cartesian/coordinate/analytic geometry \item categoricity --$T$ is
    categorical if it has a unique model (up to isomorphism).
\end{enumerate}

At the turn of the 20th century the only rigorous basis for the real plane
was the construction of the real numbers from the natural numbers by
\cite{Dedekind} (1888) and then constructing the  Cartesian plane over the
reals. But Section~\ref{num} works from a plane satisfying geometric axioms
and defines the field in it. By adding an  axiom implying   the plane and the
field are unique both goals are reached.   The rather complicated story for
completeness is told in Methodology~\ref{cccl}.
 %For this in
%Methodology\ref{logics} we  skip forward in history and consider some
%developments in logic.




%These additional axioms require either infinite disjunctions (Archimedes) or
%quantification over subsets (Dedekind cuts) (2nd order logic).






%\begin{definition}[Logic(s)] \label{logics}
% A logic $\Lscr$ assigns to each vocabulary $\tau$ (Definition~\ref{vocmod} a collection of
%$\tau$-structures (interpreting each of the terms in the vocabulary), a set
%of $\Lscr(\tau)$-sentences, a truth value to each sentence {\em in each
%structure}, and a set of {\em inference rules} that govern deductions.
%
%Hilbert introduced a key distinction: {\em First order logic only allows
%quantification over individuals; second order logic allows quantification
%over sets. }
% Thus `$X$ is infinite' is
%defined by the second order sentence: $( \exists Y)Y\subseteq X \wedge Y \neq
%X \wedge (\exists f) f:Y\rightarrow X$ is onto $X$.
%
%
%
%
%\end{definition}
%
%Famously, Quine described  second order logic as `set theory in sheep's
%clothing'. There is no complete second-order theory for geometry (as it would
%include `all' of mathematics). See
%\url{https://plato.stanford.edu/entries/logic-higher-order}). So we concern
%ourselves primarily with first order logic. One of Hilbert's achievements in
%the Grundlagen was to obtain Euclid's theorems based on first order axioms as
%he pointed out in \cite[p 4-7]{HilbertBernays}.

Hilbert's Group V (continuity axioms) contains two axioms. The Archimedean
axiom is usually taken as a property of an ordered group (or field). However
for geometry it says for any pair of line segments $AB$ and $CD$ there is a
natural number $n$ such that $n$ copies of $AB$ cover $CD$. Since the $n$ is
unbounded, this axiom is not first order but rather in a logic
called\footnote{Quantification is allowed only over individuals but infinite
conjunctions and disjunctions are allowed. The Archimedean axiom asserts an
infinite disjunction: $\bigvee_n \phi_n(A,B,C,D)$ where $\phi_n$ says $n$
copies of $AB$ cover $CD$.} $L_{\omega_1,\omega}$. Note that the statement of
the Archimedean axiom involves some notion of `addition of lengths'.

Euclid uses the Archimedean axiom in Book V on proportion and then to
 prove VI.2, the side-splitter theorem. As we have seen Hilbert establishes
 VI.2 on the basis of axiom groups I-IV which are all first-order.



Although expressed in an unusual  way\footnote{The axiom asserted `a maximal
Archimedean geometry', hence unique. Currently,
    `categoricity' means uniqueness. And, complete means negation complete \ref{negcon}.
Strictly speaking, Hilbert's `maximality' axiom is only expressed in the
arcane `sort logic' \cite{Vaan3}.}, Hilbert's {\em completeness axiom} can be
regarded as asserting Dedekind completeness (equivalently, the least upper
bound axiom) in the theory of ordered fields. This is his only
 use of these axioms to prove geometric theorems in \cite{Hilbertgeoma};
  The other
applications are to proving metamathematical (independence/consistency)
results.

 A standard result in advanced calculus courses shows every
Dedekind complete field is Archimedean. So the Archimedean axiom is redundant
in Hilbert's system. He singles it out to show that the `completeness' is not
needed for such important results as Theorem~\ref{wbg} showing the
equivalence between decomposition and measure for determining area.

\begin{peda}[Student background] {\rm In particular, for Hilbert to show
that his results do not depend on Archimedes, he
must show that non-Archimedean fields exist. Hilbert gives a concrete proof
(involving the study of rational function fields) of the existence of
non-Archimedean fields, taking $t$ to be infinite in an ordering of the
rational function field $\Re(t)$. This is not usually taught in an
undergraduate algebra course. We give now a proof using the `compactness'
theorem for first order logic-- a standard topic in an undergraduate course
in mathematical logic.}
\end{peda}

The example of the plane over the real algebraic numbers given after
Activity~\ref{defact} shows:

\begin{theorem} The ruler postulate and Hilbert's `completeness axiom are
independent from all the other axioms'.
\end{theorem}

\begin{peda}\label{trans}[Impact on other courses] This observation is
 important for teaching precalculus and
calculus as it emphasizes the gap between transcendental and algebraic
numbers. In fact, there are only countably many algebraic numbers.
\end{peda}







%sidebar{Definitely supplement
\begin{theorem}\label{nonarch}[Proof of Existence of non-Archimedean fields]
There exists a non-archimedean field.

\end{theorem}
Proof. We note  in Methodology~\ref{focompleteness} that Tarski's
negation-complete extension of Euclidean geometry is the theory of $\Pi(M)$
where $M \models T_{rcf}$, the set of all  first order sentences in the
vocabulary of fields true in the real field.
 It has models of arbitrary cardinality
   and most are non-Archimedean. Consider the set $\Sigma$ of sentences:
    $\{ n \times \overline{AB} <  \overline{01}\}$ for $n \in \NN$.
   Clearly every finite subset of $\Sigma$ is
   satisfiable.  By the compactness Theorem\footnote{In
    first order logic, if every finite subset of a set $\Sigma$ of
    first order sentences is satisfiable so is $\Sigma$.}, they are simultaneously
    satisfiable in some model $M$ of $T_{rcf}$. Such
   an $\overline{AB}\in M$ is an infinitessimal. Moreover, no complete first order extension of
   $EG$ (Euclidean Geometry; Notation~\ref{axnotation})
   is finitely axiomatizable \cite{Ziegofields}.
    There are uncountably many  first order complete theories extending EG. % of Euclidean geometry.
$\qed_{\ref{nonarch}}$

\begin{peda}\label{pi}[Continuity used]
{\rm Theorem~\ref{wbg} is one of two places where the continuity axioms are
{\em necessary} for a topic that may occur in a high school geometry course.
The other actually is one instance of Dedekind completeness; formulas like $C
= 2\pi r$ and $A = \pi r^2$ can be true only if $\pi$ is in the
coordinatizing field.}
\end{peda}

\begin{method} \label{findpi}{\rm A key question is whether it is the same $\pi$
is both of the equations in Pedagogy~\ref{pi}. Archimedes argues they give
the same ratio, which is not a number for him.  In \cite{Baldwinpi} we
outline arguments of \cite{Apostol, Spivak} using calculus and
\cite{Weisbart} clarifying Archimedes.}
\end{method}



We return to the issue of making the notion of a complete theory rigorous.
Given a collection of statements $\Phi$ about possible systems for geometry,
there are several ways in which a subset $\Psi$ of $\Phi$ can be thought
complete for a collection of axioms $T$. Of course, each $\psi \in \Psi$ must
be satisfied in each model of $T$. And the most natural notion of complete is
is:

\begin{definition}\label{negcon}
[Categoricity and Completeness]
\begin{enumerate}
\item A consistent theory in a  logic $\Lscr$ is {\em negation complete} if
    for any $\Lscr$-sentence $\phi$, $T\vdash \phi$ or $T\vdash \neg \phi$.

\item A theory $T$ is {\em categorical} if it has {\em exactly one model}.
\end{enumerate}
\end{definition}

%The ability to obtain complete axioms for geometry differs radically
%depending on the logic in which the axioms are formulated. Thus, to describe
%the issue we must explore several choices of logic.
It may seem obvious that if a theory $T$ is categorical then $T$ is negation
complete. However, Methodology~\ref{cccl} explains the truth of that claim
depends on the choice of logic $\Lscr$.


\begin{method}\label{focompleteness}[First order completeness]
{\rm The first order theory $T_{rcf}$
   of the Cartesian plane over real numbers is negation complete; one adds to EG the infinitely many
  axioms that say of the coordinatizing field that every odd degree polynomial has
  a root \cite{Tarskielgeom}. Alternatively, analogously to the Peano axioms for
   arithmetic, Dedekind cuts are formalized to hold only for first order definable
   cuts \cite[p 185]{GivantTarski}.

   Independence of the parallel postulate shows the axioms $HP$   for neutral
geometry are not complete.  Even the descriptively complete theory $EG$
 is far from negation complete. In fact, \cite{BeesonZ, Ziegofields} (first in English) proves that if $T$ is
 finitely axiomatized geometry consistent with $T_{rcf}$ there is no
 algorithm  to decide which sentences are consistent with $T$.}
\end{method}


\begin{method}\label{logics}[logicS] {\rm  Hilbert wrote \cite{Hilbertgeoma}
in German, not in a formal language. So he had no precise way of expressing
negation completeness. What makes a German sentence `geometric'?  Roughly 20
years after the publication of \cite{Hilbertgeoma}, Hilbert developed his
notion of formal logic. In his general formulation quantification is allowed
over individuals ($x$), sets of individuals ($X$), sets of sets of
individuals and so on (This corresponds to Russell-Whitehead's theory of
types.) He later observed \cite{HilbertAck} that groups I-IV are what we now
call first order (for him, the restricted predicate calculus): quantification
is only over individuals and only finite conjunctions and disjunctions are
allowed in combining statements. Now the key distinction arises from
G\"{o}del's completeness theorem: For first order logic, there is a system of
inference rules so that $\theta$ can be derived from $T$ if and only if
$\theta$ is true for every model of $T$. So for first order logic, negation
completeness implies the stronger {\em deductive negation completeness}: for
$\phi \in \Phi$, either $\phi$ or $\neg \phi$ is provable from the axioms of
$T$. But we explain in the next two paragraphs that this is impossible in 2nd
order logic.}
\end{method}




\begin{method}\label{cccl}[Completeness, categoricity and  the choice of logic]
{\rm Categoricity  was confused with negation completeness
(Notation~\ref{negcon}) until the late 1920's. It seems obvious that
categoricity implies completeness. If each $\phi$ and $\neg \phi$ are
consistent with $T$ they both hold in the unique model of $T$, which is
clearly impossible.  For first order theories, this argument is almost
correct\footnote{One has to replace unique model with there is a cardinal
$\kappa$ with unique model $M$ of cardinality $\kappa$. As the
L\"{o}wenheim-Skolem theorem say that any first order sentence with an
infinite model has a model of every infinite cardinality.  Thus, if each of
$\phi$ and $\neg \phi$ is consistent with $T$ then they must both hold in
$M$.}. The difficulty is with the `clearly impossible'.  It is true for first
order sentences since no change in the axioms of set theory will change the
truth value of $\phi$ in $M$. But the truth of a second order sentence about
the real field may depend on the set theory in which you work.}

   \end{method}

\begin{method}\label{incomII} [Incompleteness of 2nd order geometry despite categoricity] {\rm Write the
statement in pure second order logic expressing the continuum
hypothesis\footnote{Consider the sentence: $(\exists X)(\exists f) f \text{
is an injective function from $X$ onto a proper subset of $X$} \wedge
(\exists Y)(\exists g) g $ \\ $\text{is an injective function from $Y$ onto
$X$}$ }. By the celebrated work of G\"{o}del and Cohen, the continuum
hypothesis is independent from the Zermelo-Frankel axiom for set theory (even
with the axiom of choice). Thus Hilbert's axiomatization is not negation
complete for 2nd order logic.}

%which says there are three sets of properly increasing cardinality. If the
%unique model of 2nd order geometry satisfies the sentence then the continuum
%hypothesis is violated. If


\end{method}

 As we noted in Remark~\ref{postsur} Birkhoff's axioms
are phrased as  in set theory as a complicated description of   the geometry
over the real field (`Real field' is defined in set theory). With Hilbert's
definition of the field, we can make this into a legitimate second order
axiomatization of a theory that is categorical in any particular model $M$ of
ZFC. But the second order theory will depend not just on the given axioms but
only what set theoretic statements are true in $M$ (as in \ref{incomII}).

\begin{thrm}\label{formbirk} Fix two points $0,1$ on a Hilbert plane $M$ and the line $\ell$
through them.  Let $<,+,\times$ be the ordering relation and field operations
defined on $\ell$ by Theorem~\ref{biint}. Add the least upper bound axiom:

$$(\forall X) (\exists y)(\forall x \in X)[ x<y \wedge [ (\forall w) (\forall x \in X) x<w) \rightarrow y \leq w]].$$ The field on
$\ell$ is a complete ordered field and so is isomorphic to the reals.
\end{thrm}

\begin{proof}
So clearly the ruler postulate holds on $\ell$. But we know by
Theorem~\ref{rmlist} that the group of rigid motions acts transitively on
lines so the ruler postulate holds on every line and so on $M$.
\end{proof}

%\begin{method}\label{sasind}[Independence of SAS]
%\cite[p 113]{Moise} gives a nice proof of the independence of SAS from the
%earlier postulates and Dedekind completeness using that the coordinatizing
%function $f_\ell$ depends on the line. Given a model with a fixed distance
%function $d$, define $d'(A,B) $ to equal $d(A,B)$ except on one line $\ell'$.
%Then choosing









\section{Non-Euclidean Geometry}\label{noneuc}

We showed in Section~\ref{num}, specifically Methodology~\ref{biint}, that
the theories of Euclidean geometry  and fields were bi-interpretable.  The
same is true of Euclidean and hyperbolic geometry.  In particular,
Poincar\'{e} showed that one could interpret hyperbolic geometry in a disc on
the Euclidean plane. A geometric argument analogous to that in
Section~\ref{num} appears in \cite[\S 39]{Hartshornegeom}, showing that an
ordered field is definable in hyperbolic geometry.


The switch from the old to the new view of geometry (Comment~\ref{axsys})
stemmed from the proof of the independence of the parallel postulate.  Most
of the modern work on non-Euclidean geometry assumes the existence of a
real-valued metric (distance function) and is {\em not} done synthetically.
However, \cite{Hartshornegeom} elaborates on some axiomatic non-Euclidean
geometry. In neutral geometry, he proves there is a rectangle if and only if
the sum of the angles of a triangle is two right angles and introduces an
axiomatic trichotomy of semi-Euclidean, semi-hyperbolic, and semi-elliptic
geometries depending on the order between the sum of the angles of a triangle
and two right angles. Further, he  proves that a semi-hyperbolic plane
satisfying Hilbert's `limiting parallel axiom' ({\em hyberbolic geometry})
defines a field.



\begin{method}\label{infint} [Informal description of  Interpretation] {\rm It is easy to confuse two meanings of interpretation i) (somewhat
archaic for logicians  but used above for consistency with the SLO) as a
witness to truth: `a model of $\phi$ or $T$' is called `an interpretation of
$\phi$ or $T$' and ii) a relation between two (languages, theories, models).
We mean the second.

Two theories are bi-interpretable if there are interpreting maps $F, G$ from
each to the other such that $F\circ G$ is the identity.

One way  to prove the consistency of, say, hyperbolic geometry, is  to
interpret it in a Euclidean model; redefine the undefined terms of geometry
(point, line, between, congruent, etc.) by formulas of Euclidean geometry and
prove that {\em with this interpretation} the axioms of Hyperbolic geometry
are satisfied in each model of Euclidean geometry. This yields that
hyperbolic geometry is {\em relatively consistent} with Euclidean geometry.
We give a full definition in the supplement --Definition~\ref{fomrinterp}.
Nice introductions to interpretation for those familiar with modern algebra
is in \cite[\S 3: Interpretability]{BorovikNesinbook}} and for the more
logically oriented \cite{Enayatinttut}.
\end{method}

We define some theories of geometries and indicate interpretability
relations.

\begin{definition}\label{Ldef}[Limiting Parallels]
\begin{enumerate}
\item Two rays are {\em coterminal}  if they eventually coincide.
\item A plane has {\em limiting parallels} if there are rays $a$ through
    $A$ and $b$ through $B$ that are either coterminal or they lie on
    distinct lines not equal to $AB$ and every ray in the interior of the
    angle $BAb$ meets the ray $Bb$. \cite[p 312]{Hartshornegeom}
    \end{enumerate}
\end{definition}

\begin{theorem}
\begin{enumerate}
\item The theory of ordered fields is bi-interpretable with HP5 (neutral
    geometry + parallel postulate.  (Hilbert coordinatization and analysis
    of the cartesian plane over an ordered field.)
%\item Hyperbolic geometry (Poincare disk) is interpretable in Euclidean
%    geomety  \cite[\S 39]{Hartshornegeom}.

Whence, the theory of ordered fields is interpretable in EG (neutral
geometry + Euclid's 5th + E (circle-circle intersection)

\item The theory of Euclidean fields is bi-interpretable with EG. (See e.g.
    \cite{Hartshornegeom, Makgeom}.

    \item Call Hyperbolic geometry (HL) neutral geometry + limiting
        parallels). The theory of Euclidean ordered fields is interpretable
        in HL \cite[\S 41]{Hartshornegeom}.

\item Call semihyperbolic geometry (neutral geometry + sum of the angles of
    a triangle $< 2 RA$.

    Exercise  \cite[39.24]{Hartshornegeom} shows there is a semihyperbolic
    plane which is not hyperbolic.  It is unclear to me whether either
    semi-hyperbolic plane discussed in this exercise interprets a Euclidean
    ordered field.

\item %Theorem 9 of \cite{Makgeom} (page 21) seems to me to imply that EG
%    and EG are not biinterpretable  (Maybe this is obvious. Can a theory be
%    bi-interpretable with an extension by a contingent sentence.
Clearly  EG is not interpretable into HP5. If the coordinatizing field
$\Phi(M)$  of a model of $HP5$ is not Euclidean (Some positive number
doesn't have square root.), $\Pi(\Phi(M))$ is not Euclidean (There are two
overlapping circles that don't intersect.).
\end{enumerate}
\end{theorem}


While he doesn't state it quite this way, \cite[\S 40]{Hartshornegeom} proves
\begin{theorem} The theory of hyperbolic geometry with limiting parallels (HL) is
bi-interpretable with EG.
\end{theorem}


Rather surprisingly, since both hyberbolic geometry and Euclidean geometry
are bi-interpretable with the real field, they are themselves
bi-interpretable.  That is, it is possible to define a model of each in any
model of the other. This emphasizes that interpretation preserves not meaning
but consistency.









\section{Appendix: Formal Systems}\label{formsys}





 This section is background for instructors who want more details
on the logical notions that are sketched in the text.  The aim is to give a
precise notion of truth in a mathematical structure and give more a more
precise account of the interpretation of theories for non-euclidean case,
which are much more complicated than the examples given in the chapter.
 One accessible source is
\cite{BarwiseEtch}. This material is in any introductory course in
mathematical logic -- and much more fully explained.





\begin{definition}\label{formsysdef} A formal system of first order logic consists of


\begin{enumerate}
\item vocabulary
\begin{enumerate}
\item Logical vocabulary: $(,), \meet, \wedge, \neg, = \forall, \exists$
    variables $v_1, v_2, \ldots$.
\item non-logical vocabulary $\tau$\footnote{If there are no function
    symbols, the vocabulary is called {\em relational}; if there are no
    relations it is called {\em algebraic}.}: a list of relations,
    function, and constant symbols of prescribed arity.
\end{enumerate}
\item Terms (expressions) are defined by  induction.
\begin{enumerate}
\item A variable or a constant is a term.
\item If $f$ is an $n$-ary function symbol and $t_1, \ldots t_n$ are
    terms then $f(t_1,\ldots t_n)$ is a term. \end{enumerate}
    \item well-formed formulas (wff) are defined by induction.
\begin{enumerate}
\item  Atomic formulas
\begin{enumerate}
\item If $t_1, t_2$ are terms then $(t_1 = t_2)$ is an atomic
    formula.
\item If $t_1, \ldots t_n$ are terms and $R$ is an $n$-ary relation
    symbol then $R(t_1,\ldots t_n)$ is an atomic formula.

    For example, if $<$ is a binary relation symbol, $0$ a constant
and $x$ a variable, $x<0$ is an atomic formula.

   % {\color {green}\sidebar{Andreas 8/8:  add an example with two or
   % three terms}}
    \end{enumerate}
\item If $\phi$ and $\psi$ are wffs
\begin{enumerate}
\item $\neg \phi$ is a wff;
\item $(\phi \wedge \psi)$ is a wff;
\item $(\phi \meet \psi)$ is a wff;
\item $(\exists v_i) \phi$ and $(\forall v_i) \phi$ are wffs.
\end{enumerate}
\end{enumerate}
\item  A $\tau$-structure\footnote{A structure for a relational
    vocabulary is called a {\em relational structure}; a structure for an
    algebraic vocabulary is called an {\em algebra}.}     is a set $A$
    and for each
\begin{enumerate}
\item constant symbol $c \in \tau$, an element $c^A$ of $A$;
\item $n-ary$ relation symbol $R\in \tau$ a relation $R^A \subset A^n$;
\item $n-ary$ function symbol $f\in \tau$ a function $f \mcolon A^n
    \rightarrow A$.

    For example, the rational field $(\QQ, +,\times,0,1)$ is $\tau$
    structure for the vocabulary $+,\times,0,1$.



%    {\color {green}\sidebar{Andreas 8/8:  this is not understandable to
 %   this audience without examples or paraphrasing; also true for 5.}}
\end{enumerate}
\item To define truth of $\tau$-sentences in an $\tau$-structure $A$:
\begin{enumerate}
\item Expand $\tau$ to $\tau^*$ by adding a constant symbol $c_a$ for
    each $a \in A$. (That is, $c^A_a =a$.)
\item The denotation $t^A$ of terms $t$ is defined by induction.
\begin{enumerate}
\item The denotation of a constant $c$ is $c^A$.
\item The denotation of a term $t = f(t_1,\ldots t_n)$ is $t^A =
    f^A(t^A_1,\ldots t^A_n)$.
\end{enumerate}
 \item Now truth of a formula $\phi(t_1,\ldots, t_n)$ (where the $t_i$
     are $\tau^*$-terms)       is defined by induction:
\begin{enumerate}
\item If $\phi$ is $t_1 = t_2$, $A \models \phi$ if $t^A_1 = t^A_2$.
\item If $\phi$ is $R(t_1,\ldots t_n)$, $A \models \phi$ if $\langle
    t^A_1,\ldots t^A_n\rangle \in R^A$.
\item If $\phi(t_1,\ldots, t_n)$ is $\psi(t_1,\ldots, t_n) \meet
    \chi(t_1,\ldots, t_n)$ then $A \models \phi(t_1,\ldots, t_n)$ if
    $A \models \psi(t_1,\ldots, t_n)$ and  $A \models
    \chi(t_1,\ldots, t_n)$.
\item If $\phi(t_1,\ldots, t_n)$ is $\neg\psi(t_1,\ldots, t_n)$ then
    $A \models \phi(t_1,\ldots, t_n)$ if it is not the case that $A
    \models \phi(t_1,\ldots, t_n)$. \item If $\phi(t_1,\ldots, t_n)$
    is $(\exists v_i) \psi(t_1,\ldots, t_n,v_i)$ then $A \models
    \phi(t_1,\ldots, t_n)$ if for some $a\in A$, $A \models
    \psi(t_1,\ldots, t_n,c_a)$.

      For example, the sentence $(\exists x) (x^2 = 1 +1)$ is false
    in the structure $(\QQ, +,\times,0,1)$ and true in the structure
    $\CC,+,\times,0,1)$ (where the $QQ$ and $\CC$ indicate we are to
    interpret as the rational and complex field respectively.
\end{enumerate}
\item  The sentence $\phi$ is valid if it is true in every structure.
    For every $M$, $M \models \phi$.
\item  The sentence $\phi$ is a {\em logical consequence} of the
    sentence $\psi$ if for every $M$, if $M \models \psi$ then  $M
    \models \phi$.
\end{enumerate}
\end{enumerate}


If a sentence  $\phi$ is true in a structure $M$, we say $M$ is a {\em
model} of $\phi$. If $M$ satisfies all axioms of a theory $T$, $M$ is a
{\em model} of $\phi$.
\end{definition}


\begin{theorem}\label{ccthm}[Completeness  and Compactness]
\begin{description}
\item [G\"odel's Completeness theorem] For any sentence of first order
    logic and any $T$:

    $$T \models \phi \leftrightarrow T\vdash \phi.$$
    \item[Compactness theorem] For any and constants $\abar$
        $\phi_n(\abar)$ and collection of sentences $\phi_n(\abar)$.

        If there is a model $M$ for each $N< \omega$, there is an
        $\abar_N$, and $M_N$ such that $M \models \bigwedge_{n<N}
        \phi_n(\abar_N)$ then there is a model $M_\omega$ and tuple
        $\abar_\omega$ such that $M_\omega \models \bigwedge_{n<\omega}
        \phi_n(\abar_N)$.
        \end{description}
        \end{theorem}


\begin{definition}{Proof system}
We now specify a proof system for first order logic. However, we not
recommend proofs in such a formal system in a GeT course.

The key point is that the arguments  in Euclid generally follow a simple
form. A configuration of a finite number points is given and one must show
that there exist further points satisfying a further configuration. That is
the theorem can be expressed by formula $(\forall x_1, \ldots x_n)\theta(
x_1, \ldots x_n) \rightarrow \exists ( y_1, \ldots y_m) \psi(x_1, \ldots
x_n,y_1, \ldots y_m)$. For more detail see \cite[\S 2.4]{avigad-dean-mumma}
or \cite[p 11-14]{Mueller}.


%{\color {green}\sidebar{Andreas 8/8:  Any tautology (a sentence that's
%always true)}}

{\bf Logical Axioms}
\begin{enumerate}
\item Any sentence that is true in every $\tau$ structure (a tautology);
\item The equality  axioms;
 \item $(\forall x) \phi \rightarrow \phi^x_t$ (if $t$ is substitutable
     for $x$ in $\phi$);
\item $(\forall x)(\phi \rightarrow \psi) \rightarrow[(\forall x)\phi
    \rightarrow (\forall x)\psi]$; \item $\phi \rightarrow (\forall x)
    \phi(x)$ (if $x$ not free in $\phi$).
\end{enumerate}


    %{\color {green}\sidebar{Andreas 8/8:  add ')'}}
%
%    \sidebar{From $A$ and $A\rightarrow B$ conclude $B$. \cite[p
%4]{Mueller} suggests `syntactical transformations' and \cite[p
%11-13]{Mueller} conditionalization and universal generalization. This is
%done mostly by example and perhaps this is what we should do.}

{Inference rule}

(Modus Ponens): From $\phi$ and $\phi \rightarrow \psi$, infer $\psi$.

\end{definition}


This is slightly altered version of the definition of interpretation in
\cite{Shoenfield}
\begin{definition}\label{fomrinterp}[Formal definition of interpretation]
\begin{enumerate}
\item We say that $I$ is an interpretation of $L$ in $L'$, where $L$ and
    $L'$ are first-order languages, if $I$ is a function such that

\begin{enumerate} [i]

\item there is a universe for the image of $I$, represented by a unary
    predicate symbol $U_I$ (or formula) of $L'$ ;

\item for each $n$-ary function symbol $f$ of $L$ , a corresponding
    symbol $f_I$ of $L'$;

\item for each $n$-ary predicate symbol $P$ of $L$ (with the exception
    of $=$, which is generally taken to be a logical symbol), a
    corresponding symbol $P_I$ of $L'$.

   % \end{enumerate}
    %\end{definition}
%    \end{document}
\end{enumerate}
\item Moreover, we say that $I$ is an interpretation of $L$ in a theory
    $T'$ if $I$ is an interpretation of $L$ in the language $L'$ of $T'$
    and also:

\begin{enumerate} [i]

\item $T'\vdash (\exists x) U_I(x)$ (it proves that the domain is
    non-empty);
    \item  for each $f \in L$ , $T'\vdash (U_I(x_1)\wedge \ldots \wedge
        U_I(x_n)\rightarrow U_I( f_I(I(x_1\dots ,x_n)))$
 (it proves that the domain is closed under functions).
\end{enumerate}
 %\end{enumerate}
\item Now, if $\phi$ is a formula of $L$ and $I$ an interpretation of $L$
    in $L'$, then we can define for $\phi$ its interpretation in $L'$ ,
    $\phi_I$ . We
 start by defining a formula $\phi_I$ of $L'$ which is obtained by
 starting with $\phi$ and replacing each symbol of the original language
 by its interpretation in $L'$ (e.g., if $\phi$ is $f(x)=y$ , then we
 replace f by $f_I$ to obtain $f_I(x)=y$), and then relativizing the
existential
 quantifiers to the domain (i.e. replace every $(\exists x)\psi$ by
$(\exists x)(U_I(x)\wedge \psi)$. As the last step, if $x_1\dots ,x_n$
are the free variables of $\phi$ , set $\phi_I$ to be $(U_I(x_1) \wedge
\ldots\wedge
 U_I(x_n)\rightarrow \phi_I$.




\item Finally, an interpretation of a theory $T$ in a theory $T'$ is an
    interpretation $I$ of the language of $T$ in $T'$ such that $T'
    \vdash \phi_I$ for every nonlogical axiom (i.e. an $L$-sentence
    $\phi$ that is not universally valid that has been taken as axiom of
    $T$).
 \end{enumerate}
% \end{enumerate}
 \end{definition}

[Interpretation of theories and structures] We have noticed that there are
first order formulas defining the Cartesian plane over a field and, more
surprisingly, conversely if the plane satisfies HP5.  We say that the
theory of fields and the theory of Hilbert planes satisfying the 5th
postulate are {\em mutually interpretable}. As emphasized in \cite{Makgeom}
a stronger connection is more usefel: the defining maps are inverses of
each other; the theories are said to be {\em bi-interpretable} if the
defining maps are inverses of each other. In particular, bi-interpretation
preserves decidability while mutual interpretability may not. A basic
exposition is at \url{https://gup.ub.gu.se/file/167690} and the original
source \cite{TMR} is quite readable.
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%{\color{green} 8/4/23 9am: Maybe we should just drop HP5 as Hartshorne being
%too pedantic???? awkward}

%{\color{blue} 8/4/23 9am: We introduce our axioms  with illustrations in the
%text. But the following notation specifies the connection among the various
%subsets of Hilbert's axioms.




%The terms only make sense with some extensions:  logic, vocabulary, axioms,
%theorem, definition, models. The theorems are given by previous experience.
%The goal is to choose a  logic , vocabulary,  and axioms so that the models
%of those axioms satisfy the collection of theorems.
%
%Not only did Euclid, Hilbert etc make such choices but each instructor, in
%fixing a text for the college course,  does so as well. And we want to
%explain in this chapter how the future students  can understand the
%distinctions among systems available in high school texts and that heir
%students have the choice of different proofs for a given proposition.


%\section{Preface}
%
%{\color{blue} This chapter amalgamates notes for various courses and
%workshops for pre-service and in-service teachers centered on geometry and
%logic. We have provided an extensive bibliography as suggestions for learning
%many of the topics for which there is no space for adequate exposition here.
%
%In particular, the core of the text notes }
%
%The material is motivated by the problem:  Prove that a construction
%taken off the internet for dividing a line segment into n equal
%pieces actually works.  The argument uses most of the important ideas
%of a Geometry I class.  That is, we will  develop constructions,
%properties of parallel lines and quadrilaterals.
%
%As a second goal we want to show Euclid VI.2: Proposition 2. If a straight
%line is drawn parallel to one of the sides of a triangle, then it cuts the
%sides of the triangle proportionally; and, if the sides of the triangle are
%cut proportionally, then the line joining the points of section is parallel
%to the remaining side of the  triangle.   Notoriously, this proposition seems
%to depend on the theory of limits and irrational numbers. However, we prove
%the result in synthetic geometry by defining numbers as congruence classes of
%segments.  This approach avoids reference to limits and yields a rigorous
%proof in terms of concepts accessible to high school geometry students.
%     Specifically, the crucial distinction between the development here and the normal
%     high school geometry class is that in our treatment the arithmetic and {\em completeness} of the real numbers
%     is not taken as part of the (not fully stated) axiomatic system.  Rather, we rely solely
%     upon geometrical axioms, and we prove that there is a field structure
%      with the lengths (equivalence classes of congruent segments) of line segments as
%       the elements.  This provides a coherent "ground up"
%       explanation for results like Euclid VI.2, without introducing
%       limits or reductions to a concept of the real field that the
%       students don't actually have.
%%
       %it prevents the circular logic and
%       "hand-waving" that normally occur with the loose employment of concepts
%        beyond the scope of high school mathematics (e.g., existence of limits).




 %However, we prove the
%result in synthetic geometry; numbers are defined (as congruence
%classes of segments). This yields a rigorous proof without reference
%to limits.

%I have written out most of the mathematics. In addition to the
%obvious problems of a first draft, there are several important tasks
%to make this a useable document for professional development.
%
%\begin{enumerate}
%\item Complete the links to CCSS, both by indexing and by
%    introducing more illustrative problems. \item Develop the
%    pedagogical aspect with group problems and local motivation.
%    \item Develop connections with transformations.
%    \item Develop exercises for teachers/students to use
%        Geometers Sketchpad
%    \item Clean up
%        the diagrams and add more.
%\end{enumerate}

%There is a crucial distinction between the development here and the normal high school geometry class.
%The arithmetic of the real numbers is not taken as part of the axiomatic system. Rather, we have solely
% geometrical axioms and prove that there is a field structure  with the lengths of line as the elements.
%
%One of the goals is to understand that these decisions about the
%foundations of the course have real pedagogical consequences. The
%Common Core standards are agnostic about these issues. But their goal
%of coherence is not satisfied without making some choice.

One of the goals is to understand how these decisions about the axiomatic
      foundations of the course and the manner in which they are (or are
      not) consistently pursued, have real pedagogical consequences.  The
      CCSSM are agnostic about these issues.  But their goal of
       coherence is not satisfied without making a clear choice and
       following it throughout the entire mathematical development.

We have indexed the common core standards \cite{ccss} with the material
here. Note that this implies a close connection with the CPS Content
Framework \cite{CPSstan}.  In particular, the Content Framework big idea
assessment: Congruence, Proof, and Assessment is addressed in the early
sections.  The activities referred to below are at
\url{http://homepages.math.uic.edu/~jbaldwin/CTTIgeometry/ctti} along with
slides, notes, and references.  These notes build from the bottom up. The
workshop frequently varied the order to motivate future definitions and
results.
%
%{\color{blue} 8/3/23 am:  Likely most of the previous paragraph should
%disappear. This responds to Nat's 's letter of July 31 point 2



{\color{violet} {Is this true?  integrate to `proof in geometry'}  Most
deductions in geometry rely only on the rule {\em modus ponens}: From $A$
and $A\rightarrow B$ conclude $B$. \cite[p 4]{Mueller} suggests
`syntactical transformations' and \cite[p 11-13]{Mueller}
conditionalization and universal generalization. This is done mostly by
example and perhaps this is what we should do.}







%\section{The basics of geometry}\label{euclid}
%\subsection{Common Notions}
%
%These are the common notions or {\em axioms} of Euclid. They apply
%equally well to geometry or numbers.  Following modern usage we won't
%distinguish `axiom' and `postulate'.
%
%
%
%\medskip
%
%Common notion 1. Things which equal the same thing also equal one another.
%
%Common notion 2. If equals are added to equals, then the wholes are equal.
%
%Common notion 3. If equals are subtracted from equals, then the remainders
%    are equal.
%
%Common notion 4. Things which coincide with one another equal one another.
%
%Common notion 5. The whole is greater than the part.
%
%
%
%
%We begin with a modern rendition of Euclid's axioms along with some
%additional axioms to fill some gaps.
%
%
%       \bigskip
%
%%\sidebar{jb 7/10/23: These 3 axioms had disappeared from the notes.
%%resurrected from an earlier version.  Numbering will be off from printed
%%version as editing continues.}\subsection{Book 1}\label{bk1}
%
%\begin{activity}{\bf Standard G-C0 }{\rm
% 1. Know precise definitions\footnote{Activity G-C01: definition.pdf} of
%angle, circle, perpendicular line, parallel line, and line segment, based
%on the undefined notions of point, line, distance along a line, and
%distance around a circular arc.
%
%
%
%Why is distance along a circular arc given as an undefined notion? Can we
%        define the length (congruence) of a circular arc in terms of the
%        length (congruence of line segments)?  Remember SSS. Why is the
%        length of the chord a less good measure than the length of the arc?
%
%
%Note that we can define which arc lengths are congruent. But in general the
%length of an arc may not be the length of a straight line segment in the
%geometry. (Take the plane over the real algebraic numbers.)}
%\end{activity}
%
%
%In this workshop we take not distance along a line or along a circular arc
%as basic but: two segments are congruent or two arcs are congruent.
%
%%These notes are a reordering of some of Book 1 (and a bit of book 6)
%%of Euclid with a restatement of the postulates in more modern English
%%(than the Heath translation). In addition some additional axioms that
%%Euclid omitted have been added.
%
%The Construction, Proof, and transformations activity (proofbackgr.pdf) was
%designed for background discussion before beginning the formal work.
%
%We begin with a modern rendition of Euclid's axioms along with some
%additional axioms to fill some gaps.
%
%
%\sidebar{Andreas: problem for us: \begin{enumerate}
%
%\item  Prove the coordinatizing field of a Hilbert plane is linearly
%    ordered-- this should use something about congruence.
%
%
%\item Identify a geometric  property which gives exactly the pythagorean
%    property
%    \end{enumerate}
%
%    Surely both well known but not to me.  My idea is to use Cartesian planes
%    over `small' fields to illustrate independence.
%
%
%     }}







%\medskip


%\begin{activity} [$3^+$: Intersections]\label{circint}
%For this activity assume the structure $Q $ (with universe the reduced
%fractions, addition and multiplication. Think of verifying the axioms using
%Section~\ref{formsys}.
%
%\begin{enumerate} %\mbox{}
%\item {\bf Axiom 3'} If a circle is drawn with radius $AB$ and
%    center $A$, it intersects any line through $A$ other than
%    $AB$ in two points $C$ and $D$, one on each side of $AB$.
% \medskip
%
%
%\item {\bf Axiom 3''}       If from points $A$ and $B$, circles
%    with radius $AC$ and $BD$ are drawn such that each circle
%    contains points both in the interior and in the exterior of
%the other, then they intersect in two points,  on opposite sides
%of $AB$.
%
%%
%%     so if two segments $A'C'$ and $C'D'$ are drawn on a straight
%%    line and $AB$ is congruent to a subsegment of $A'D'$
%%    %$AC +BD$ has length atleast that of  $AB$
%%    then they intersect in
%%    two points, one on each side of $AB$.
%\end{enumerate}
%\end{activity}
%
%{\color{blue} 9pm 8/2/23
%\begin{exercise}\label{cppyth} Does the Cartesian plane over $ Q$ satisfy axiom 3', 3''?
%
%What about the plane over $C$?
%\end{exercise}}

%\sidebar{jb 3/18.  I took out addition of segments for the moment;
%but maybe it should be defined here.}

\bigskip






%\sidebar{AM 4/1:I have the gut feeling that the construction from
%exercise 3.1.1 and SSS
% can prove Euclid's 4th postulate, i.e. make it a theorem....why not? What am I missing?
%
%
% JB 5/19: Hilbert in Theorem 15 and remark thereafter agrees with you.  It may be that taking one of the congruence angle as
% a postulate is stronger than what Euclid allowed himself to do (could be done) from superposition.
% Or maybe it follows from a careful treatment of superposition.}





%The little box $\qed_{\ref{sas}}$ signals that we have completed the proof
%of Theorem~\ref{sas}.


%Dup omitted
%{\color{blue} \begin{remark} The results in Euclid are  often classified as Theorems or Construction depending on whether the conclusion
%is a true statement or the existence of a particular configuration. Often a single basic idea can prove results of each type. For example
%Theorem~\ref{sas}  and Construction~\ref{cp1}.
%
%Is there any point in making this distinction unless we justify it more?
%
%\end{remark}}









%\item For any points $a,b$ on $\ell$, to determine that
%
%$$a \times b = c$$
%
%or $$ab =c$$
%
%perform the following construction.
%
%Draw a line $m$ intersecting $\ell$ at $0$.  Mark a point $1'$ on
%$m$ so that $01' \cong 01$.  Lay off a point $a'$ on $m$ so that
%$0a' \cong 0a$.  Draw the line $a`1$ and then construct a
%parallel to $a'1$ through $b$. Call the intersection of this line
%with $m$, $X$. Now $ab$ is the point on $\ell$ with $0 (a b)
%\cong 0X$.
%
%
%
% \begin{center}
%    \includegraphics[width=3in]{multiplication.jpg}
%    \end{center}

 %   \item Consider two segment classes $a$ and $b$. To define
%        their product, define a right triangle\footnote{The right
%        triangle is just for simplicity; we really just need to
%        make the two triangles similar.} with legs of length $a$
%        and $b$. Denote the angle between the hypoteneuse and the
%        side of length $a$ by $\alpha$.
%
%        Now construct another right triangle with base of length
%        $b$ with the angle between the hypoteneuse and the side
%        of length $b$  congruent to $\alpha$. The length of the
%        vertical leg of the triangle is $ab$.
%
% \begin{center}
%    \includegraphics[width=4in]{mult3.jpg}
%    \end{center}

{\color {green}\sidebar{Andreas 8/14: picture mult3.jpg is wrong, should be
ab not ba. I redid it}}



%\end{enumerate}


%\end{definition}

%\sidebar{The earlier definition of addition will be removed when the
%following three variants are fully clarified.}




%\section{Introducing Algebra}\label{num}
%
%{\color{blue} 8/3/23 5pm:  Have to figure out where to put this commentary.
%\begin{com}[Irrationality]
%The geometry course is an excellent place to organize historically and
%conceptually the students understanding of irrational and transcendental
%numbers.
%
%
% Two or more magnitudes are {\em commensurable} if they share
% a common measure. Two feet and three feet are commensurable, each
%being a multiple of a foot; but the diagonal and side of a square are
%incommensurable\footnote{Adopted from \cite{Piercecom}.} Thus, the
%irrationality of $\sqrt 2$ is usually attributed 5th century BCE
%Pythagoreans.  A solution to the comparing irrationals was developed by
%Eudoxus in the 4th century BCE and expounded in Euclid in Book V on
%proportion. Crucially, this was a study of `magnitudes' of various
%dimensions.  The notion of ascribing a number a measure of area was only
%adopted in geometry during the 19th century AD and put on a firm footing by
%Stolz and Pasch as expounded by \cite{Hilbertgeoma}. A beauty of Hilbert's
%approach is that he shows that (a suitable translation) of the axioms of
%Euclidean geometry allow the measure of area in any Euclidean {PRECISE
%NOTATION NEEDED} plane by interpreting a field into the plane. We describe
%now that development which requires only first order axioms.  In
%Section~\ref{ArchDed}, we will note how the real numbers provide the most
%commonly used example. \end{com} }
%
%
%
%
%
%
%{\color{orange} 8/3/23 5PM: Side splitter is introduced as
%Theorem~\ref{sidespl}.}
%
%The difficulty with the side-splitter theorem is that we don't really
%know what ratio means when the sides are  {\em incommensurable}. The
%following activity introduces this notion.
%
\begin{sactivity} See goldenratio.pdf and \cite{Smorynskihist}.
\end{sactivity}
%
%Suppose that we wanted to divide a line into three segments in
%proportions that were not commensurable.  How could we do that?
%
%\begin{activity} Divide a line $AB$ into three segments whose lengths
%are proportional to the sides of a $30-60-90$ triangle. (Irrational
%side-splitter Motivation.pdf)
%\end{activity}
%
%The construction is actually the same as before. But how do we know
%it works? See \cite{Raimi} and \cite{Baldwingeompr} for a discussion
%of how this problem affected the 20th century high school mathematics
%curriculum in the U.S. For this we introduce {\em segment
%arithmetic}. This topic appears in Euclid, gets a different
%interpretation in Descartes and still another in the 19th century arithmetic
%of real numbers.
%
% We want to define the multiplication of `lengths'. Identify the collection of all congruent
%    line segments as having a common `length' and choose a
%representative segment $OA$ for this class. There are then three distinct
%historical steps. (See in particular \cite{gg} and Heath's notes to Euclid
%VI.12
%(\url{http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI12.html}.)
%In Greek mathematics numbers (i.e. 1, 2, 3 \ldots) and magnitudes (what we
%would call length of line segments) were distinct kinds of entities and areas
%were still another kind.  Numbers simply count the number of some unit; the
%unit varies from situation to situation.
%
%\begin{remark} {\em From geometry to numbers}
%\begin{enumerate}
%\item  Euclid shows that the area of a parallelogram is jointly
%    proportional to it base and height. \footnote{In modern terms
%    this means the area is proportional to the base times the
%    height. But Euclid never discusses the multiplication of
%    magnitudes.}
%
%
%%Euclid represents the multiplication of line segments as
%%    giving a two dimensional figure; %this tradition remains until
%%    the 12th? century.
%\item  Descartes defines the multiplication of line segments to
%    give another segment\footnote{He refers to the fourth
%    proportional (`ce qui est  meme que la
%    multiplication'\cite{Descartes})}.  Hilbert shows the
%    multiplication on segments satisfies the field\footnote{In
%    \cite{Hilbertgeom}, the axioms for a semiring (no requirement
%    of an additive inverse are verified.} axioms.
%\item Identify the points of the line with (a subfield) of the
%    real numbers. Now addition and multiplication can be defined
%    on points\footnote{And thus all axioms for a field are
%    obtained. Hilbert had done this in lecture notes in
%    1894\cite{HalMy}}.
%\end{enumerate}
%
%
%
%The standard treatment in contemporary geometry books is to begin
%with stage 3, taking the operations on the real numbers as basic.  We
%will pass rather from geometry to number, concentrating on stage 2.
%Thus, not all  real numbers may be represented by points on the line
%in some planes.
%\end{remark}
%
% We first introduce an addition
%and multiplication on line segments. Then we will prove the geometric
%theorems to show that these operations satisfy the field axioms
%except for the existence of an additive inverse. We note after
%Definition~\ref{pointadd} how to remedy this difficulty  by the
%passing to points as in stage 3.
%
%\begin{activity} {\bf CCSS 8.F.1, F-IF.1} Prepare for the definition of segment addition with the
%worksheet 1fnactgeo.pdf concerning the
%meaning of equivalence relation and function and the connections
%between them.
%\end{activity}
%
%
%\begin{notation}\label{segeq}  Note that congruence forms an equivalence relation
%on line segments. We fix a ray $\ell$ with one end point $0$ on
%$\ell$. For each equivalence class of segments, we consider the
% unique segment $0A$ on $\ell$ in that class as the
%representative of that class. We will often denote the class (i.e.
%the segment $0A$ by $a$.
% We say a segment (on any line) $CD$ has
%length $a$ if $CD \cong 0A$.% Note that we could equally well choose
%%the element $A$ as the representative.
%\end{notation}








%\item For any points $a,b$ on $\ell$, to determine that
%
%$$a \times b = c$$
%
%or $$ab =c$$
%
%perform the following construction.
%
%Draw a line $m$ intersecting $\ell$ at $0$.  Mark a point $1'$ on
%$m$ so that $01' \cong 01$.  Lay off a point $a'$ on $m$ so that
%$0a' \cong 0a$.  Draw the line $a`1$ and then construct a
%parallel to $a'1$ through $b$. Call the intersection of this line
%with $m$, $X$. Now $ab$ is the point on $\ell$ with $0 (a b)
%\cong 0X$.
%
%
%
% \begin{center}
%    \includegraphics[width=3in]{multiplication.jpg}
%    \end{center}

 %   \item Consider two segment classes $a$ and $b$. To define
%        their product, define a right triangle\footnote{The right
%        triangle is just for simplicity; we really just need to
%        make the two triangles similar.} with legs of length $a$
%        and $b$. Denote the angle between the hypoteneuse and the
%        side of length $a$ by $\alpha$.
%
%        Now construct another right triangle with base of length
%        $b$ with the angle between the hypoteneuse and the side
%        of length $b$  congruent to $\alpha$. The length of the
%        vertical leg of the triangle is $ab$.
%
% \begin{center}
%    \includegraphics[width=4in]{mult3.jpg}
%    \end{center}


%\end{enumerate}


%\end{definition}

%\sidebar{The earlier definition of addition will be removed when the
%following three variants are fully clarified.}


%\begin{definition}[Segment Addition]\label{segadddef}
%Consider two segment classes $a$ and $b$. Fix representatives of $a$
%and $b$  as  $OA$ and $OB$ in this manner: Extend $OB$ to a straight
%line, and choose $C$ on $OB$ extended (on the other side of B from A)
%so that so that $BC \cong OA$.  $OC$ is the sum of $OA$ and $OB$.
%
%\end{definition}
%
%%\bigskip
%
%
%{\bf Diagram for adding segments}
%
%
%
% \begin{center}
%    \includegraphics[width=3in]{segadd.jpg}
%    \end{center}
%
%
%\begin{activity} Prove that this addition is associative and
%commutative.
%\end{activity}






%\footnote{ This section was planed to follow Hilbert's
%development can contain  two major theorems. Every plane satisfying
%the congruence and parallel postulates is Desaurgesian. Every
%Desarguesian plane can be coordinatized by division ring.}





%\begin{remark} {\em From geometry to numbers}
%\begin{enumerate}
%\item Euclid defines the multiplication of line segments; the
%    result is an area; this tradition remains until the 12th?
%    century.
%\item We want to define the multiplication of numbers.  We make
%    two separate steps.
%\begin{enumerate}
%\item identify the collection of all congruent line segments
%    as having a common `length'
%\item Choose a representative segment $OA$ for this class
%\item Identify the length of the segment with the end point
%    $A$. Now the multiplication is on points.
%\end{enumerate}
%\end{enumerate}
%\end{remark}
%
%\begin{definition}\label{opdef} Fix a line $\ell$ and two points $0$ and $1$ on $\ell$.
%We define the operation $+$ on $\ell$.
%
%%\begin{enumerate}
%%\item
% For any points $a,b$ on $\ell$,
%
%$$a + b = c$$
%
%where a segment $ac$ is constructed on $\ell$ congruent to $0b$ but
%not intersecting $0a$.
%
%\begin{problem} Check that you can do this construction with ruler
%and compass.
%\end{problem}
%
% \begin{center}
%    \includegraphics[width=3in]{addition.jpg}
%    \end{center}
%
%    $$0b \cong ac$$
%\end{definition}
%
%
%\subsection{Adding points} Recall that a line is a set of points. Fix
%a line $\ell$ and a point $0$  on $\ell$. We define an operations $+$
%on $\ell$. Recall that we identify a with the (directed length of)
%the segment 0a.
%
% For any points $a,b$ on $\ell$, we define the operation $+$ on
% $\ell$:
%
%$$a + b = c$$ if $c$ is constructed as follows.
%
%\begin{enumerate}
%\item Choose $T$ not on $\ell$ and $m$ parallel to $\ell$ through
%    $T$.
%    \item Draw $0T$ and $BT$.
%    \item Draw a line parallel to $0T$ through $a$ and let it
%        intersect $m$ in $F$.
% \item Draw a line parallel to $bT$ through $a$ and let it
%     intersect $\ell$ in $c$.
%     \end{enumerate}
%
%
%
%
%
%{\bf Diagram for point addition}
%
% \begin{center}
%    \includegraphics[width=3in]{addpointgrid.jpg}
%    \end{center}
%
%
%
%    $$0b \cong ac$$
%
%
%\begin{problem} Add $a$ and $b$ (i.e. construct $c$)  when $a$ is to the left of $0$ on
%$\ell$.
%\end{problem}
%
%\begin{problem} What is the inverse of $a$?
%\end{problem}
%
%\begin{problem} Prove addition of points is associative and commutative with identity element
%$0$. and the additive inverse of $a$ is $a'$ provided that $a'0 \cong
%0a$ where $a'$ is on $\ell$ but on the opposite side of $0$ from $a$.
%\end{problem}
%
%
%
%
%
%
%\begin{exercise} Prove addition is associative and commutative with
%identity element $0$. and the additive inverse of $a$ is $a'$
%provided that $a'0 \cong 0a$ where $a'$ is on $\ell$ but on the
%opposite side of $0$ from $a$.
%\end{exercise}



%\begin{lemma} There is a multiplicative inverse.
%\end{lemma}
%
%Proof. Use the previous diagram for multiplication.    Choose
%$a^{-1}$ so that $\overline{1'a^{-1}}
%\parallel \overline {a'1}$.
%
%
%\sidebar{Much to be written here.}

%\sidebar{needed: two possible directions - ordered fields, avoiding
%order
%
%ordered fields:  What is below is a sketch following Hartshorne.
%
%*'d items need some significant exposition; the others are (I hope)
%just cleaning up notation.  A good bit of the material I have typed
%into the beginning of section 4 would become irrelevant.
%
%\begin{enumerate}
%\item * complete definition of field; check distributivity; use
%    addition and multiplication on segments  (pretty
%    straightforward -- would want to break the material on pages
%    15-18 (beginning with defining multiplication) in problems
%    for groups to work on. one could do assoc, one distrib, one
%    comm etc.)
%\item minor revisions to area axioms Hartshorne page 197
%\item *definition of figure page 197 - note interior has smell of
%    order  (can probably gloss over interior ???)  Some work in
%    extending definition to arbitrary polygons - possibly could
%    said - details left to reader.
%    \item note equal content =equi-partition
%    \item *similar triangle have proportional sides -in terms of
%        segment arithmetic:  H20.1 Note that this involves
%        proving the perpendicular bisectors of side of a triangle
%        are concurrent.  (Nota bene: This says my 5.8 in the
%        current notes should be removed since it now an
%        ingredient of side-splitter rather than consequence (it
%        is a consequence in CME 330-331).
%     \item *introduce area function, prove $A = 1/2 bh$; H23.3
%         \item side-splitter theorem as in CME. Note that the
%             previous line was an axiom in CME, which is a
%             variant of ruler/protractor axiom.  But we prove it
%             for the segment-arithmetic.
%\end{enumerate}
%
%avoiding order is less important for the work shop but it is the
%point of the sections on addition as transformations.  That has
%independent interest but getting the field that way may be
%counterproductive. }






\section{Transformations and field arithmetic}\label{transfields}
{\color{blue} 8/3/23 6pm We suppressed this section for the workshop. Maybe
some of it will be useful now.}
\begin{remark} {\em From geometry to numbers}
\begin{enumerate}
\item Euclid defines the multiplication of line segments; the result is
    an area; this tradition remains until the 12th? century.
\item We want to define the multiplication of numbers.  We make two
    separate steps.
\begin{enumerate}
\item identify the collection of all congruent line segments as having
    a common `length'
\item Choose a representative segment $OA$ for this class
\item Identify the length of the segment with the end point $A$. Now
    the multiplication is on points.
\end{enumerate}
\end{enumerate}
\end{remark}

\begin{definition}\label{opdef} Fix a line $\ell$ and two points $0$ and $1$ on $\ell$.
We define the operation $+$ on $\ell$.

%\begin{enumerate}
%\item
 For any points $a,b$ on $\ell$,

$$a + b = c$$

where a segment $ac$ is constructed on $\ell$ congruent to $0b$ but not
intersecting $0a$.

 \begin{center}
    \includegraphics[width=3in]{addition.jpg}
    \end{center}

    $$0b \cong ac$$
\end{definition}


\subsection{Adding points} Recall that a line is a set of points. Fix
a line $\ell$ and a point $0$  on $\ell$. We define an operations $+$ on
$\ell$. Recall that we identify a with the (directed length of) the segment
0a.

 For any points $a,b$ on $\ell$, we define the operation $+$ on $\ell$:

$$a + b = c$$ if $c$ is constructed as follows.

\begin{enumerate}
\item Choose $T$ not on $\ell$ and $m$ parallel to $\ell$ through $T$.
    \item Draw $0T$ and $BT$.
    \item Draw a line parallel to $0T$ through $a$ and let it intersect
        $m$ in $F$.
 \item Draw a line parallel to $bT$ through $a$ and let it intersect
     $\ell$ in $c$.
     \end{enumerate}





{\bf Diagram for point addition}

 \begin{center}
    \includegraphics[width=3in]{addpointgrid.jpg}
    \end{center}



    $$0b \cong ac$$


\begin{problem} Add $a$ and $b$ (i.e. construct $c$)  when $a$ is to the left of $0$ on
$\ell$.
\end{problem}

\begin{problem} What is the inverse of $a$?
\end{problem}

\begin{problem} Prove addition of points is associative and commutative with identity element
$0$ and  thatthe additive inverse of $a$ is $a'$ provided that $a'0 \cong
0a$ where $a'$ is on $\ell$ but on the opposite side of $0$ from $a$.
\end{problem}

What are some pedagogical questions that arise in this argument.  Is it
suitable for high school students?

\subsection{Addition as transformation on line}

This subsection is incomplete; it seems to depend essentially on the order
axioms.

\begin{definition} Recall that a line is a set of points. Fix
a line $\ell$ and a point $0$  on $\ell$.  Recall that we identify $a$ with
the  (length of) the segment $0a$.  For each $a$ on $\ell$ we define a
transformation $t_a: \ell \mapsto \ell$.

 Recall that we identify a with the (directed length of) the segment 0a.


Now we use the same construction as before but instead of defining a binary
operation $+$, we define a family of unary operations $t_a$.

 For any points $a,b$ on $\ell$, we define the operation $t_a$ on $\ell$:

$$t_a(b) = c$$ if $c$ is constructed as follows.

\begin{enumerate}
\item Choose $T$ not on $\ell$ and $m$ parallel to $\ell$ through $T$.
    \item Draw $0T$ and $BT$.
    \item Draw a line parallel to $0T$ through $a$ and let it intersect
        $m$ in $F$.
 \item Draw a line parallel to $bT$ through $a$ and let it intersect
     $\ell$ in $c$.
     \end{enumerate}

\end{definition}



%{\bf Diagram for translation}
%
% \begin{center}
%    \includegraphics[width=3in]{addpointgrid.jpg}
%    \end{center}



\begin{lemma} Translation by $a$ is well-defined.\end{lemma}

Proof. The have to show that $t_a(b)$ does not depend on the choice of $T$;
it does depend on the choice of $0$.  Suppose we made a different choice of
$T$, say $T'$ and so got a possibly different $F'$  and $c'$.  But note $0a
\cong TF \cong T'F'$ (by choice the parallel lines. So $bc \cong \cong TF
\cong T'F' \cong bc'$.  But why does this make $ac \cong ac'$; what if
$c,c'$ are on different sides of $b$?



\begin{exercise} Show the addition and multiplication are
well-defined.
\end{exercise}

\subsection{Addition as translation of the plane}

One purpose of this section is to connect the arithemization with
transformations. In particular, to give a definition of addition which is
uniform for geometry over either the reals or the complexes.

\begin{definition}  A {\em translation} is a map $\sigma$ from $\Pi$ to $\Pi$
such that for any $P,Q$ taken to $P',Q'$, $PP' \parallel QQ'$ and either
$\sigma$ is the identity or $\sigma$ fixes no points.
\end{definition}

\begin{definition}  Fix
a line $\ell$ and a point $O$  on $\ell$.  Recall that we identify $a$ with
the  (length of) the segment $0A$.  For each $A$ on $\ell$ we define a
translation $t_{OA}: \Pi \mapsto \Pi$.

To determine $t_{OA}:(P)$ for $P$ not on $\ell$, draw $OP$; choose $P'$ to
complete a parallelogram $OAP'P$. By the parallel postulate applied twice
there is only one choice for $P'$.

To define $t_{OA}:(R)$ for $R$ on $\ell$, fix $P,P'$ not on $\ell$ and
thinking of $P$ as $O$ and $P'$ as $A$ define $t_{PP'}$ (except on $PP'$ by
the previous procedure. Let $t_{OA}:(R) =t_{PP'}:(R)$. Note that $t_{OA}$
is well-defined.
\end{definition}

Artin goes on to define the field as the translations of the form $1$ or
$\sigma \tau \sigma^{-1}$. Each is then of the form $\tau^\alpha$ where
$\tau$ is a dilation (like a translation but may have fixed point).

\sidebar{This seems to getting too far abstract for the workshop.}
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