Strongly minimal Steiner Systems: Model Theory, Universal Algebra, Combinatorics UIC logic seminar

> John T. Baldwin University of Illinois at Chicago

> > Apr 26, 2022

John T. Baldwin University of Illinois at Ch Strongly minimal Steiner Systems: Model

Apr 26, 2022 1 / 46

Three. Goals

Context:

- Fraïssé constructions are explored in infinite combinatorics.
- Hrushovski refined the construction to solve problems of Zilber and Lachlan.
- Baldwin and Paolini modified that construction to find 'strongly minimal' Steiner systems.
- 2 Today: we discuss the combinatorial consequences of construction 3) and variants.
- Oiversity and Fine Structure:
 - Illustrate many of the variations on the construction.
 - ② Gesture at the proof that many (most??) strongly minimal sets given by an *ab initio* Hrushovski construction do not admit elimination of imaginaries and have essentially unary definable closure

・ 同 ト ・ ヨ ト ・ ヨ ト

- 2 Omitting configurations in Steiner systems
- Oycle and Path Graphs
 - 4 Strongly Minimal Theories
 - 5 Constructing Strongly minimal Steiner systems
- Coordinatization by varieties of algebras
- 7 Diversity and Classification

Thanks to Joel Berman, Gianluca Paolini, Omer Mermelstein, and Viktor Verbovskiy.

A Steiner system with parameters t, k, n written S(t, k, n) is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block.

We always take t = 2 and allow infinite *n*.

Some History

For which n's does an S(2, k, n) exist? for k = 3

Necessity: $n \equiv 1 \text{ or } 3 \pmod{6}$ is necessary. Rev. T.P. Kirkman (1847)

Some History

```
For which n's does an S(2, k, n) exist? for k = 3
```

```
Necessity:

n \equiv 1 \text{ or } 3 \pmod{6} is necessary.

Rev. T.P. Kirkman (1847)
```

```
Sufficiency:

n \equiv 1 \text{ or } 3 \pmod{6} is sufficient.

(Bose 6n + 3, 1939); Skolem (6n + 1, 1958)
```

Linear Spaces

Definition: linear space

The vocabulary contains a single ternary predicate R, interpreted as collinearity. A linear space satisfies

- *R* is a predicate of sets (hypergraph)
- 2 Two points determine a line

 α is the iso type of $(\{a, b\}, \{c\})$ where R(a, b, c).

Groupoids and quasi-groups

- O A groupoid (magma) is a set A with binary relation ○.
- A quasigroup is a groupoid satisfying left and right cancelation (Latin Square)
- A Steiner quasigroup satisfies
 - $x \circ x = x, x \circ y = y \circ x, x \circ (x \circ y) = y.$

< ロ > < 同 > < 回 > < 回 >

The connection between Steiner systems and quasigroups

- Every Steiner triple system is a quasigroup.
 I.E. *R* is the graph of *.
- Every pⁿ-Steiner system admits a compatible quasigroup structure. [GW75]
- Solution The [BP21] strongly minimal p^n -Steiner systems are not quasigroups (unless $p^n = 3$).
- There are strongly minimal Steiner groups (A, R, *), that induce q-Steiner systems for every prime power q.

A B > A B >

Constructing generic models

\leq -amalgamation Classes

A \leq -amalgamation class (L_0^*, \leq) is a collection of finite structures for a vocabulary σ (which may have function and relation symbols) satisfying:

- $\bigcirc \leq$ is a partial order refining \subseteq .
- $\mathbf{2} \leq \mathbf{satisfies}$ joint embedding and amalgamation.

③
$$A, B, C \in L_0^*$$
, $A \leq B$, and $C \subseteq B$ then $A \cap C \leq C$.

L^{*} is countable

Theorem

For a \leq -amalgamation class, there is a countable structure *M*, the *generic model*, which is a union of members of L_0^* , each member of L_0^* embeds in *M*, and *M* is \leq -homogeneous.

For Fraïssé, the language is finite relational, the class is closed under substructure, and \leq is \subseteq .

Existentially closed 3-Steiner Systems

Barbina-Casanovas

[BC19] Consider the class \tilde{K} of finite structures (A, R) which are each the graph of a Steiner quasigroup.

- \tilde{K} has ap and jep and thus a limit theory T_{sq}^* .
- 2 T^{*}_{sq} has
 - quantifier elimination
 - 2^{ℵ₀} 3-types;
 - the generic model is prime and locally finite;
 - T_{sq}^* has TP_2 and $NSOP_1$.

[BC19]

Classification of first order theories

Omitting classes of Steiner quasigroups

Horsley- Webb

Consider the class \tilde{K} of finite structures (A, *) which are Steiner quasigroups that are *F*-free (omit a family *F* of finite nontrivial STS) and good (there exists an $A \in K$ which neither extends nor embeds in any member of *F*).

- \tilde{K} has ap and jep and thus
- 2 \tilde{K} has a countable locally finite generic model.

On locally finite quasigroups their homogeneity is the model theorists ultrahomogeneity. Thus their construction gives 2^{\aleph_0} countable (\aleph_0 categorical Steiner systems.

Question

Where do they fit on the map?

If $F = \emptyset$, this is T_{sq}^* . The others should be similar.

Strongly minimal Steiner Systems

Definition

A Steiner (2, k, v)-system is a linear system with v points such that each line has k points.

Theorem (Baldwin-Paolini)[BP21]

For each $k \ge 3$, there are an uncountable family T_{μ} for $\mu \in \mathcal{U}$, of strongly minimal $(2, k, \infty)$ Steiner-systems.

 $\ensuremath{\mathcal{U}}$ will be defined later; it guarantees amalgamation.

The generic is a union of finite relational structures but contains few finite quasigroups. There is no infinite group definable in any T_{μ} .

< 同 > < 三 > < 三 >

Omitting configurations in Steiner systems

э

・ロト ・ 同ト ・ ヨト ・

Pasch Configuration

Figure: Pasch configuration: \mathcal{P}

In an associative STS any 3 non-collinear points generate a Pasch configuration.

Definition

Let X be finite partial Steiner system. A Steiner system (M, R) is *anti-X* if there no embedding of X into M.

[HW21] ask, Do the finite anti-Pasch triple systems form an amalgamation class?

John T. Baldwin University of Illinois at Ch Strongly minimal Steiner Systems: Model

Apr 26, 2022 13 / 46

Model theorists' Pasch

In a strongly minimal structure M, interpret collinearity as algebraic closure. Then the Morley rank of a non-collinear triple as 3, and that of a collinear triple as 2.

Group configuration theorem (roughly)

M has an instance of the Pasch diagram if and only if it defines an infinite group.

Contrasting theorems

- The standard Hrushovski example and the B-Paolini Steiner systems omit the 'model theoretic' Pasch. So *R* is not the graph of a quasigroup. However, they will have instances of the combinatorial Pasch (e.g. Fano plane).
- One can modify the amalgamation class so there are strongly minimal anti-Pasch (combinatorial sense) strongly minimal Steiner triple systems. [Bal22, Theorem 3.6].

Mitre and Mia

Figure: Mitre and mia configurations

[Fuj06]: The (5,7)-configuration, Mitre, represents the left self-distributive law:

x(ab) = (xa)(xb).

If the (5,7) configuration MIA is realized, left multiplication does not preserve lines. By constructing ∞ -sparse configurations below we simultaneously omit the Pasch, mitre, and mia configurations.

Apr 26, 2022 15 / 46

Hrushovki's basic construction vs Steiner

Example

- σ has a single ternary relation R;
- L₀: All finite σ-structures finite linear spaces
- ③ $\epsilon(A)$ is |A| r(A), where r(A) is the number of tuples realizing *R*. $\delta(A) = |A| - \sum_{\ell \in L(A)} (|\ell| - 2).$
- $A \in \boldsymbol{L}_0^* \text{ if } \epsilon(B) \ge 0 \text{ for all } B \subseteq A. \\ \text{Replace } \boldsymbol{\epsilon} \text{ by } \delta.$

9 U is those
$$\mu$$
 with $\mu(A/B) \ge \epsilon(B)$.
 $\mu(\alpha) = q - 2$ gives line length q .

Definition

A Steiner triple system (M, R) is ∞ -sparse if there is no $A \subseteq M$ with $|A| \ge 6$ and $\delta(A) = 2$.

Blocking ∞ -sparse configurations

[CGGW10, page 116] construct by induction continuum many countable ∞ -sparse configurations.

Definition

Let L_0^{sp} be the subclass of L_0 (linear spaces) such that for every $B \subseteq A$:

$$(\#) |B| > 1 \rightarrow \delta(B) > 1 \& |B| > 3 \rightarrow \delta(B) > 2.$$

Theorem

The system ($\mathbf{K}_{0}^{sp}, \leq$) has \leq -amalgamation. And so for any $\mu \in \mathcal{U}$, \mathbf{K}_{μ}^{sp} has \leq -amalgamation. So there are $2^{\otimes 0}$ strongly minimal sparse 3-Steiner systems of every infinite cardinality.

So this also blocks mia and mitre.

(*) * (*) *)

Cycle and Path Graphs

<ロ> <回> <回> <回> < 回</p>

Cycle graph in STS

Figure: Cycle graph in STS

Extends to infinite STS ([CW12])

John T. Baldwin University of Illinois at ChStrongly minimal Steiner Systems: Model

Path in 4-Steiner system

Figure: path graph in 4-Steiner System

Paths and Fans have dimension 1.

Figure: fan in 4-Steiner System

John T. Baldwin University of Illinois at Ch Strongly minimal Steiner Systems: Model

Strongly Minimal Theories

< ロ > < 回 > < 回 > < 回 > < 回</p>

STRONGLY MINIMAL

Definition

T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

STRONGLY MINIMAL

Definition

T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition

a is in the algebraic closure of *B* ($a \in acl(B)$) if for some $\phi(x, \mathbf{b})$: $\models \phi(a, \mathbf{b})$ with $\mathbf{b} \in B$ and $\phi(x, \mathbf{b})$ has only finitely many solutions.

Theorem

If T is strongly minimal algebraic closure defines a matroid/combinatorial geometry.

★ ∃ → < ∃</p>

Combinatorial Geometry: Matroids

The abstract theory of dimension: vector spaces/fields etc.

Definition

A closure system is a set G together with a dependence relation

$$cl:\mathcal{P}(G)
ightarrow\mathcal{P}(G)$$

satisfying the following axioms.

A1.
$$cl(X) = \bigcup \{ cl(X') : X' \subseteq_{fin} X \}$$

A2. $X \subseteq cl(X)$
A3. $cl(cl(X)) = cl(X)$

(*G*, cl) is pregeometry if in addition: **A4.** If $a \in cl(Xb)$ and $a \notin cl(X)$, then $b \in cl(Xa)$.

If cl(x) = x the structure is called a geometry.

Usually this acl pre-geometry is not definable.

Towers

A prime model of a theory T is the unique model that can be elementarily embedded in each model.

If *T* is strongly minimal there is a tower (elementary chain: $M_n \prec M_{n+1}$) ($\langle M_j: 0 \le j < \omega + 1 \rangle$) of countable models of *T*, with M_0 the prime model; then M_{ω} is isomorphic to the generic structure $\mathcal{G}_{\mu,V}$ [BP21, Lemma 5.29].

One might think each M_n is prime with an acl-basis of cardinality n. This is true when $acl(\emptyset)$ is infinite; but not in general.

No perfect strongly minimal Steiner systems

An STS is perfect if each cycle graph G(a, b) has a single cycle

Perfect infinite STS exist. [CW12]

Let R-cl(X) denote the subquasigroup generated by X.

None of these strongly minimal Steiner systems are perfect In these strongly minimal examples for finite X, acl(X) - R-cl(X) is infinite. QED

Finite and infinite (pseudo-cycles)

Results

 $\operatorname{acl}_{M}(\emptyset) \neq \emptyset$

- If $\operatorname{acl}_M(\emptyset) \neq \emptyset$ there are infinitely many disjoint (over $\operatorname{icl}_M(a, b)$) finite pseudocycles in $G_M(a, b) = \operatorname{acl}_M(a, b) - \operatorname{icl}(a, b)$.
- 3 If $\operatorname{acl}(a, b) \neq M$, all paths in $M \operatorname{acl}(a, b)$ are infinite.
- ③ If $M \not\leq N$ and dim $(N/M) \ge 1$, *M* is covered by a union of 'fans' that each intersect at most one other fan.

Uniform Path graphs

Uniform model] A model (M, *, R) of $T^q_{\mu', V}$ is *uniform*, if for any (a, b), (a', b'), $G_M(a, b) \simeq G_M(a', b')$.

Lemma

- If (M, *, R) is a model of a theory *T* generated by a Hrushovski class of linear spaces such that every two element set *A* satisfies $A \le M$, the automorphism group of (M, *, R) acts 2-transitively on (M, R).
- Clearly, if the automorphism group of (*M*, *, *R*) acts 2-transitively on (*M*, *, *R*), (*M*, *, *R*) is uniform.

Key point If every two element set *A* in the prime model satisfies $A \le M$, then it holds in all models.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Constructing Strongly minimal Steiner systems

< ロ > < 回 > < 回 > < 回 > < 回</p>

The trichotomy

Zilber Conjecture

The acl-geometry of every model of a strongly minimal first order theory is

- disintegrated (lattice of subspaces distributive)
- vector space-like (lattice of subspaces modular)
- 'bi-interpretable' with an algebraically closed field (non-locally modular)

Hrushovski gave a method of constructing strongly minimal sets that have flat geometries and admit no associative binary function.

Zariski Geometries aim at canonical structures with more restrictions.

★ ∃ >

The flexibility of the Hrushovski construction

The 'Hrushovski construction' actually has 5 parameters:

Describing Hrushovski constructions

- σ : vocabulary L_0^* is the collection all finite σ -structures. L^* is the collection all σ -structures.
- 2 L_0 : A $\forall \exists$ axiomatized subclass of L_0^*
- S: A function from L^{*}₀ to Z that induces a dimension on the definable subsets of the generic.
- $\boldsymbol{L}_0 \subseteq \boldsymbol{L}_0^*$ defined using δ .
- **⑤** *L*_{*µ*}: the *A* ∈ *L*₀ satisfying that the number of 0-primitive (*B*/*C*) are bounded by $\mu(B/C)$.

To organize the classification of the theories choosing nice classes **U** of μ yields a collection of T_{μ} with similar properties.

For Hrushovski, the 'standard' **U** is $\mathcal{U} = \{\mu : \mu(C/B) \ge \delta(B)\}.$

Obtaining strong minimality

Primitive Extensions and Good Pairs

Let $A, B, C \in \mathbf{K}_0$.

D C is a 0-*primitive extension* of A if C is minimal with $\delta(C/A) = 0$.

② *C* is good over $B \subseteq A$ if *B* is minimal contained in *A* such that *C* is a 0-*primitive extension* of *B*. We call such a *B* a *base*.

Bounding realization of good pairs

• For any good pair (C/B), $\chi_M(B, C)$ is the maximal number of disjoint copies of *C* over *B* appearing in *M*.

2 For $\mu \in \mathcal{U}$, K_{μ} is the collection of $M \in K_0$ such that $\chi_M(A, B) \le \mu(A, B)$ for every good pair (A, B).

This guarantees strong minimality.

The Amalgamation

Figure: 0-primitive extensions

The Amalgamation

Figure: 0-primitive extensions

Hrushovki's basic construction vs Steiner

Example

- σ has a single ternary relation *R*;
- 2 L₀: All finite σ-structures finite linear spaces
- $\epsilon(A)$ is |A| r(A), where r(A) is the number of tuples realizing R. $\delta(A) = |A| - \sum_{\ell \in L(A)} (|\ell| - 2).$

3
$$A \in L_0^*$$
 if $\epsilon(B) \ge 0$ for all $B \subseteq A$.
Replace ϵ by δ .

5 U is those μ with $\mu(A/B) \ge \epsilon(B)$. $\mu(\alpha) = q - 2$ gives line length q.

Strongly minimal linear spaces

Fact

Suppose (M, R) is a strongly minimal linear space where all lines have at least 3 points. There can be no infinite lines.

An easy compactness argument establishes

Corollary

If (M, R) is a strongly minimal linear system, for some k, all lines have length at most k.

The construction with $\mu(\alpha) = q - 2$ gives a *q*-Steiner system.

< 🗇 > < 🖻 > <

Coordinatization by varieties of algebras

2 VARIABLE IDENTITIES

Definition

A variety is binary if all its equations are 2 variable identities: [Eva82]

Definition

Given a (near) field $(F, +, \cdot, -, 0, 1)$ of cardinality $q = p^n$ and an element $a \in F$, define a multiplication * on F by

$$x * y = y + (x - y)a.$$

An algebra (A, *) satisfying the 2-variable identities of (F, *) is a block algebra over (F, *)

This block algebra is a Steiner quasigroup with cardinality q.

→ ∃ → < ∃</p>

Coordinatizing Steiner Systems

Weakly coordinatized

A collection of algebras V '(weakly) coordinatizes' a class S of (2, k)-Steiner systems if

- Each algebra in V definably expands to a member of S
- The universe of each member of S is the underlying system of some (perhaps many) algebras in V.

Coordinatized

A collection of algebras V definably coordinatizes a class S of k-Steiner systems if in addition the algebra operation is definable in the Steiner system.

A B > A B >

Coordinatizing Steiner Systems

Key fact: weak coordinatization [Ste64, Eva76]

If V is a variety of binary, idempotent algebras and each block of a Steiner system S admits an algebra from V then so does S.

Definition [Pad72]

An (r, k) variety is one in which every *r*-generated algebra has cardinality *k* and is freely generated by every *n*-elements.

Definition: Mikado Variety

A variety V of binary, idempotent algebras, (2, k) algebras is called Mikado.

Thus, each $A \in V$ determines a Steiner *k*-system(The 2-generated subalgebras).

And each Steiner *k*-system admits a weak coordinatization.

Can this coordinatization be definable in the strongly minimal (M, R)? NO; the BP examples cannot.

John T. Baldwin University of Illinois at ChStrongly minimal Steiner Systems: Model

Constructing a strongly minimal quasigroup

Definition: *K*^q

- Fix a prime power q and a Mikado variety V of quasigroups such that F_2 , the free algebra in V on 2 generators has q elements.
- 2 Let K_V^q be the collection of finite (H, R)-structures A such that
 - (A, R) is a linear space;
 - $(\forall a_1, a_2, a_3) H(a_1, a_2, a_3) \to R(a_1, a_2, a_3);$
 - Seach line (maximal *R*-clique) has *q* points.
 - If A↾R is a maximal clique (line) ℓ with respect to R, then on ℓ, A↾H is the graph of the free algebra F₂ ∈ V.
 - **3** Any collinear triple extends to a *q*-element clique. (A $\forall \exists$ sentence.)

Since *V* is axiomatized by 2-variable equations, if $A' \in K_V^q$, $A' \upharpoonright H$ is the graph of an algebra in *V*. In the generic model *each pair* is included in a *q*-element line; but not in the finite structures.

・ロト ・同ト ・ヨト ・ヨト

Defining δ and μ

- Define δ, primitive and good extensions on finite (A, R, H) by ignoring H. Let α_q denote the isomorphism type of ({c₁, c₂,...c_{q-2}}/ab), where all the c_i satisfy R(a, b, c_i).
- 2 A μ' mapping $K^q_{0,V}$ into Z is in $\mathcal{U}_{\tau'}$ if it satisfies i) $\mu'(A'/B') \ge \delta_{\tau'}(B)$ and ii) $\mu'(\alpha_q) \ge 1$.
- Solution Let $D' \in (\mathbf{K}_{\mu',V}^q, \leq')$ if and only if $\chi_{D'}(\mathbf{A}'/\mathbf{B}') \leq \mu'(\mathbf{A}'/\mathbf{B}')$. To define a *q*-Steiner system, we set $\mu'(\alpha_q) = 1$.

Finding the generic quasigroup

Theorem

For each $q = p^n$, each $\mu' \in U_{\tau'}$, and each Mikado-variety of quasigroups V with $|F_2(V)| = q$, there is a strongly minimal theory of quasigroups, dubbed $T^q_{\mu',V}$, that interprets a strongly minimal q-Steiner system.

The amalgamation is an easy modification of the proof in [BP21]; the rest is standard.

Diversity and Classification

No elimination of imaginaries [BV22] $dcl^*(X) = dcl(X) - \bigcup_{Y \subseteq X} dcl(Y).$

Theorem

Let T_{μ} be a strongly minimal theory as in Hrushovski's original paper. I.e. $\mu \in \mathcal{U} = \{\mu : \mu(A/B) \ge \delta(B)\}$). Let $I = \{a_1, \ldots, a_v\}$ be a tuple of independent points with $v \ge 2$.

 G_l If T_μ triples, i.e.

$$\mu \in \{\mu : \mu(A/B) \ge 3\}$$

then $dcl^*(I) = \emptyset$, $dcl(I) = \bigcup_{a \in I} dcl(a)$, and every definable function is essentially unary.

 $\begin{array}{l} G_{\{l\}} & \text{In any case } \mathrm{sdcl}^*(\mathrm{I}) = \emptyset, \, \mathrm{sdcl}(\mathrm{I}) = \bigcup_{a \in \mathrm{I}} \mathrm{sdcl}(a) \\ & \text{and there are no } \emptyset \text{-definable symmetric (value does not depend } \\ & \text{on order of the arguments) truly } \nu \text{-ary function.} \end{array}$

Thus for any $\mu \in \mathcal{U}$, T_{μ} does not admit elimination of imaginaries and the algebraic closure geometry is not disintegrated.

Examples

A geometry is flat if dimension is computed by inclusion-exclusion on closed subsets.

Strongly minimal theories with non-locally modular algebraic closure

- the Hrushovski (Steiner) examples 2^{ℵ0} theories of strongly minimal Steiner systems (*M*, *R*) with
 - no Ø-definable binary function. (i.e. triplable)
 - Some definable functions (examples in [BV22])
- **2**^{\aleph_0} theories of strongly minimal quasigroups (M, R, *) + a 3-Steiner example of Hrushovski
- strongly minimal Steiner systems with combinatorial interesting properties
- Non-Desarguesian projective planes definably coordinatized by ternary fields [Bal95]
- 2-ample but not 3-ample sm sets (not flat) [MT19]
- strongly minimal eliminates imaginaries (flat) INFINITE vocabulary)

Classifying 'flat' strongly minimal sets

discrete (trivial)

- 2 non-trivial but no binary function
- Inon-trivial but no commutative binary function
- Non-Desarguesian projective planes definably coordinatized by ternary fields [Bal95]

Key Points

Variations of the Hrushovski construction

- k-steiner for arbitrary k.
- ont locally finite
- Build families of examples for infinite combinatorics: such notions as
 - families: towers of models of distinct theories.
 - anti-Pasch, sparseness;
 - generalize cycle graphs (3-Steiner) to path graphs (q-Steiner);
 - construct quasigroups which induce *q*-Steiner systems for arbitrary prime powers;
 - 2-transitive;
- strongly minimal model theoretically well behaved

4 B K 4 B K

References I

John T. Baldwin.

Some projective planes of Lenz Barlotti class I. *Proceedings of the A.M.S.*, 123:251–256, 1995.

🔋 John T. Baldwin.

Strongly minimal Steiner Systems III: Path Graphs and Sparse configurations. submitted, 2022.

Silvia Barbina and Enrique Casanovas.
 Model theory of Steiner triple systems.
 Journal of Mathematical Logic, 20, 2019.
 https://doi.org/10.1142/S0219061320500105.

John T. Baldwin and G. Paolini.
 Strongly Minimal Steiner Systems I.
 Journal of Symbolic Logic, 86:1486–1507, 2021.
 published online oct 22, 2020 arXiv:1903.03541.

References II

- John T. Baldwin and V. Verbovskiy. Towards a finer classification of strongly minimal sets. submitted: 58 pages, Math Arxiv:2106.15567, 2022.
- K. M. Chicot, M. J. Grannell, T. S. Griggs, and B. S. Webb. On sparse countably infinite Steiner triple systems. *J. Combin. Des.*, 18(2):115–122, 2010.
- P. J. Cameron and B. S. Webb. Perfect countably infinite Steiner triple systems. *Australas. J. Combin.*, 54:273–278, 2012.

Trevor Evans.

Universal Algebra and Euler's Officer Problem. *The American Mathematical Monthly*, 86(6):466–473, 1976.

References III

Trevor Evans.

Finite representations of two-variable identities or why are finite fields important in combinatorics?

In *Algebraic and geometric combinatorics*, volume 65 of *North-Holland Math. Stud.*, pages 135–141. North-Holland, Amsterdam, 1982.

Yuichiro Fujiwara.

Sparseness of triple systems: A survey.

http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/ contents/pdf/1465-20.pdf, 2006.

Bernhard Ganter and Heinrich Werner. Equational classes of Steiner systems. *Algebra Universalis*, 5:125–140, 1975.

References IV

D. Horsley and B. Webb.

Countable homogeneous steiner triple systems avoiding specified subsystems.

Journal of Combinatorial Theory, Series A, 180, 2021. https://www.sciencedirect.com/science/article/ pii/S0097316521000339.

I. Muller and K. Tent.
 Building-like geometries of finite morley rank.
 J. Eur. Math. Soc., 21:3739–3757, 2019.
 DOI: 10.4171/JEMS/912.

R. Padmanabhan.

Characterization of a class of groupoids. *Algebra Universalis*, 1:374–382, 1971/72.

References V

Sherman K Stein.

Homogeneous quasigroups.

Pacific Journal of Mathematics, 14:1091–1102, 1964.

John T. Baldwin University of Illinois at ChStrongly minimal Steiner Systems: Model