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Three. Goals

1 Context:
1 Fraı̈ssé constructions are explored in infinite combinatorics.
2 Hrushovski refined the construction to solve problems of Zilber and

Lachlan.
3 Baldwin and Paolini modified that construction to find ‘strongly

minimal’ Steiner systems.
2 Today: we discuss the combinatorial consequences of

construction 3) and variants.
3 Diversity and Fine Structure:

1 Illustrate many of the variations on the construction.
2 Gesture at the proof that many (most??) strongly minimal sets

given by an ab initio Hrushovski construction do not admit
elimination of imaginaries and have essentially unary definable
closure
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1 Steiner systems and quasi-groups

2 Omitting configurations in Steiner systems

3 Cycle and Path Graphs

4 Strongly Minimal Theories

5 Constructing Strongly minimal Steiner systems

6 Coordinatization by varieties of algebras

7 Diversity and Classification

Thanks to Joel Berman, Gianluca Paolini, Omer Mermelstein, and
Viktor Verbovskiy.
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Steiner Systems

A Steiner system with parameters t , k ,n written S(t , k ,n) is an
n-element set S together with a set of k-element subsets of S (called
blocks) with the property that each t-element subset of S is contained
in exactly one block.

We always take t = 2 and allow infinite n.
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Some History

For which n’s does an S(2, k ,n) exist?
for k = 3

Necessity:
n ≡ 1 or 3 (mod 6) is necessary.
Rev. T.P. Kirkman (1847)

Sufficiency:
n ≡ 1 or 3 (mod 6) is sufficient.
(Bose 6n + 3, 1939); Skolem ( 6n + 1, 1958)
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Linear Spaces

Definition: linear space
The vocabulary contains a single ternary predicate R,
interpreted as collinearity. A linear space satisfies

1 R is a predicate of sets (hypergraph)
2 Two points determine a line

α is the iso type of ({a,b}, {c}) where R(a,b, c).

Groupoids and quasi-groups
1 A groupoid (magma) is a set A with binary relation ◦.
2 A quasigroup is a groupoid satisfying left and right cancelation

(Latin Square)
3 A Steiner quasigroup satisfies

x ◦ x = x , x ◦ y = y ◦ x , x ◦ (x ◦ y) = y .
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The connection between Steiner systems and
quasigroups

1 Every Steiner triple system is a quasigroup.
I.E. R is the graph of ∗.

2 Every pn-Steiner system admits a compatible quasigroup
structure. [GW75]

3 The [BP21] strongly minimal pn-Steiner systems are not
quasigroups (unless pn = 3).

4 There are strongly minimal Steiner groups (A,R, ∗), that induce
q-Steiner systems for every prime power q.
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Constructing generic models
≤-amalgamation Classes
A ≤-amalgamation class (L∗0,≤) is a collection of finite structures for a
vocabulary σ (which may have function and relation symbols)
satisfying:

1 ≤ is a partial order refining ⊆.
2 ≤ satisfies joint embedding and amalgamation.
3 A,B,C ∈ L∗0, A ≤ B, and C ⊆ B then A ∩ C ≤ C.
4 L∗0 is countable

Theorem
For a ≤-amalgamation class, there is a countable structure M, the
generic model, which is a union of members of L∗0, each member of L∗0
embeds in M, and M is ≤-homogeneous.

For Fraı̈ssé, the language is finite relational, the class is closed under
substructure, and ≤ is ⊆.
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Existentially closed 3-Steiner Systems

Barbina-Casanovas
[BC19] Consider the class K̃ of finite structures (A,R) which are
each the graph of a Steiner quasigroup.

1 K̃ has ap and jep and thus a limit theory T ∗sq.
2 T ∗sq has

1 quantifier elimination
2 2ℵ0 3-types;
3 the generic model is prime and locally finite;
4 T ∗sq has TP2 and NSOP1.

[BC19]
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Classification of first order theories
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Omitting classes of Steiner quasigroups

Horsley- Webb

Consider the class K̃ of finite structures (A, ∗) which are
Steiner quasigroups that are F -free (omit a family F of finite nontrivial
STS) and good (there exists an A ∈ K which neither extends nor
embeds in any member of F ).

1 K̃ has ap and jep and thus
2 K̃ has a countable locally finite generic model.

On locally finite quasigroups their homogeneity is the model theorists
ultrahomogeneity. Thus their construction gives 2ℵ0 countable ( ℵ0
categorical Steiner systems.

Question
Where do they fit on the map?

If F = ∅, this is T ∗sq. The others should be similar.
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Strongly minimal Steiner Systems

Definition
A Steiner (2, k , v)-system is a linear system with v points such that
each line has k points.

Theorem (Baldwin-Paolini)[BP21]
For each k ≥ 3, there are an uncountable family Tµ for µ ∈ U , of
strongly minimal (2, k ,∞) Steiner-systems.
U will be defined later; it guarantees amalgamation.

The generic is a union of finite relational structures but contains few
finite quasigroups.
There is no infinite group definable in any Tµ.
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Omitting configurations in Steiner systems
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Pasch Configuration

Figure: Pasch configuration: P

In an associative STS any 3 non-collinear points generate a Pasch
configuration.

Definition
Let X be finite partial Steiner system. A Steiner system (M,R) is anti-X
if there no embedding of X into M.

[HW21] ask, Do the finite anti-Pasch triple systems form an
amalgamation class?
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Model theorists’ Pasch
In a strongly minimal structure M, interpret collinearity as algebraic
closure. Then the Morley rank of a non-collinear triple as 3, and that of
a collinear triple as 2.

Group configuration theorem (roughly)
M has an instance of the Pasch diagram if and only if it defines an
infinite group.

Contrasting theorems

1 The standard Hrushovski example and the B-Paolini Steiner
systems omit the ‘model theoretic’ Pasch. So R is not the graph of
a quasigroup.
However, they will have instances of the combinatorial Pasch (e.g.
Fano plane).

2 One can modify the amalgamation class so there are strongly
minimal anti-Pasch (combinatorial sense) strongly minimal Steiner
triple systems. [Bal22, Theorem 3.6].
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Mitre and Mia

Figure: Mitre and mia configurations

[Fuj06]: The (5,7)-configuration, Mitre, represents the left
self-distributive law:

x(ab) = (xa)(xb).

If the (5,7) configuration MIA is realized, left multiplication does not
preserve lines.
By constructing∞-sparse configurations below we simultaneously
omit the Pasch, mitre, and mia configurations.

John T. Baldwin University of Illinois at ChicagoStrongly minimal Steiner Systems: Model Theory, Universal Algebra, CombinatoricsUIC logic seminarApr 26, 2022 15 / 46



Hrushovki’s basic construction vs Steiner
Example

1 σ has a single ternary relation R;
2 L0: All finite σ-structures

finite linear spaces
3 ε(A) is |A| − r(A), where r(A) is the number of tuples realizing R.
δ(A) = |A| −

∑
`∈L(A)(|`| − 2).

4 A ∈ L∗0 if ε(B) ≥ 0 for all B ⊆ A.
Replace ε by δ.

5 U is those µ with µ(A/B) ≥ ε(B).
µ(α) = q − 2 gives line length q.

Definition

A Steiner triple system (M,R) is∞-sparse if there is no A ⊆ M with
|A| ≥ 6 and δ(A) = 2.
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Blocking∞-sparse configurations

[CGGW10, page 116] construct by induction continuum many
countable∞-sparse configurations.

Definition
Let Lsp

0 be the subclass of L0 (linear spaces) such that for every B ⊆ A:

(#) |B| > 1 → δ(B) > 1 & |B| > 3→ δ(B) > 2.

Theorem

The system (K sp
0 ,≤) has ≤-amalgamation. And so for any µ ∈ U , K sp

µ

has ≤-amalgamation. So there are 2ℵ0 strongly minimal sparse
3-Steiner systems of every infinite cardinality.

So this also blocks mia and mitre.
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Cycle and Path Graphs
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Cycle graph in STS

Figure: Cycle graph in STS

Extends to infinite STS ([CW12])
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Path in 4-Steiner system

Figure: path graph in 4-Steiner System

Paths and Fans have dimension 1.

Figure: fan in 4-Steiner System
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Strongly Minimal Theories
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STRONGLY MINIMAL

Definition
T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition
a is in the algebraic closure of B (a ∈ acl(B)) if for some φ(x ,b):
|= φ(a,b) with b ∈ B and φ(x ,b) has only finitely many solutions.

Theorem
If T is strongly minimal algebraic closure defines a
matroid/combinatorial geometry.
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Combinatorial Geometry: Matroids
The abstract theory of dimension: vector spaces/fields etc.

Definition
A closure system is a set G together with a dependence relation

cl : P(G)→ P(G)

satisfying the following axioms.
A1. cl(X ) =

⋃
{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X )
A3. cl(cl(X )) = cl(X )

(G, cl) is pregeometry if in addition:
A4. If a ∈ cl(Xb) and a 6∈ cl(X ), then b ∈ cl(Xa).

If cl(x) = x the structure is called a geometry.

Usually this acl pre-geometry is not definable.
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Towers

A prime model of a theory T is the unique model that can be
elementarily embedded in each model.

If T is strongly minimal there is a tower (elementary chain: Mn ≺ Mn+1)
(〈Mj : 0 ≤ j < ω + 1〉) of countable models of T , with M0 the prime
model; then Mω is isomorphic to the generic structure Gµ,V [BP21,
Lemma 5.29].
One might think each Mn is prime with an acl-basis of cardinality n.
This is true when acl(∅) is infinite; but not in general.
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No perfect strongly minimal Steiner systems

An STS is perfect if each cycle graph G(a, b) has a single cycle

Perfect infinite STS exist. [CW12]

Let R-cl(X ) denote the subquasigroup generated by X .

None of these strongly minimal Steiner systems are perfect
In these strongly minimal examples for finite X , acl(X )− R-cl(X ) is
infinite.
QED
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Finite and infinite (pseudo-cycles)

Results
aclM(∅) 6= ∅

1 If aclM(∅) 6= ∅ there are infinitely many disjoint (over iclM(a, b))
finite pseudocycles in GM(a,b) = aclM(a,b)− icl(a, b).

2 If acl(a,b) 6= M, all paths in M − acl(a,b) are infinite.
3 If M � N and dim(N/M) ≥ 1, M is covered by a union of ‘fans’ that

each intersect at most one other fan.
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Uniform Path graphs

[

Uniform model] A model (M, ∗,R) of T q
µ′,V is uniform, if for any (a,b),

(a′,b′), GM(a,b) ' GM(a′,b′).

Lemma

1 If (M, ∗,R) is a model of a theory T generated by a Hrushovski
class of linear spaces such that every two element set A satisfies
A ≤ M, the automorphism group of (M, ∗,R) acts 2-transitively on
(M,R).

2 Clearly, if the automorphism group of (M, ∗,R) acts 2-transitively
on (M, ∗,R), (M, ∗,R) is uniform.

Key point If every two element set A in the prime model satisfies
A ≤ M, then it holds in all models.
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Constructing Strongly minimal Steiner systems
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The trichotomy

Zilber Conjecture
The acl-geometry of every model of a strongly minimal first order
theory is

1 disintegrated (lattice of subspaces distributive)
2 vector space-like (lattice of subspaces modular)
3 ‘bi-interpretable’ with an algebraically closed field (non-locally

modular)

Hrushovski gave a method of constructing strongly minimal sets that
have flat geometries and admit no associative binary function.

Zariski Geometries aim at canonical structures with more restrictions.
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The flexibility of the Hrushovski construction
The ‘Hrushovski construction’ actually has 5 parameters:

Describing Hrushovski constructions
1 σ: vocabulary L∗0 is the collection all finite σ-structures. L∗ is the

collection all σ-structures.
2 L0: A ∀∃ axiomatized subclass of L∗0
3 δ: A function from L∗0 to Z that induces a dimension on the

definable subsets of the generic.
4 L0 ⊆ L∗0 defined using δ.
5 Lµ: the A ∈ L0 satisfying that the number of 0-primitive (B/C) are

bounded by µ(B/C).

To organize the classification of the theories choosing nice classes U
of µ yields a collection of Tµ with similar properties.

For Hrushovski, the ‘standard’ U is U = {µ : µ(C/B) ≥ δ(B)}.
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Obtaining strong minimality

Primitive Extensions and Good Pairs

Let A,B,C ∈ K0.
(1) C is a 0-primitive extension of A if C is minimal with δ(C/A) = 0.

(2) C is good over B ⊆ A if B is minimal contained in A such that C is
a 0-primitive extension of B. We call such a B a base.

Bounding realization of good pairs
1 For any good pair (C/B), χM(B,C) is the maximal number of

disjoint copies of C over B appearing in M.
2 For µ ∈ U , Kµ is the collection of M ∈ K 0 such that
χM(A,B) ≤ µ(A,B) for every good pair (A,B).

This guarantees strong minimality.
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The Amalgamation

Figure: 0-primitive extensions

Figure: 0-primitive extensions
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The Amalgamation

Figure: 0-primitive extensions
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Hrushovki’s basic construction vs Steiner

Example
1 σ has a single ternary relation R;
2 L0: All finite σ-structures

finite linear spaces
3 ε(A) is |A| − r(A), where r(A) is the number of tuples realizing R.
δ(A) = |A| −

∑
`∈L(A)(|`| − 2).

4 A ∈ L∗0 if ε(B) ≥ 0 for all B ⊆ A.
Replace ε by δ.

5 U is those µ with µ(A/B) ≥ ε(B).
µ(α) = q − 2 gives line length q.
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Strongly minimal linear spaces

Fact
Suppose (M,R) is a strongly minimal linear space where all lines have
at least 3 points. There can be no infinite lines.

An easy compactness argument establishes

Corollary
If (M,R) is a strongly minimal linear system, for some k , all lines have
length at most k .

The construction with µ(α) = q − 2 gives a q-Steiner system.
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Coordinatization by varieties of algebras
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2 VARIABLE IDENTITIES

Definition
A variety is binary if all its equations are 2 variable identities: [Eva82]

Definition
Given a (near) field (F ,+, ·,−,0,1) of cardinality q = pn and an
element a ∈ F , define a multiplication ∗ on F by

x ∗ y = y + (x − y)a.

An algebra (A, ∗) satisfying the 2-variable identities of (F , ∗) is a
block algebra over (F , ∗)

This block algebra is a Steiner quasigroup with cardinality q.
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Coordinatizing Steiner Systems

Weakly coordinatized
A collection of algebras V ‘(weakly) coordinatizes’ a class S of
(2, k)-Steiner systems if

1 Each algebra in V definably expands to a member of S
2 The universe of each member of S is the underlying system

of some (perhaps many) algebras in V .

Coordinatized
A collection of algebras V definably coordinatizes a class S of
k -Steiner systems if
in addition the algebra operation is definable in the Steiner system.
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Coordinatizing Steiner Systems
Key fact: weak coordinatization [Ste64, Eva76]
If V is a variety of binary, idempotent algebras and each block of a
Steiner system S admits an algebra from V then so does S.

Definition [Pad72]
An (r , k) variety is one in which every r -generated algebra has
cardinality k and is freely generated by every n-elements.

Definition: Mikado Variety
A variety V of binary, idempotent algebras, (2, k) algebras is called
Mikado.
Thus, each A ∈ V determines a Steiner k -system(The 2-generated
subalgebras).
And each Steiner k -system admits a weak coordinatization.

Can this coordinatization be definable in the strongly minimal (M,R)?
NO; the BP examples cannot.
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Constructing a strongly minimal quasigroup

Definition: K q

1 Fix a prime power q and a Mikado variety V of quasigroups such
that F2, the free algebra in V on 2 generators has q elements.

2 Let K q
V be the collection of finite (H,R)-structures A such that

1 (A,R) is a linear space;
2 (∀a1,a2,a3)H(a1,a2,a3)→ R(a1,a2,a3);
3 Each line (maximal R-clique) has q points.
4 If A�R is a maximal clique (line) ` with respect to R, then on `, A�H

is the graph of the free algebra F2 ∈ V .
5 Any collinear triple extends to a q-element clique. (A ∀∃ sentence.)

Since V is axiomatized by 2-variable equations, if A′ ∈ K q
V , A′�H is the

graph of an algebra in V . In the generic model each pair is included in
a q-element line; but not in the finite structures.
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Defining δ and µ

1 Define δ, primitive and good extensions on finite (A,R,H) by
ignoring H. Let αq denote the isomorphism type of
({c1, c2, . . . cq−2}/ab), where all the ci satisfy R(a,b, ci).

2 A µ′ mapping K q
0,V into Z is in Uτ ′ if it satisfies i)

µ′(A′/B′) ≥ δτ ′(B) and ii) µ′(αq) ≥ 1.
3 Let D′ ∈ (K q

µ′,V ,≤
′) if and only if χD′(A′/B′) ≤ µ′(A′/B′).

To define a q-Steiner system, we set µ′(αq) = 1.
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Finding the generic quasigroup

Theorem

For each q = pn, each µ′ ∈ Uτ ′ , and each Mikado-variety of
quasigroups V with |F2(V )| = q, there is a strongly minimal theory of
quasigroups, dubbed T q

µ′,V , that interprets a strongly minimal q-Steiner
system.

The amalgamation is an easy modification of the proof in [BP21]; the
rest is standard.
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Diversity and Classification
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No elimination of imaginaries [BV22]
dcl∗(X ) = dcl(X )−

⋃
Y(X dcl(Y ).

Theorem
Let Tµ be a strongly minimal theory as in Hrushovski’s original paper.
I.e. µ ∈ U = {µ : µ(A/B) ≥ δ(B)}). Let I = {a1, . . . ,av} be a tuple of
independent points with v ≥ 2.
GI If Tµ triples, i.e.

µ ∈ {µ : µ(A/B) ≥ 3}

then dcl∗(I) = ∅, dcl(I) =
⋃

a∈I dcl(a), and every definable function
is essentially unary.

G{I} In any case sdcl∗(I) = ∅, sdcl(I) =
⋃

a∈I sdcl(a)
and there are no ∅-definable symmetric (value does not depend
on order of the arguments) truly v -ary function.

Thus for any µ ∈ U , Tµ does not admit elimination of imaginaries
and the algebraic closure geometry is not disintegrated.
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Examples
A geometry is flat if dimension is computed by inclusion-exclusion on
closed subsets.

Strongly minimal theories with non-locally modular algebraic
closure

I the Hrushovski (Steiner) examples 2ℵ0 theories of strongly minimal
Steiner systems (M,R) with

1 no ∅-definable binary function. (i.e. triplable)
2 Some definable functions (examples in [BV22])

II 2ℵ0 theories of strongly minimal quasigroups (M,R, ∗) + a
3-Steiner example of Hrushovski

III strongly minimal Steiner systems with combinatorial interesting
properties

IV Non-Desarguesian projective planes definably coordinatized by
ternary fields [Bal95]

V 2-ample but not 3-ample sm sets (not flat) [MT19]
VI strongly minimal eliminates imaginaries (flat) INFINITE vocabulary)
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Classifying ‘flat’ strongly minimal sets

1 discrete (trivial)
2 non-trivial but no binary function
3 non-trivial but no commutative binary function
4 Non-Desarguesian projective planes definably coordinatized by

ternary fields [Bal95]

John T. Baldwin University of Illinois at ChicagoStrongly minimal Steiner Systems: Model Theory, Universal Algebra, CombinatoricsUIC logic seminarApr 26, 2022 40 / 46



Key Points

Variations of the Hrushovski construction
1 k -steiner for arbitrary k .
2 not locally finite
3 Build families of examples for infinite combinatorics: such notions

as
1 families: towers of models of distinct theories.
2 anti-Pasch, sparseness;
3 generalize cycle graphs (3-Steiner) to path graphs (q-Steiner);
4 construct quasigroups which induce q-Steiner systems for arbitrary

prime powers;
5 2-transitive;

4 strongly minimal – model theoretically well behaved
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