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Denumerable models of complete theories *

H. L. VAUGHT (Berkeley, Calif.)

Introduction. The following theorem, which characterizes
a certain type of complete theories, was established by Ryll-
Nardzewski.

0.1. A necessary and sufficient condition for a complete
theory T, having infinite models, to be ^-categorical (x) is that,
for each n, there are only finitely many formulas, with free
variables v0, . . . , v n _ i , which are inequivalent in T.

A simplification of the proof (of necessity) was found by
Ehrenfeucht (2).

In this paper we shall apply methods closely related to
those used in proving 0.1 to the study of the denumerable
models of some other types of complete theories.

Before the work can be described more fully, some notions
must be defined. Let $1 be an infinite model of a theory T.
We say that $1 is homogenenous if, whenever ao,...,an and
a'n, ...,«'„ satisfy in % exactly the same formulas of T, there
is an automorphism of 51 carrying a{ into < (« = 0, ...,n).
% is ^-universal if % is denumerable and is an elementary
extension (cf. § 1) of an isomorph of each denumerable model
of T. 51 is prime if every model of T is an elementary extension
of an isomorph of % (3).

* Many of the results in this paper were announced in [22].
(*) A theory is said to be categorical in the power xa or, simply,

Na - categorical if all its models of t ha t power are isomorphic (cf. [9]). The
exact meaning we ascribe to various familiar terms such as " theory" ,
will be specified in § 1; but let it be said now tha t , herein, "comple te"
implies "consistent".

(2) Cf. [13] and, also, [10], p . 24. Later, independently, 0.1 was
established by L. Svenonius, and by E. Engeler [3].

(3) Notions more or less closely related to "Ko-universal" and "homo-
geneous" have been employed by various authors. Cf. e.g., [1], [4], and [8];
also, see footnote 15. A. Robinson [12] defined "p r ime" as above, but
with "e lementary" omit ted; however, for the "model-complete" theories
he was studying, this omission does not change the extension of the notion.
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The two types of complete theories we discuss are those
having prime models and those having so-universal models —
or, what, turns out to be the same—those having so-universal,
homogeneous models. I t is shown that a model of T of the
last sort is unique up to isomorphism, and that the same applies
to a prime model. A number of necessary and sufficient con-
ditions for a model to be such a model, or for a theory to have
such a model are given in 3.4, 3.5, 1.0, and 4.7; these are the
principal results of the paper.

According to a theorem of Ehrenfeucht [12], certain of these
conditions are satisfied by theories categorical in a non-denu-
merable power. Consequently, our results may be applied to
show that such theories possess prime models and so-universal,
homogeneous models. Some additional conclusions regarding
these theories are also derived in § 5.

In § 6, it is shown that a complete theory cannot have
exactly two non-isomorphic denumerable models, answering
a question of Raphael Robinson.

§ 1. Preliminaries. The theories we consider are formalized
in the first order logic with identity, and are assumed to have
at most s0 non-logical constants (4), each of which is either
a relation symbol or an individual constant. (When more than s0

non-logical constants occur, we speak of a generalized theory.)
A theory specifies a non-repeating list X,,, ..., X=, ... (£ < >]) of
its non-logical constants. The distinct individual variables of
every theory T are v0, v1; ..., vn, ... The set of all formulas of T
whose free variables are among v0, ...,yn^.l is called Fn{T) (b).
Let <p, <p'eFm(T). We write \-T<p to mean that q> is valid in T
(i.e., the sentence /\v0. . . f\\m-i<p is valid in T). <p and <p' are
equivalent in T if j— T<p<-+<p'; and y is consistent with T if ~<p
is not valid in T. It T0, ..., TP_1 are terms, 0(T O , ..., TP_I) is the
formula obtained by the proper simultaneous substitution of rt-
for the free occurrences of vf in <p (i — 0, ..., p~ 1). ("Proper"
means that bound variables should be changed to avoid colli-
sions.)

If a system % is a realization of T and a0, ..., am_x e |2lj (°),
we write \=%&[a0, ..., am-{\ to mean that cp is satisfied in % by

(*) Terminology which is explained only partly or not at all is that
of [17] and [18].

(5) Letters "i", ..., "r" denote natural numbers 0, 1, ..., i.e.. members
of co. "0" also denotes the empty set. "f", "17", "" ' denote ordinals.

(e) ]2l| is the universe of 21 = <A, ...}, i. e., the set .1.
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the assignment of a0 to v0, ..., am-t to vm-i. Thus, when m = 0,
|=9i99 means that <p is true in 91, or 91 is a model of <p. Eealizations
of the same theory are called similar. The similar systems 91
and 93 are elementarily equivalent (in symbols, 91 = 33) if they
have the same true sentences, or in other words, if they are
models of the same complete theory. 91 is said to be an elementary
extension of 93 and 93 an elementary subsystem of 91 (in symbols,
91^93) if (in addition) 93 is a subsystem of 91 and, in general,
1=SB#[&O, ,••, &n-i] implies |=«9>[&0> •••> 6 n - i ] -

Let 9to, ..., 9lf, . . . ( £ < 77) be similar systems such tha t
3I{' £~ 9Ij whenever ^ > f' > | (such a sequence of systems is
said to be elementarily increasing). Then the union [J {9If | £<•>]}
is the system whose universe is the ordinary union of {|9tf|/
£ < rj} and whose fth relation or distinguished element is,
respectively, the union of the fth relations of all the 9If, or the
(common) fth distinguished element of all the %. Given a system
91 = (A, Xo, ..., Xf, ...>f<, and a sequence Yo, ..., Y(J... (f <C)
of further relations or distinguished elements over A, the
system (A, XQ, ..., Xf, ..., YO1 ..., Y r , ...>f<,,f<f will be indi-
cated by the notation (of S. Feferman) (91, Yo, ..., Ys, ...)?<c-

To simplify the description of the next notion, we deal
with the case where T has only one non-logical constant, a ter-
nary relation symbol B; from this illustration the general
situation will be clear. By a possible relative interpretation of T
in another theory Tx we understand a system I = <0, y>,
where 0 eF^TJ and y ^ 3 ( T , ) . For any formula <p of T, &1 is
the formula (of 2\) obtained from <p by replacing each atomic
formula Rvfcovfclvfc2 by y(vfto, vfcl, vfcj, and then replacing sub-
formulas of the form VV?V o r AV?V by Vv/(0(vj)Ay) or
AVJ(0(VJ)~*"V)J respectively. I is a relative interpretation of T
in Tx if o-f is valid in T1 whenever a is a sentence valid in T.
If 93 is a realization of T1, then the denotation of I in 93 is the
system (A,E), where A = {x/\=&6[x]} and R={(x,y,z}/
x,y,zeA and \=<sy[x, y, z]}.

For later reference we state here the following, easily
proved facts:

LEMMA 1.1. (.1) / / 9If ̂ -9tf whenever rj > f > £', £Aew, /or
«acfe f <r?, U W f < i } H « e .

(.2) If ft is a model of T u 93^-93', «nd 91 and 9t' are «/ie
respective denotations in 93 awa" 93' 0/ a relative interpretation I
of T in Tlt then 91^91'.

Infinitistic Methods 20
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(.3) Suppose that 9t and 23 are similar systems, |2I| = {anf
n e co}, and, for each n, (21, a0, ..., an-t) = (23, b0,..., bn-x). Then
{<«„,, bny/n e a>} is a function mapping 21 isomorphically onto-
an elementary subsystem of 23 (7).

We turn now to some less familiar notions. Henceforth it
is assumed that T is a complete theory having infinite models (8).
(One or both of these assumptions is often dispensable, but
usually with little serious gain in generality.) For each n, the
set Fn(T), together with the operations A (which, when
applied to <p and y>, yields pAv), V, and ~ , and the relation
of equivalence in T, constitutes a Boolean algebra (9)—also
denoted by Fn{T). Consequently, the ordinary terminology for
Boolean algebras may be employed:

1.2.1. A member a of Fn(T) is an atom of Fn(T) provided
that a is consistent with T and, for any (peFn(T), if a A<p is
consistent with T then \—Ta^-(p.

1.2.2. (p is an atomless element of Fn(T) if <p is consistent
with T and \-Ta-+(p holds for no atom a of Fn(T).

1.2.3. Fn(T) is atomistic if it has no atomless element.
1.2.4. A prime ideal of Fn(T) is a non-empty, proper sub-

set P of Fn(T) such that, for any <p, y> e Fn(T): <pAy>eP if
<p, xp e P; y) e P, if <p e P and 1— r<p—>-y; and either q> e P or ~<p e P .
(This is what is usually called a "dual prime ideal".)

1.2.5. A prime ideal P is principal if, for some 6 eFn(T)r

P = {<pl<p e Fn(T) and |—r6-^99}—or, equivalently, if P con-
tains an atom of Fn{T).

The set of all prime ideals of Fn(T) will be denoted by
9n(T). If Pe9n{T) and 21 is a model of T, then we denote
by P(9l) the set of all w-tuples <a0, ..., an_i> such that, for
every <p e P , \-%<p[a0, ..., an_{\.

1.3. Clearly there is a natural one-to-one correspondence
between Fn(T) and the set Fn(T) of all sentences which involve
the non-logical constants of T plus the distinct, new, individual

(') For (.1), cf. [18], Theorem 1.9. For (.3), of. the proof of 1.12 of [18].
(8) Any reference to the power of A is to be understood as referring

to the power of |2t|.
(') Thus for us a Boolean algebra is a system of the form

(A, +, •,—, B»>, whose quotient modulo « is a Boolean algebra in the
more usual sense. Note also that, T being complete, F0(T) has always only
two inequivalent elements; nonetheless, it is included in the discussion,
for technical convenience.
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constants eo, . . . ,cB_i. A formula cpeFn{T) goes into the sen-
tence <p = <p(c0, ..., cn-i)- The induced correspondence (also de-
noted by ~) maps the prime ideals of Fn(T) onto the complete
theories involving the non-logical constants of T plus c0, ..., cn_1.
Clearly, (a^, ..., «„_!> e P(%) if and only if (21, a0, ..., aft_t) is
a model of P. It is sometimes convenient to think of the theory P
in place of the prime ideal P of Fn(T).

Lemma \A, below, gives an obvious, alternative character-
ization of the notion of "atom".

LKJLXIA 1A. A necessary (and sufficient) condition for
a member a of Fn{T) to be an atom of Fn{T) is that, for any mo-
dels W and 33 of T, if |=Ma[a0, ..., an_i] and l=sa[60 , ..., bn^],
then {%, a0, ..., an-i) = (58, b0, ...,bn-i).

§ 2. Existence of models. In this section we shall prove the
following

THEOREM: 2.1. (.1) There is a denumerable model 31 of T
ftuch that

(*) every finite sequence of elements of |5t|, of any length TO+1,
satisfies in 31 either an atom or an atomless member of Fm+i(T).

(.2) If, for each j e <u, P,- is a non-principal prime ideal of
Fp+l(T), then there is a denumerable model % of T such that

(*•) P0{%),PJi%), ... are all empty.
(.3) Indeed, under the hypothesis of (.2), a denumerable mo-

del S2l of T can be found for which both (*) and (**) hold.

2.1.2 was proved by Ehrenfeucht. Its special case in which
there is only one P7- was used by him to give a simple proof
of the necessity in Eyll-Nardzewski's theorem, 0.1 (2), and will
be used in § 3 and § 6, below. 2.1.1 was established by the
author. In § 3 it will be applied in the special case in which
each Fn{T) is atomistic. Thus, 2.1 is, in a number of ways,
stronger than what is needed in the rest of the paper. The
strong form has been stated because it is no more difficult
to prove and may, perhaps, be of some intrinsic interest. Note
that (.2) allows us to assume that countably many, arbitrary,
non-principal prime ideals will be empty for 31. On the other
hand, (.1) says that certain non-principal prime ideals, pos-
sibly 2No in number, can be made empty for % (10).

(10) As one easily verifies, these are, in fact, those non-principal prime
ideals of each Fn(T) which—as points of the topological space corresponding
to Fn(T) by Stone's representation theorem ([15])—are the limit of a se-
quence of isolated points.

20*
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Proof. We proceed by a modification of Henkin's proof
of the completeness theorem (Cf. [6] and pp. 42-43 of [5]).
Let Co, c u ... be distinct, new individual constants. Clearly all
entities of the form 77 = (P, c*o, ..., c^> —where q is arbitrary,
k0, ..., kg are distinct, and either P = 0 or else P is a P, with
p{ = q —may be enumerated in a list / / 0 , 77!, ... Let 1\ be the
theory whose constants are those of T plus e, , ,^, . . . , and
whose axioms are the valid sentences of T. The members of
FX(TX) may be enumerated in a list </„, <{,, ... For later reference,
we note the well-known principle, which holds for any y> « t\(T):

(1) y>, or Vvo--Vvr-iV; is consistent with T if and only if
y>(c0, ..., cr_j) is consistent with Tl.

We are going to define recursively sentences <T0, ax, ... of 1\
in such a way that, for each n, <r0 A... A an-i is consistent with Tx.
Suppose that o0, ..., an-x have been defined and <TOA...Acrn_i
is consistent with 1\. Let v be the smallest number such that c
occurs in none of <pn, a0, ..., on-x. Then as is well known, the
sentence

y: [Vvo<Pn^?)»(c,)]A(ToA...A(r,,-i

is (yb (1)) consistent with Tx. Let IIn be <P, d0, ..., d,>, and
let e0, ..., er_! be the distinct c,'s occurring in y and not equal
to any of d,, . . . ,d , . Clearly, there is a formula 0 e Fq+i±r(T)
such that 0(do, ..., d(/, eu, ..., er_i) is logically equivalent to y.
Then the formula

p: Vv t f + l . . .V^-r0

of Fg+1(T) is consistent with T. We now distinguish two cases:
Case (i). For some atom a of Fq+l{T), \-Ta-^-fi. Choosing

a definite a, we take for an the sentence a(d0, ..., d3)Ay. Since a
(as an atom) is consistent with 1\ one easily sees (applying
principle (1)) that a0A.../\an is consistent with Tx.

Case (ii). /? is an atomless element of Fq+1{T). If P is the
empty set, we take for an simply the sentence y; then, certainly,
<70A...A<X,I is consistent with Tx. Otherwise, P is a non-principal
prime ideal of Fg+1{T). Then, clearly, there is a formula
deFq+l(T) such that ~ k P , while ySA<5 is consistent with T.
For aH we take S(d0, ..., da)/\C\/v0<pn-+(pn(cr)]. Again, applying
(1), we see that cr0A...Ao-n is consistent with 2 \ .

Thus, <r0, ax, ... are defined, and the theory T2, obtained
from Tx by taking cr0, alt ... as additional axioms, is consistent.
Moreover, the construction assured that

(2) for each n, there is a ct such that <r-T2\/vo<Pn^-(Pn(Gi)-
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By a well-known result of Henkin ([6]), it follows from (2)
that T2 has a model (91, c0, ..., cn, ...) such that 31 is a model of T
and 1911 = {c0, ..., cn, . . .}. We shall see that our construction
above has also ensured that 91 fulfills (*) and (**).

Indeed, suppose that a0, ..., aq « |9I|. Then there are distinct
cko, ..., Oj- such that a0 = cko, ..., and am = ck . (This is because
any given c;- is of the form c{, for infinitely many i. The latter
fact is easily seen by noting that there are infinitely many <pt's
of the for.m vo = c3Acr, where a is tautologous (u)). Now, at
some .point in defining a0, o^, ..., we had IJn = <0, cfco, ..., cfc(j>.
If case (i) occurred, then clearly ck(>, ..., ckq satisfy in 91 an
atom of Fg{T)—namely, the a of case (i). Otherwise, ft was atom-
less, and, since the construction insured that 1— r2/?(cfco, ..., ck ),
we see that cko,...,ck satisfy in 91 an atomless member of
Fn(T). Thus, (*) holds. Now suppose further that pf = q,
so that for some n', IIn> = <P,-, cko, ..., cfc(/>. If at the n'th
step case (i) occurred, then cko, ...,ck<i satisfy in 91 an atom,
say a. Since P?- is non-principal, ~ a ' e P , and hence <cfco, ...,
%> i P?(9l)- If, instead, case (ii) occurred in the ra'th step,
then we have explicitly ensured in that step that <cfc , ..., ck >
4 P,(9l). Thus (**) holds, and the theorem is proved.

§ 3. Prime models. A model 91 of T will be called atomic
if each finite sequence of elements of |9t|, of any length n,
satisfies in 91 an atom of Fn(T) (l2).

LEMMA 3.1. Suppose that % is a denumerable, atomic model
of T and 93 is an arbitrary model of T. Then 91 can be mapped
isomorphically onto an elementary subsystem of 93. Moreover,
if a0, ..., am_! e |9I|, b0, .., bm^ e |93|, and (91, a0, ..., am_t)
= (93, b0, ..., bm_t), then the mapping may be so chosen that it
carries at into b{ for each i < m.

Proof. Let a0, ..., an, ... be a list, possibly with repeti-
tions, of the elements of |9I| (commencing with the given
a0, ..., aTO_i). Suppose that bm, bm+l, ..., 6n_, {n > m) have been
defined in such a way that

(1) (21, «o, -.., a-n-i) = (93, b0, ..., 6B_t) .

Since 91 is atomic, there exists an atom a of Fn{T) and
an atom a' of Fn+l(T) such that |=?ta[a0, ..., an_!] and

(11) This detail seems less bothersome than those required in the
applications of (1) above, had d,,, ..., d« not there been assumed distinct.

(l*) This terminology is due to I.. Svenonius.
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|=9ia'[aoi •••) an\- I t follows that |=sa[ft0, ..., ftn_i] and that
formula a/\\jYna' is consistent. By 1.2.1, the latter implies
that \-Ta^-\/vna'. 23 being a model of T, we infer that
|=» (Vvna') [&o, •••> *n-i]- Thus, we may choose for bn an
element of |23| such that |= s a ' [6 0 , ..., bn]. Then, by 1.4,
(91, ao , . . . ,an) = (SB, 60, -,K).

Thus, bm, bm+t, ... can be defined recursively in such a way
that (1) holds for every n. Lemma 3.1 now follows immedi-
ately from 1.1.3.

THEOREM 3.2. 7/91 and 23 are denumerable, atomic models
of T, then 91 is isomorphic to 23 (13).

THEOREM 3.3. If 91 is a denumerable, atomic model of T,
then 91 is homogenous.

Proof of 3.2 and 3.3. The proof of 3.1, above, resembles
Cantor's argument showing that any denumerable, simply order-
ed system is a subsystem of a denumerable, densly ordered
system without extreme points. The proof of 3.2 is analogously
related to Cantor's proof that any two systems of the lat-
ter sort are isomorphic. Eoughly, to prove 3.2, we let |9I|
= {amjme co} and |23| = {bn/neco} and define recursively couples
<a,-n, bkn}, n = 0, 1, ... The passage from n to n + 1 is like that
in the proof of 3.1 (jn being defined to be the first i ^j0,..., jn-i)
when n is even; when n is odd, the roles of 9t and 23 are reversed.
The proof of 3.3 is analogously related to the argument proving
the second conclusion of 3.1.

It may be noted that the second part of 3.1 could have
been derived from the first part, and 3.3 from 3.2, by noting
the following easily proved fact: If 91 is atomic and a0, ..., an e
|9t|, then (91, a0, ..., an) is atomic.

THEOREM 3.1. 91 is prime if and only if 91 is denumerable
and atomic.

Proof. If 91 is atomic and denumerable, then, by 3.1, 91 is
prime. On the other hand, if 91 is prime, then clearly (by the
Lowenheim-Skolem theorem) 91 is denumerable. Suppose now,
that 91 is not atomic. Then some a0, ..., am e |9Ij satisfies no
atom (of Fm(T)). Hence, clearly, P = {(pl\=%<p[a0, ..., am]} is
a non-principal prime ideal of Fm(T). By 2.1.2, T has a model 23
with P(23) empty. It obviously follows that 23 cannot be an

(13) This result was also (indeed, earlier) established by Svenonius;
of course, a closely related result was proved by Ryll-Nardzewski [13].
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elementary extension of an isomorph of 91, a contradiction.
This proves 3.4.

THEOREM 3.5. The following are equivalent:
(.1) T has a prime model;
(.2) T has an atomic model;
(.3) Each Fn(T) is atomistic.

Proof. It follows immediately from 2.1.1 that, if each
Fn(T) is atomistic, then T has a denumerable, atomic model;
by 3.4, such a model is prime. Thus, (.3) implies (.1). By 3.4,
(.1) implies (.2). The remaining implication is nearly obvious.
Indeed, suppose that T has an atomic model 91. Let cp be any
member of Fn(T), consistent with T. Since T is complete,
I— r V v o - Vvn-i9); hence, there are a0, ...,«„_! e |9I| such that
|=sif)[(i,, ..., an-i]- 91 being atomic, there is an atom a of Fn(T)
such that \=%a[a0, ..., an-x]. Then ahy is consistent with T1

so that, by 1.2.1, \-Ta^-<p. Thus, y is not atomless. This argu-
ment shows that Fn(T) is atomistic, completing the proof.

As was to be expected the results in § 2 and § 3 have as
a consequence 0.1, the theorem of Ryll-lSTardzewski. Indeed,
the proposed condition clearly implies that any model of T
is atomic; the s0-categoricity of T then follows, by 3.2. As
already remarked (after 2.1) the reverse implication is easily
derived by using 2.1.2 and the completeness theorem—as
was noted by Ehrenfeucht. (It may also rather easily be
derived from 2.1.1.) The argument depends on the well-known
fact:

3.(i. A Boolean algebra contains infinitely many inequiv-
alent elements if and only if it has a non-principal prime ideal.

In Ryll-Kardzewski's theorem a semantical condition is
shown to be equivalent to a purely syntactical statement. The
equivalence, proved above, between 3.5.1 and 3.5.3 has the
same character.

§ 4. Saturated models. A model 91 of T will be called
weakly saturated if, for any P«9»(T) (n arbitrary), P{%) is
not empty. 91 is said to be saturated if (in addition) the condi-
tions Pe9n(T),PCQe 9n+l(T), and <a0, ..., «„_!> e P(9I) imply
that there exists an element x such that <a0, ...,«„_!,#> e(?(9t).

LEMMA 4.1. Suppose that I is a relative interpretation of T
in a theory Tlf 23 is a denumerable model of Tt, and 91 is the
denotation of I in 93. Let new,P e 9n(T) ,PCQe 9n+1{T), and
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<b0, ..., fcTC_i> € P(2l). Then there exists a denumerable, elemen-
tary extension 23* of 23, in which the denotation of I is a system 31*
having an element d such that <60, ..., £>n_i, d) eQCH*).

Proof. We employ a type of argument which has been
used by A. Robinson (u). Let b0, ..., &„_[, b,,, ... be all the ele-
ments of |23|, and let d, b0, ..., b,,, ... be distinct, new individual
constants. Let the axioms of the theory T\ be all sentences of
the form v(b,0, ..., hiki), such that y> <r Fk('I\) and |=sv>[/>/0, ...,
bik-J> P l u s a11 sentences <t>'(bn, ..., 1),,_,. d) for which 0 (Q. If '
0O,'..., &peQ then, clearly, the formula \/ v,,(0oA ... A*,,) e P;
therefore, there is a y such that, for each / <: p, |=«0,[&o, ...,
6m_!,2/], i.e. |=4,$([&„, ..., bn-i, y]. It easily follows that any
finite set of axioms of T[ has a model, so that T\ is consistent.
By the completeness theorem, T[ has a model B[. B[ is of the
form (Sn u0, ..., un, ...), where ®! is a model of Tx. Clearly,
33! is isomorphic to a system 33* having the desired properties.

THEOREM 4.2. Suppose that each :Pn(T) is countable. Let TL

be a consistent theory, and let Io, ..., / „ , ... be relative interpre-
tations of T in 2\ . Then 2\ has a denumerable model in which,
the denotation of each In is a saturated model of T.

Proof. We note first that given any denumerable model
23 of Tx, a system 23* can be found, with the following prop-
erties:

(1) 23* is a denumerable elementary extension of 23; (2) if
k,me<o, if % and 21* are the (respective) denotations of Ik

in 23 and 23*, and if PeJ>m(T), <a0 , ..., am_t> e P(2I), and
P C Q e '?m+i(T), then there exists an x such that <«„,...,
a-m_i, «> e Q(2I*). Indeed, since each P,,(T) is countable, we
may enumerate all tuples </fc, P , Q, a0, ..., «,„_!> for which the
hypothesis of (2) holds. Let (£0 = 23 and (recursively) let G,1+1

be a system of the type whose existence is asserted in Lemma
4.1—as applied to (£,,. and to the entities Ik, P, Q, a0, ..., are_t

constituting the ;<-th-tuple in our enumeration. One easily sees,
using 1.1.1 and 1.1.2, that the system 23* = U {dt/fc e <,o} has
the properties (1) and (2).

Now let 23O be a denumerable model of T1, and (recursi-
vely) let 23m+I be to 23m as 23* is to 23 in (1) and (2). Then,
clearly, the system {J {23j-/fc e a>) is as demanded in 4.2.

(") Cf. theorems 2.1, 2.2, and 2.5 of [11]. One could, indeed, derive 4.1
from these.
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A special case of 4.2 is the following: a sufficient condition
for T to have a denumerable, saturated model is that each
5>n(T) be countable. Later, in 4.7 and 4.4, we shall see that
this condition is also necessary, and that there is at most one
denumerable, saturated model of T up to isomorphism. Conse-
quently, the full Theorem 4.2 states, roughly, that denumerable,
saturated models have further "saturation properties"—in ad-
dition to those in the definition of "saturated"; in particular,
a kind of second order saturation.

LEMMA 4.3. Suppose that 93 is a denumerable, saturated
model of T and 91 is an arbitrary, denumerable model of T.
Then 51 can be mapped isom.orphically onto an elementary sub-
system of 93. Moreover, if a0, ..., am-^ e |9I|, b0, ..., bm^ e |93|,
and (51, a0, ..., am_i) == (93, b0, ..., 6m-i), then the mapping can
be chosen so that it carries a,i into bt for each i < TO.

Proof. Let a0, ..., am_i, am, ... be all the elements of |9I|.
We can define by recursion a sequence bm, bm+1, ... of elements
of 1931 such that, for any n,

(3) (91, ao,...,an^) =(93 , b0, ..., bn^).

Indeed, (3) holds for n < m, by hypothesis. Suppose that (3)
holds for a given n > TO. Then, clearly (cf. 1.3), for some
Pt9n{T), <a0, ...,«„_!> *P(9I) and <b0, ..., bn^> * P(53). Now,
for some Q € 9 m + 1 (T) , <a0, ..., are> « Q(9I). But then PCQ, so
that, since 93 is saturated, we may choose bn e \ 931 such that
<60, ..., bny e Q(93). Then (3) holds with "> i+ l" for "n", by 1.3.,

4.3 now follows from 1.1.3.

THEOREM 4.4. Any two denumerable, saturated models of T
are isomorphic.

LEMMA 4.5. Any denumerable, saturated model of T is
homogeneous.

Proof. The proofs of 4.4 and 4.5 are obtained by modifying
that of 4.3 in a manner completely analogous to the one in
which the proofs of 3.2 and 3.3 were obtained from that of 3.1.

THEOREM 4.6. For a denumerable model 91 of T, the follow-
ing conditions are equivalent:

(.1) 91 is saturated;
(.2) 91 is s0-universal and homogeneous;
(.3) 91 is weakly saturated and homogeneous.
Proof. By 4.3 and 4.5, (.1) implies (.2). From the Godel-

Lowenheim-Skolem theorem, one sees at once that an so-uni-
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versal model is weakly saturated, so that (.2) implies (.3).
Suppose (.3) holds, a0, . . . ,«„_! e P(2t), Pe9n{T), and P CQ
€ 9n + i (T). Since 91 is weakly saturated, some <«i,..., a^) e Q(9t).
Then <aj, ..., <_i> e P(9I), and hence, 91 being homogeneous,
there is an automorphism / of 91 taking aj into a{ for « < ».
Consequently, (a0, ..., an_x, /(«&)> e#(9I). Thus, (.3) implies (.1).

THEOREM 4.7. TTie following conditions are equivalent:
(.1) iJacA 9n(T) is countable;
(.2) T has a denumerable, saturated model;
(.3)-T has an so-universal model;
(A) T has a weakly saturated, denumerable model (u).
Proof. We have already remarked that "(.1) implies (.2)"

is a special case of 4.2. By 4.3 or 4.6, (.2) implies (.3). As noted
above, (.3) implies (.4). Finally, that (.4) implies (.1) is obvious.

COROLLARY 4.8. If T has an s0- universal model, then T
has a prime model.

Proof. As is well-known, Boolean algebras with countably
many prime ideals are atomistic. Hence 4.8 follows from 4.7,
and 3.5. (While this proof of 4.8 depends on 2.1.1, it may be
noted that another proof could be constructed depending, rather,
on 2.1.2—since, under the hypothesis of 4.8, (J{9n(T)/» e co}
is countable.)

One is tempted to say, by analogy with the discussion
in the last paragraph of § 3, that condition 4.7.1 is purely
syntactical. Indeed, in 4.7.1, no reference to any semantical
concept, such as "model", is made. However, a little thought
convinces one that a notion of "purely syntactical condition"
wide enough to include (.1) would be so broad as to be pointless.

In § 5 and §6, we will see that the results of §2-§4 can
be applied to establish some general properties of models of
certain kinds of theories. On the other hand, the chances that
these results can be usefully applied in the study of a particular

(u) In view of 4.6, it follows that 4.7.1 or 4.7.3 is, also, a necessary
and sufficient condition for T to have an K0 - universal, homogeneous model.
In [20] and [21], the author announced some results concerning the
existence in powers sa > x0 of "Sa- universal models" for arbitrary theories
and of Ka - universal, "homogeneous" models for complete theories. (For
the meanings of "Sa - universal" and of "homogeneous" intended here,
cf. [20] and [21].) The author takes this opportunity to state that he has
learned that results very closely related to those in [20] and [21] were
obtained several years earlier by Mr. Michael Morley. Morley's work is
not yet published.



621

Denumerable models of complete theories 315

relational system or complete theory seem not too good. This
is due at least in part to the fact that the notion "elementary
subsystem" rather than "elementarily equivalent subsystem"
is involved in such notions as "prime" or "s0-universal".
Thus, for example, to establish that a theory T fulfills any one
of the conditions in 3.5 or 4.8 one would need to have already
a guod deal of metamathematical (and not jxist algebraic)
information concerning T.

It may, however, be worthwhile, for the sake of illustration,
to give some examples of theories which fulfill the condition
of 3.5 or 4.7. (But it should be noted that the results of § 3
and § 4 yield no new information about these examples.)
The theory T_ of infinite, discretely ordered systems with,
say, a first but no last element, is one in which each rJ>n(T1)
is countable. That this is so is easily verified, because the
known decision procedure for 1\ provides a description of all
possible definable sets and relations in models of Tl (16). The
s0 - universal, homogeneous model of Tx is the system of order
type w-r(oj* + o>) • rj. It may be remarked that T1 has 2No non-
isomorphic denumerable models.

For the theory T2 of real closed fields, the set ^(Ta)
obviously has 2So members. However, as is known (cf. [16], [12])
the field of real, algebraic numbers is a prime model of T2

and each Fn(T,2) is atomistic.

§ 5. NL.̂ -categorical theories (17). Ehrenfeucht has proved
that

5.1. / / , for some a, T has less than 2No non-isomorphic
models of -power sa, then each 5)n(2I) is countable (18).

Consequently, the results of § 3 and § 4 may be applied
to such theories T.

An immediate consequence of 3.5, 4.8, and 5.1 is

(le) For a brief discussion of Tl and references, cf. [18], pp. 90-91.
(I!) Examples of xa - categorical theories are given in [9] and [19].

I t may be noted that, as pointed out in [9] and [19], any such theory,
"which has no finite models, is necessarily complete.

(ls) For 5.1, cf. [2] (where only the case n = 1 is stated). Earlier,
in [1], Ehrenfeucht had shown that a 2'a - categorical theory T has an
•"Ko-universal" model.

o. 1 generalizes its own case where a = 0, which is much more easily
proved. This case was established in [10], p. 25-20, for some special theories T;
the method, however, is adequate for any T. (One should note the well-
known fact that a denumerable Boolean algebra has either countably
many or 2Xo prime ideals.)
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THEOREM 5.2. If the hypothesis of 5.1 ftoMs, MCH T has-
an s0- universal, homogeneous model and a prime model (l8).

The hypothesis of 5.1 is satisfied, in particular, by «„- cat-
egorical theories T. Of course, 5.2 is of no interest, when T
is s0-categorical. A typical example of a theory which is
categorical in non-denutnerable powers, but not in s0, is the
theory of algebraically closed fields. Here, as is known (of. [12]
and, also, [18], p. 101), the field of complex, algebraic numbers
is a prime model, while the algebraically closed fields of trans-
cendence degree s0 are sn- universal, homogeneous models.

THEOREM 5.3. Under the assumption that T i.s ^-cate-
gorical, but not xo-categorical, ice may say further that a prime
model % of T is minimal—i.e., that 91 has no proper elementary
subsystems.

Proof. Suppose, on the contrary, that a prime model %
of T has a proper elementary subsystem W. It is clear that
W is also prime. Consequently, we can define, recursively
a transfinite sequence % = %,, 91,, ..., 9U, ... (f < w,) of prime
models of T such that, for any f < «, , 9lf is a proper elementary
subsystem of 3Tf+1 and 9If = {Ji^Jv < f} if f is a limit number.
Indeed, since all prime models of T are isomorphic, our assump-
tion guarantees that such an <JU_, can be found, given 91* j
and, when f is a limit number less than <ot, then 'JL is prime,
by 3.4 and 1.1.1. Again by 3.4 and 1.1.1, the model
93 = LJ{9I?/f < "ill °f tlu1 power s,, is atomic. On the other
hand, since T is not N0-categorical, some F,,(T) has a non-
principal prime ideal P, by 1.1 and 3.6. By the completeness
theorem and the generalized Lowenheim-Skolem theorem (19)
(and 1.3), T has a model (£, of power s^, in which P((£) is not
empty. Since P(23) is empty, 33 and (£ are not isomorphic,
contrary to our hypothesis. Thus, 5.3 is established.

A conjecture of Los [9] is that a theory T which is cate-
gorical in some non-denumerable power is categorical in all
such powers. Prom this it would follow that, in 5.2, "*i\
could be replaced by "N 1 + U " . We have been unable to prove
this stronger version of 5.3.

In the following theorem we establish a result which
would easily follow from Los' conjecture (and which, it would
seem, might possibly be useful in establishing it).

(") Cf. [18], p. 92, line. 5 and, for references, footnote 4 on the
same page.
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THEOREM 5.4. Suppose that T is ^-categorical and 6 e F^T).
Then, in any model 91 of T, the set {x/\=u6[x]} is either finite
or of the same power as 91.

Proof. To simplify the notation we assume that T has
only one non-logical constant, the ternary relation symbol R;
the extension to an arbitrary T is obvious. Suppose that the
conclusion is false, so that T has a model 911 in which the set
JJ = {aj/[=9ti 6[x]} has an infinite power, smaller than that of 9T1.
By tke generalized Lowenheim-Skolem Theorem (M), HI1 has
an elementary subsystem 9I2, having the power of U, such
that U C |9P|. Clearly, the system (9I1, |9I2j) is a model of the
theory T', whose symbols are those of T plus a new singulary
predicate V, and whose axioms are the valid sentences of T,
the sentences

(1) Vv0Vv0, Vvx-Vv^ and Av0[e(v0)-^Vv0],

and all sentences of the form

(2) A•<>••• AV»-.[VVOA ... A Y V , ^ ( ^ ^ ) ]

—where <p e Fn(T) and q>v is obtained from <p by "relativizing
the quantifiers to V" (21).

In the theory T' there are two relative interpretations
of T—namely, <v0 = v0, R ^ v ^ ) and <Vv0, RvoV^). Since
T' is consistent, it follows from 4.2 and Ehrenfeucht's theorem,
5.1, that T' has a denumerable model 53 = <-B, R,V}, such
that the system 91* = <5, i?> and its subsystem 91 with
universe V are both saturated. Since all sentences of (1) and (2)
are true in 93, 91* is obviously a proper, elementary extension
-of 91, and

(3) {xl\=*0[x]) = {xl\=«6[x]}.

All denumerable, saturated models being isomorphic (by 4.4),
we conclude that an arbitrary such system 91 is a proper
elementary subsystem of some other such system 91* in such
a way that (3) holds.

Now take for 9Io an arbitrary denumerable, saturated
model of T (by 5.1), for %+1 (f < a^) a system related to
9If as 91* is to 91 above, and for 91, —when r\ is a limit number
^cox—the system U$If/f < v}- It is clear from 1.1.1 that

(*•) —in the form given in [18], p. 92, Theorem 2.1.
(al) —in the sense of [17], p. 24-25.
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the union of an elementarily increasing sequence of saturated
systems is saturated, so that our construction is justified.
By 1.1.1 and induction on f, we see that for any f ^ cox and
for any x, |=«,,0|XI if and only if |=«f 6[x~\. Thus %OI is a modeL
of T, of power KU in which {as/I—%mi6[x]} has the power s0.
On the other hand, by applying the generalized completeness
theorem (to the generalized theory Tt obtained by adding
to T individual constants c0, ..., c4, ... (f < a )̂ and axioms
cf =£ cn (I + v) a n ( i Q(Gt)—f°r %•> rj < coi), we see that T has
a model (£, of power x15 in which {#/|=e0|X]} has the power sx.
Thus ?!„,! and (£ are not isomorphic, contrary to the hypothesis,
that T is ^-categorical. This completes the proof (22).

§ 6. The number of non-isomorphic denumerable models.
Consider the complete theory T" whose models are all systems
<A,JS> such that R is an equivalence relation over A, R
has exactly two equivalence classes, and each of these is
infinite. Some time ago, Raphael Robinson remarked that T9

has the following property: There are exactly two non-
isomorphic models of T° having the power h .̂ He raised the
question whether there exists a complete theory T having
exactly two non-isomorphic models of power s0 (23).

As is well-known, the theory Tx of densely ordered systems
without extreme points is complete and, by Cantor's theorem,
has exactly one denumerable model, up to isomorphism.
Ehrenfeucht constructed an example, which he showed to the
author, of a complete theory, T3, having exactly three non-
isomorphic denumerable models. (He has kindly allowed me to
reproduce it here.) T3 has a binary relation symbol < and
individual constants c0,..., cn,... The axioms of T3 assure that,
if (A, < , c0, ..., cn, ...') is a model of T3, then (A, <> is
a model of T n and c,- < ci+1, for i = 0,1, ... That T3 has the
stated properties is easily shown; the three isomorphism types
of denumerable models {A, c0, ..., cn, ...> of T3 are those in
which (i) co,cx,... are confinal, (ii) c0, cx, ... are not confinal
and have no limit in A, or (iii) c0, cl7 ... have a limit in A.

(M) Again we are unable to establish that "S," can be replaced by
"S1 + a" , in 5.4. However, an argument similar to, but simpler than, the
proof just given does show that, in 5.4, "Kl-categorical" can be replaced
by "Sa-categorical and Ko+1-categorical".

(23) Robinson formulated this question during a conversation in 1957
with several people including the author.
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By a simple modification of T3 we may obtain, for
n = i , o, ..., a complete theory Tn having exactly n non-
isomorphic models. The non-logical constants of Tn are <,
Uo, ..., Un-3, c0, cl?..., the TJi being singulary relation symbols.
The axioms are those of T3 plus axioms assuring that, in
any model

(1) (,A, < , Uo,..., Un-S, c o , e , , . . . > ,

the sets L'o, ..., Un-3 form a partition of A, each Ut is dense
in A, and, for each n, cn€ Uo. I t is a theorem of Skolem [14]
that any two denumerable models of Tn are isomorphic if
we ignore their lists, of distinguished elements. Using this fact
it is easily seen that Tn is complete and that the possible
(isomorphism) types of denumerable models (1) of Tn are
the two in which (i) or (ii) holds, plus the n— 2 in which
c0, cl, ... have a limit belonging to TJi, i = 0, ..., n — 3.

The theories T3, Ti} ... have infinitely many non-logical
constants, but they can easily be converted into complete
theories T3, T[, ... having only finitely many—and still having
exactly 3, 4, etc., non-isomorphic denumerable models. How to
do this, in general, will be clear from the description of T'3.
The non-logical constants of Ts are the binary relation sym-
bols < and R. Its axioms assure that, in any model <A, < , R}:
R is an equivalence relation over A having the substitution
property with respect to < ; the quotient of <A, <> modulo R
is a densely ordered system without extreme points; for
n = l , 2 , . . . , there exists exactly one R - equivalence class
having exactly n elements; and, for n = 1,2, ..., and any
x, y e A, if the R - equivalence classes of x and y have exactly n
and n + 1 elements, respectively, then x<.y.

Of various simple proofs omitted in the above discussion,
perhaps one showing that T$ is complete should be briefly
indicated. Granted that Ts has only three non-isomorphic
models, we may proceed as follows: Let 91= <J., <,R} be
a denumerable model of T3 of the type in which the R- equi-
valence classes having 1,2, . . . elements are confinal (in %
modulo R). To the theory T whose valid sentences are all
true sentences in 91, add an individual constant c and axioms
assuring that in any model (A', <',R',c), if xRy holds for
exactly n elements y, then x <' c (n = 1, 2, ...). Clearly the
resultant theory T' is consistent, so that by the completeness
theorem, it has a denumerable model <-4.", < " , R", c">;
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<A", <", R"y is then a model of T3 of one of the other two
types. By further applications of the completeness theorem,
together with a construction which involves taking the union
of an elementarily increasing family of systems, one can show
that a denumerable model of T3 in which the finite equivalence
classes do have a limit is elementarily equivalent to one in
which they do not have a limit and are not confinal. It then
follows easily from the Lowenheim-Skolem theorem that T3 is
complete.

We -shall now show that the situation is quite different
for n = 2, completing the proof of

THEOREM 6.1. There exists a complete theory having exactly
n non-isomorphic denumerable models if and only if n =£ 2.

R e m a i n d e r of proof. Assume, on the contrary, that T
has exactly 2 non-isomorphic denumerable models. Then, by 5.1,

(2) each 9n(T) is countable.

On the other hand, by .1.1 and 3.6, some Fm(T) has a non-
principal prime ideal P. By 2.1.2, T has a model 91, in which
P(%) = 0. If 91 is any system such that

(3) for some c0, ..., cm_i, (91, c0, ..., c,n_i) is a denumerable
model of the theory P (of. 1.3),

then PC$l) j-- 0, and. hence, 91 is not isomorphie to 9Ij. Con-
sequently, all systems 9t for which (3) holds must be isomorphie.
Moreover, any such system 91 must be saturated since 9lj is not
saturated and, by 4.7 and (2), some denumerable model of T is.
By applying 4.5, Ave easily conclude that all denumerable
models (91, c0, ..., cm) of P are isomorphic. Hence, by 1.1,
Fm(P) contains only finitely many formulas inequivalent in P.
This contradicts the fact that the subset Fm(T) of Fm(P)
already contains infinitely many formulas inequivalent in T
and, hence, T being complete, in P.

We may mention here the following unresolved conjecture
(which appears to have been made by a number of people):

A theory v:hich is s1+a- categorical but not s0- categorical has
exactly s0 non-isomorphic denumerable models.

A second problem is this:
Can it be proved, without the use of the continuum hypothesis,

that there exists a complete theory having exactly xx non-isomorphic
denumerable models f
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