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In this paper we discuss extensions of first order logic both to infinitary
logics and by adding some generalized quantifiers. In a certain sense this topic is
orthogonal to the usual study of generalized quantifiers. That program considers
the basic properties: compactness, interpolation, etc. of various logics. An
abstract elementary class is a generalization of the class of models of a specific
theory in first order logic. The goal of the study is to find the properties of
such classes that make sense for ‘elementary classes’ in many logics. Thus
our goal in this paper is threefold 1) to expound the definition of abstract
elementary class and some key concepts of their study 2) to examine and solicit
specific examples, especially those defined with generalized quantifiers and 3) to
investigate the distinction between those AEC defined via infinitary logic and
those using generalized quantifiers.

In contrast to the usual goals of abstract model theory, our study is moti-
vated by considering classes of structures of mathematical interest that can be
axiomatized in a suitable logic. Thus, a great deal of algebraic geometry can be
viewed as the model theory of the first order theory of algebraically closed fields
(albeit with an emphasis on positive formulas). In contrast, Zilber’s study [24, 2]
of the complex field with exponentiation requires axiomatization in Lω1,ω(Q)
thus providing a clear example of the need for both infinitary logic and general-
ized quantifiers. A second major innovation is that an AEC is a pair of a class of
models and a notion of ‘elementary submodel’. Since ≺K is given axiomatically
the first reaction is to expect some examples could be very different from the
basic examples defined by logics. At least ostensibly this is the case for ⊥N , a
certain family of modules that we discuss in Section 4; A ≺K B is defined by
a property of the quotient B/A. This expectation has not yet been confirmed.
In particular, consider the current state of ⊥N as discussed in Section 4.

Question 0.1 Are there further examples of classes of structures of mathemati-
cal interest, along with a notion of elementary submodel, that can be axiomatized
only by extending first order logic by infinitary and/or generalized quantifiers?
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As Vaananen [23] suggested at the conference there is a natural splitting
of extensions of first order logic into three families. An extension has ‘first
order like-quantification’ if quantification is still restricted to individuals; one
may allow quantification over infinite sequences of elements, or infinite Boolean
combinations of formulas in the matrix. A second alternative is the logics with
generalized quantifiers as introduced by Mostowski. Finally there are higher
order logics. We restrict here to the first two families.

A Lindström theorem provides syntactic/semantic conditions on a logic that
pin down certain logics. We discuss a similar phenomena. But we work not
with entire logics but with class of structures along with a notion of ‘elementary
submodel’ on that class and consider in Section 2 what semantic properties of
the pair are reflected by syntactic conditions.

Shelah has a massive program to study categoricity in general AEC see his
work on ‘frames’) but the most complete categoricity transfer results [17, 18] are
only for Lω1,ω. In section 3, we explore some of the reasons for that restriction
by studying the more simple question of the existence of models in ℵ2 [21]. We
expound the work of Andrew Coppola who found a more natural framework for
the result.

1 Abstract Elementary Classes

The basic context of AEC is the same as for studying generalized quantifiers.
We are looking at a collection of models for a fixed vocabulary. But rather than
develop a syntax and semantics for a logic, we try to isolate the properties of
a class of defined by a sentence; these models are connected by some notion of
‘elementary submodel’, ≺K . For background on AEC see e.g. [6, 1, 21, 19]

Definition 1.1 A class of τ–structures, (K,≺K ), is said to be an abstract
elementary class (AEC) if both K and the binary relation ≺K on K are closed
under isomorphism and satisfy the following conditions.

• A1. If M ≺K N then M ⊆ N .

• A2. ≺K is a partial order on K.

• A3. If 〈Ai : i < δ〉 is a continuous ≺K–increasing chain:

1.
⋃

i<δ Ai ∈ K;

2. for each j < δ, Aj ≺K
⋃

i<δ Ai;

3. if each Ai ≺K M ∈ K then
⋃

i<δ Ai ≺K M .

• A4. If A,B,C ∈ K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B.

• A5. There is a Löwenheim–Skolem number LS(K) such that if A ⊆ B ∈
K there is a A′ ∈ K with A ⊆ A′ ≺K B and |A′| ≤ |A|+ LS(K).
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Here, 〈Ai : i < δ〉 is a continuous ≺K–increasing chain provided that Ai ∈
K and Ai ≺K Ai+1 for all i < δ, and Ai =

⋃
j<iAj for all limit ordinals i < δ.

If M ≺K N we say that M is a strong submodel of N . If f : M 7→ N is 1-1
and fM ≺K N , we call f a strong embedding. Note that A3 in toto says that
K is closed under well–ordered direct limits of strong embeddings.

This notion generalizes the framework in which Jónnson proved the existence
and uniqueness of universal-homogeneous models for classes defined by universal
sentences (i.e. closed under substructure). The main innovation is to introduce a
variable relation ≺K for submodel. The most natural examples are elementary
classes in Lω,ω and Lω1,ω. ≺K becomes elementary submodel in an appropriate
fragment of Lω1,ω.

Note that classes defined in logics Lκ,λ with λ > ℵ0 and taking elementary
submodel in that logic are not AEC. Nor does the class of models of a theory in
L∞,ω with the natural notion of submodel since there may be no Löwenheim-
Skolem number. Let n be finite and Ln be logic with n-variables. Then any
Ln-definable class with Ln-elementary submodel is an AEC [15, 4].

2 From Semantics to Syntax

In this section, we note several results of the following form: A class of models
satisfying certain semantic conditions can be defined as class of models in a
certain logic. The first theorem of this sort is Tarski’s proof that a class K of
relational structures that is closed under substructure and satisfies the condition:
if every finite substructure of A is in K then A is in K is defined by set of
first order universal sentences. This kind of result can be seen as a kind of
Lindström’s theorem but for elementary classes rather than logics.

We generalize by allowing both infinitary sentences and reducts. Recall that
a PC (pseudoelementary) class is the collection of reducts to a vocabulary τ of
models of a theory T ′ in an expanded vocabulary τ ′. We extend this notion to
allow the omission of types as part of the defining condition.

Definition 2.1 Let Γ be a collection of types in finitely many variables over
the empty set in a vocabulary τ ′. A PC(T,Γ) class is the class of reducts to
τ ⊂ τ ′ of models of a first order theory τ ′-theory which omit all members of the
specified collection Γ of partial types.

We write PCΓ to denote such a class without specifying either T or Γ. And
we write K is PC(λ, µ) if K can be presented as PC(T,Γ) with |T | ≤ λ and
|Γ| ≤ µ. (We sometimes write PCΓ(λ, µ) to emphasize the type omission. In
the simplest case, we say K is λ-presented if K is PC(λ, λ).)

First we note that with these definitions we can provide a syntactic definition
for each AEC. On the one hand this characterization is hopeless as it requires
an expansion to a larger language and an extremely arbitrary construction in
the expansion; thus the ‘algebraic’ information about the original class is lost.
But the presentation theorem does allow one (at least for classes with arbitrarily
large models) to use Ehrenfeucht-Mostowski models. This proves an extremely
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valuable tool that has been exploited by Shelah in many situations; one of the
many examples is in [1, 19].

Theorem 2.2 (Shelah’s Presentation Theorem) If K is an AEC with
Löwenheim-number LS(K) (in a vocabulary τ with |τ | ≤ LS(K)), there is a
vocabulary τ ′ ⊇ τ with cardinality |LS(K)|, a first order τ ′-theory T ′ and a set
Γ of at most 2LS(K) partial types such that:

K = {M ′ � τ : M ′ |= T ′ and M ′ omits Γ}.

Moreover, the ≺K relation satisfies the following conditions:

1. if M ′ is a τ ′-substructure of N ′ where M ′, N ′ satisfy T ′ and omit Γ then
M ′ � τ ≺K N ′ � τ ;

2. if M ≺K N there is an expansion of N to a τ ′-structure such that M is
the universe of a τ ′-substructure of N ;

3. Finally, the class of pairs (M,N) with M ≺K N forms a PCΓ(ℵ0, 2ℵ0)-
class in the sense of Definition 2.1.

Without loss of generality we can guarantee that T ′ has Skolem functions.

The proof of this result is wildly non-constructive. The connection between
the expanded language and the original is only what is demanded by the the-
orem. The proof has two stages. By adding LS(K) function symbols to form
a language τ ′ we can regard each model of cardinality at most LS(K) as being
finitely generated. If we look at finitely generated τ ′-structures, the question
of whether the structure is in K is a property of the quantifier free type of the
generators. Similarly the question of whether one τ ′ finitely generated structure
is strong in another is a property of the τ ′ type of the generators of the larger
model. Thus, we can determine membership in K and strong submodel for
finitely generated (and so all models of cardinality LS(K)) by omitting types.
But every model is a direct limit of finitely generated models so using the AEC
axioms on unions of chains (and coherence) we can extend this representation
to models of all cardinalities. For detailed proofs see [1] or [21].

A second example is Kirby’s [13] treatment of quasi-minimal excellent
classes. In [25], Zilber defines a generalization of the notion of a strongly min-
imal set designed to capture the structure of complex exponentiation. Key to
this study is the generalization of the first order notion of algebraic closure by
defining a ∈ cl(B) if for some Lω1,ω formula φ(x,b) we have both φ(a,b) and
there are only countably many solutions for φ. Zilber’s classes can be defined in
L(Q); but there is a negative occurrence of Q. However, the class of models is
still closed under unions of chains with respect to the notion of closed submodel
[13, 1]. M is a closed submodel of N if for every X ⊂ M , clM (X) = clN (X).
Zilber demands eventually that his ‘quasiminimal excellent’ class be definable in
Lω1,ω(Q). Then he proves that classes which satisfies all of these conditions are
categorical in all uncountable powers. (The term quasiminality arises because
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the conditions imply that every definable subset is countable or co-countable.)
Kirby takes a different tack. He axiomatizes the situation entirely by proper-
ties of models and concludes that the class can be axiomatized in Lω1,ω(Q).
He defines the notion of strong submodel in terms of closure in the underlying
combinatorial geometry.

For our third example we look at the notion of finite character introuduced
by Hyttinen and Kesala [9] and various results of Kueker [14]. Using his method
of countable approximations and game quantifiers he has proved a number of
definability results for Abstract Elementary Classes. We use Kueker’s definition
which is equivalent to the earlier definition of Hyttinen and Kesala in classes
with amalgamation.

Definition 2.3 (K,≺K ) has finite character if and only if for M,N ∈ K
we have M ≺K N if M ⊆ N and for every finite a ∈ M there is some K-
embedding fa of M into N fixing a.

Clearly if K is defined by a sentence in L∞,ω and ≺K is elementary sub-
model with respect to that fragment (or even with respect to a smaller nicely
closed class of formulas), K has finite character. Equally clearly, elementary
submodel with respect to cardinality quantifiers does not have finite character.

Theorem 2.4 (Kueker) 1. If (K,≺K ) is an AEC and LS(K) = κ then
K is closed under L∞,κ+-elementary equivalence.

2. Assume that (K,≺K ) has finite character. Let M ∈ K and assume that
M ≡L∞,ω

N . Then N ∈ K.

Very little more has appeared beyond this result although there are a number
of examples showing limits to the most immediate conjectures. We discuss some
other examples in Section 4. An AEC with finite character is called finitary if
also has arbitrarily large models, the amalgamation property and Löwenheim
number ℵ0. The work of Hyttinen, Kesala and Kueker raised the question.

Question 2.5 Suppose a finitary AEC is categorical in all uncountable models.
Must it be Lω1,ω definable?

A crucial point in the study of AEC is that compactness fails in a very strong
way; in general the class does not have the upward Löwenheim-Skolem property.
This raises the question:

Question 2.6 Can the ‘compactness aspect’ of various Lindström theorems
characterizing logics be weakened to ‘upward Löwenheim-Skolem property’?

There have been some recent results on Lindström theorems for logics that
allow the study of analysis, specifically Banach Spaces. Bradd Hart has an-
nounced a new Lindström theorem for continuous logic.
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Theorem 2.7 (Hart) First order continuous logic is the maximal logic for
continuous structures such that satisfies:

1. closure under ultraproducts

2. the DLS property

3. closure under unions of elementary chains of substructures

Iovino [10] proved a related result earlier. He studies a logic H of positive
bounded formulas under approximate satisfaction. This framework stems from
Henson [8].

Theorem 2.8 (Iovino) There is no logic for analytic structures that extends
H properly and satisfies both the compactness and the elementary chain property

Both of these theorems are formulated for notions of ‘structure’ that are os-
tensibly different from those in Lindström’s context. Specifically for both ‘con-
tinuous’ and ‘analytic’ structures, there is a specified sort for the real numbers
that is held standard in all models and certain uniform continuity conditions are
imposed on basic functions into this sort. Note however, that any class defined
in such a logic is a candidate for being an AEC in the normal interpretation of
‘structure’. Thus there is a possibility of reformulating these results (or proving
related results) as Lindström theorems for AEC.

3 AEC and generalized quantifiers

A natural question is to try to extend this framework to study classes defined
with the adjunction of the Q quantifier introduced by Mostowski. We focus here
on the ℵ1 interpretation but there is a natural question of extending the analysis
to other interpretations. We close the section by discussing some similar logics.

The models of an arbitrary sentence of L(Q) with the associated notion of
elementary submodel as ≺K does not give an AEC; it easy for the interpre-
tation of a formula φ(x) to have countably many solutions in each model of
an elementary chain but not in their union. As Caiceido pointed out at the
conference, this problem does not arise if each occurrence of Q is ‘positive’.

Question 3.1 Are there positive sentences in L(Q) that describe mathemati-
cally interesting situations?

Keisler and others (e.g. [11, 1]) described some other notions of strong
submodel for the L(Q) setting.

Definition 3.2 Let ψ be a sentence in Lω1,ω(Q) in a countable vocabulary and
let L∗ be the smallest countable fragment of Lω1,ω(Q) containing ψ. Define a
class (K,≺K ) by letting K be the class of models of ψ in the standard inter-
pretation. We consider several notions of strong submodel.
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1. M ≺∗ N if

(a) M ≺L∗ N and
(b) M |= ¬(Qx)θ(x,a) then {b ∈ N : N |= θ(b,a) = {b ∈ M : N |=

θ(b,a).

2. M ≺∗∗ N if

(a) M ≺L∗ N ,
(b) M |= ¬(Qx)θ(x,a) then {b ∈ N : N |= θ(b,a) = {b ∈ M : N |=

θ(b,a), and
(c) M |= (Qx)θ(x,a) implies {b ∈ N : N |= θ(b,a) properly contains

{b ∈M : N |= θ(b,a).

Now, (K,≺∗) is an AEC with Löwenheim Number ℵ1. But, in general,
(K,≺∗∗) is not an AEC. (Hint: Consider the second union axiom A3.3 in
Definition 1.1 and a model with a definable uncountable set.)

I asked in the early 70’s whether there was a sentence of L(Q) that had
a unique model and that model had cardinality ℵ1. Shelah replied with the
following result. He gave two proofs of this proposition. In the first [16], he
assumed V = L and developed a large amount of stability theory for Lω1,ω(Q).
It developed that this argument really uses only 2ℵ0 < 2ℵ1 and the set theory
is used to reduce to a complete sentence in Lω1,ω that is ω-stable. (See the
Chapter, Independence in ω-stable theories in [1].) The use of 2ℵ0 < 2ℵ1 to
show an ℵ1-categorical sentence of Lω1,ω is ω-stable is essential. The crucial
example is described in [20]; Baldwin introduces a new set of forcing conditions
to verify that Martin’s axiom implies ℵ1-categoricity of the class in [1].

In [21] Shelah proved the result in ZFC from basic principles without stability
theory; the argument goes in two stages. (See also [1].)

Theorem 3.3 (Shelah) If K is a ℵ0-categorical PCΓ(ℵ0,ℵ0) class that is also
an AEC and has a unique model of power ℵ1, then there is a model of power
ℵ2.

Corollary 3.4 (Shelah) An ℵ1-categorical sentence ψ in Lω1,ω has a model of
power ℵ2.

But what about Lω1,ω(Q)? Can we derive the result for Lω1,ω(Q) from
Theorem 3.3? Let K be the class of models of L(Q)-sentences and ≺ denote
L(Q)-elementary submodel. We are asking, ”is (K,≺) an AEC?” And answers
vary.

1. In the ℵ0 interpretation, yes.

2. In the ℵ1,ℵ2, equi-cardinal interpretations, no.

So the extension to L(Q) requires some further effort. Shelah does this in
[21]. But the extension is completely ad hoc. We sketch Shelah’s argument and
then point out another formalism.
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Definition 3.5 A sentence ψ in Lω1,ω(Q) is called complete for Lω1,ω(Q) if
for every sentence φ in Lω1,ω(Q), either ψ |= φ or ψ |= ¬φ.

The details of the following argument [1] are due to David Kueker; the
assertion is implicit in [16].

Theorem 3.6 Suppose the τ -structure M realizes only countably many
Lω1,ω(Q) types. Then there is a complete sentence σM of Lω1,ω(Q) such that
M |= σM .

We call a model M that realizes only countably many Lω1,ω(Q) types,
Lω1,ω(Q)-small. Now Keisler [12] showed (see treatment in [1]:

Theorem 3.7 If an Lω1,ω(Q)-sentence ψ has fewer than 2ℵ1 models of cardi-
nality ℵ1 then there is a complete small Lω1,ω(Q)-sentence ψ0 that implies ψ
and has a model of cardinality ℵ1 and such that every model of ψ0 is small.

Shelah [17] proved by a nice application of the undefinability of well-order
in Lω1,ω(Q):

Theorem 3.8 If the Lω1,ω(Q)-τ -sentence ψ has a model of cardinality ℵ1

which is L∗-small for every countable τ -fragment L∗ of Lω1,ω(Q), then ψ has a
Lω1,ω(Q)-small model of cardinality ℵ1.

Combining these results, we have:

Theorem 3.9 If an Lω1,ω-sentence ψ has fewer than 2ℵ1 models of cardinality
ℵ1 then there is a complete Lω1,ω-sentence ψ0 that implies ψ and has a model
of cardinality ℵ1.

This gets close to the situation of a complete sentence of Lω1,ω that allows
Shelah to prove categoricity transfer for Lω1,ω. But the transfer for L(Q) is
dodgy at best and the transfer of categoricity result for Lω1,ω(Q) remains open.
Even, as mentioned above, the nice proof that a complete ℵ1-categorical sentence
Lω1,ω(Q) has a model in ℵ2 requires ad hoc methods that seem unlikely to
generalize.

The significance of the transfer can be seen even in Lω1,ω. It is not hard
(Marker) to construct a sentence in Lω1,ω that is ℵ1-categorical but has 2ℵ0

countable models. Choosing φ0 is throwing away all but one of those countable
models.

It is pointed out in [11] that the omitting types result of L(Q) extend to
L(aa). So it should not be hard to give a variant of Theorem 3.7 for L(aa).
But are there any interesting AEC defined by sentences in L(aa)? Since the
language has second order variables, it is not clear that one will be able to
find AEC defined in the logic. The connections of AEC with the Whitehead
problem that lead to the discussion of ⊥N in Section 4 raise the question of
whether using L(aa) to describe filtrations of models of cardinality ℵ1 might
provide some examples.
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Definition 3.10 Let ψ0 be a small Lω1,ω(Q)-complete sentence with vocabulary
τ in the countable fragment L∗ of Lω1,ω(Q). Form τ ′ by adding predicates for
formulas as in Morley’s procedure for first order theories; but also add for each
formula (Qx)φ(x,y) a predicate R(Qx)φ(x,y) and add the axiom

(∀x)[(Qx)φ(x,y) ↔ R(Qx)φ(x,y)].

Let ψ′ be the conjunction of ψ0 with the Lω1,ω(Q)-τ ′-axioms encoding this ex-
pansion. Let K1 be the class of atomic τ ′-models of T (ψ), the first order τ ′

theory containing all first order consequences of ψ′.

The two roles of the union axiom conflict. (K1,≤∗) is an AEC with
Löwenheim number ℵ0. But, to get Löwenheim number ℵ0, we allow mod-
els of K1 that are not models of ψ. Unfortunately, we may also have gained
uncountable models of K1 that are not models of ψ. Working with (K1,≤∗),
one cannot show that many models for K1 implies many models of ψ. (K1,≤∗∗)
solves this problem. But, (K1,≤∗∗), does not satisfy A.3.3.

Coppola [5] introduced the notion of a Q-AEC, which has two notions of
submodel. This provides a completely axiomatic proof of the existence of a
model in ℵ2 for Lω1,ω(Q).

Definition 3.11 (Coppola) A Q-Abstract Elementary Class is a collection
of τ -structures K equipped with a notion of submodel ≺K , a refined notion of
submodel to build chains ≺∪K , K = (K,≺K ,≺∪K ) such that

• A0 K,≺K ,≺∪K are closed under isomorphism, i.e.

a. If M ∈ K and M ≈M ′ then M ′ ∈ K;
b. If M ≺K N and f ::N ˜↪→N ′, then f(M) = M ′ ≺K N ′;
c. If M ≺∪K N and f : N ˜↪→N ′, then f(M) = M ′ ≺∪K N ′;

• A1 ≺K is a partial order, and ≺∪K is transitive on K;

• A2 ≺K refines the notion of substructure, ≺∪K refines ≺K ;

• A3 If M0 ⊂M1 and M0,M1 ≺K N then M0 ≺K M1 (coherence for ≺K);

• A4 There is a Löwenheim -Skolem number, LS(K) such that for all N ∈ K
and A ⊆ N there is M ≺∪K N containing A of size at most |A|+ LS(K);

• A5 If (Mi : i < λ) is ≺∪K -increasing, continuous, then

a M =
⋃

i<λMi ∈ K;
b Mi ≺∪K

⋃
i<λMi, for each i < λ;

c If Mi ≺K N for each i < λ, then
⋃

i<λMi ≺K N .

• A6 K satisfies Assumptions I,II,III (below).

With this result we have a clean argument in ZFC without invoking stability
theoretic arguments that a complete sentence in Lω1,ω(Q) has a model in ℵ2.
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4 AEC of modules

The notion of an AEC provides a way to describe certain classes of modules.
Recall that an abelian group A is a Whitehead group if Ext(A,Z) = 0. That is,
every short exact sequence

0 → Z → H → A→ 0,

splits or in still another formulation, H is the direct sum of A and Z. This
notion is generalized by defining for a group N , Z in the case of Whitehead
groups, the class ⊥N to be those groups A such that any short exact sequence
with kernel N and image A splits. These classes have been widely studied by
module theorists; a recent summary is [7]. Baldwin, Eklof and Trlifaj discovered
that the properties of such classes could be neatly summarized when they form
an AEC K with the following notion of strong submodel. A ≺N B if A ⊂ B,
both are in K and B/A ∈ K. (To simplify some of the statements, we replace
Ext(A,Z) = 0 by for each i, Exti(A,Z) = 0.) We, [3] have the following result.

Theorem 4.1 ( Baldwin, Eklof, Trlifaj) 1. For any module N , if the
class (⊥N,≺N ) is an abstract elementary class then N is a cotorsion mod-
ule.

2. For any R-module N , over a ring R, if N is a pure-injective module then
the class (⊥N,≺N ) is an abstract elementary class.

3. For an abelian group N , (module over a Dedekind domain R), the class
(⊥N,≺N ) is an abstract elementary class if and only if N is a cotorsion
module.

Thus the question whether (⊥N,≺N ) imposes natural restrictions on N . For
e.g. abelian groups, the condition is exactly that N is cotorsion. But we show
in [3] that although if N is a pure-injective module then the class (⊥N,≺N ) is
an abstract elementary class, there are such N which cotorsion but not pure-
injective. In particular, (⊥N,≺N ) is an abstract elementary class, then ⊥N is
closed under arbitrary direct limits (of homomorphisms) not just direct limits
of strong embeddings in the sense of (⊥N,≺N ). Recently Trlifaj [22] has proved
that a large class of classes (⊥N,≺N ) which are AEC have finite character. It
remains open whether there are AEC of ⊥N that do not have finite character.
This is a particularly intriguing question since the notion of defining M0 ≺N M1

by making a requirement on the quotientM1/M0 seemed at first to be a radically
new notion of strong submodel.
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