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1 Introduction
The introduction of strongly minimal sets [BL71, Mar66] began the idea of the analysis
of models of categorical first order theories in terms of combinatorial geometries. This
analysis was made much more precise in Zilber’s early work (collected in [Zil91]).
Shelah introduced the idea of studying certain classes of stable theories by a notion of
independence, which generalizes a combinatorial geometry, and characterizes models
as being prime over certain independent trees of elements. Zilber’s work on finite
axiomatizability of totally categorical first order theories led to the development of
geometric stability theory. We discuss some of the many applications of stability theory
to algebraic geometry (focusing on the role of infinitary logic). And we conclude by
noting the connections with non-commutative geometry.

This paper is a kind of Whig history- tying into a (I hope) coherent and apparently
forward moving narrative what were in fact a number of independent and sometimes
conflicting themes. This paper developed from talk at the Boris-fest in 2010. But I have
tried here to show how the ideas of Shelah and Zilber complement each other in the
development of model theory. Their analysis led to frameworks which generalize first
order logic in several ways. First they are led to consider more powerful logics and then
to more ‘mathematical’ investigations of classes of structures satisfying appropriate
properties.

We refer to [Bal09] for expositions of many of the results; that’s why that book was
written. It contains full historical references. Only a few minor remarks in this paper
are new.

1.1 Zilber’s Thesis
Zilber’s approach to categoricity begins is based on the intuition that fundamental struc-
tures are canonical. That is, truly significant mathematical structures can be character-
∗This paper is an expansion of my talk at ‘Boris Fest’, the Oxford conference on Geometric Model

Theory in March 2010. It provides background for my actual talks in Kirishima which discussed in detail
the beginnings of Shelah’s study of excellence; that material as well as details of many older results referred
to in the paper appears in Chapters 6,7, 18, and 19 of [Bal09].
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ized in an appropriate logic. This notion is organizational. In the situation here the
relevant notion of ‘characterize’ is taken as categoricity in power1

Conversely, characterizable structures are ‘fundamental’. We won’t explore that
direction much here. But, the key idea is that each categorical structure is built from
‘fundamental structures’ is reasonably standard way. This is the whole point of the
structural side of stability theory. This idea motivates the ‘canonicity conjectures’ be-
low. The thesis is made specific by several concrete problems.

Characterizability Problem:
Find an axiomatization for Th(C,+, ·, exp).

Canonicity Conjectures:

Zilber Conjecture:
Every strongly minimal first order theory is

1. disintegrated
2. group-like
3. field-like

Cherlin-Zilber Algebraicity Conjecture

1. Every simple ω-stable group is (i.e. is interpretable in) an algebraic
group over an algebraically closed field.
This led to:

2. Is there an ω-stable field of finite Morley rank with a definable proper
subgroup of the multiplicative group2 ?

This paper will proceed in two stages. In the first, Section 2, we discuss progress
on the study of complex exponentiation and in particular the connection with Shelah’s
analysis of categoricity for Lω1,ω . The notion of axiomatization in the characterizabil-
ity problem depends on the framework in which the investigation is set. We discuss
the analysis of these structures in the framework of Lω1,ω(Q) and through the develop-
ment of more ‘logic-free’ approaches: ‘quasi-minimal excellent classes’ and ‘abstract
elementary classes’. However, we remark recent work by [BP] which places the result
in the context of Shelah’s first order main-gap theorem.

In the second stage we discuss the challenges to the ‘canonicity conjectures’ by the
Hrushovski Construction and the attempts to reformulate them using that construction
in a positive way. In [Hru93], Hrushovski proves: There is a strongly minimal set which

1 Perhaps the key point is that the canonicity notion must entail some constraints on the definable sets.
This consequence of categoricity in power for first order theories is well known; the investigations reported
here extend the conclusion to Lω1,ω(Q). The 0-minimality of the real field plays a similar role; there aren’t
any clear structural consequences simply from categoricity in second order logic.

2This problem has been solved [BHMPW07]; but the existence of a bad group, a nonsolvable connected
group with finite Morley rank all of whose proper connected subgroups are nilpotent, remains open. An
epic amount of work, analogous to the study of finite simple groups has been done on the Cherlin-Zilber
conjecture; it too remains unsolved. Blossier, Martin-Pizzaro and Wagner have shown the constructed bad
field does not contain a bad group. And much recent work has shown that the existence of bad groups has
little to do with the algebraicity conjecture.
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is not locally modular and not field-like. And in [BHMPW07], Baudisch, Hils, Martin-
Pizarro, and Wagner use the same construction technique to prove: There is an ω-stable
field of finite Morley rank with a definable proper subgroup of the multiplicative group.

Zilber’s responses to these challenges came in two forms. The first is to strengthen
the hypotheses by introducing the less classically syntactic notion of a Zariski Struc-
ture, discussed in Subsection 3.1.

The second is to weaken the conclusion: Replace first order interpretable in
(C,+, ·) by ‘analytically’ definable. We will consider this approach and the connec-
tions with non-commutative Geometry in Subsection 3.2. We will close the paper by
placing Zilber’s thesis in the context of Shelah’s general approach to classification.

1.2 Frameworks and Homogeneity
Most model theorists in the last thirty years of the twentieth century and especially
those focusing on interesting algebraic structures worked in the setting of first order
logic. The studies described here employ a more general formulation. There are several
alternative frameworks, which provide different notions of ‘axiomatizing’ the class. We
describe them briefly and indicate the role of various notions of homogeneity.

Among the most natural generalizations of first order logic is Lω1,ω . Extend the
syntax of first order logic by allowing infinite conjunctions and disjunctions and in-
terpret the new connectives in the natural way. A second useful extension is to allow
a quantifier Q where (Qx)φ(x) is true if φ(x) has uncountably many solutions. (See
[BF85] for an account of many extensions of first order logic.)

Of course, Lω1,ω fails the compactness theorem. More subtly it fails the upwards
Löwenheim-Skolem theorem, the amalgamation property (for models of a complete
sentence), and the downwards Lówenheim-Skolem theorem for theories (although it is
true for individual sentences). Each of these problems must be addressed in studying
categoricity in these logics. A major result discussed below is that categoricity up to ℵω
(plus weak set theory) implies the existence of arbitrarily large models for a sentence
of Lω1,ω .

The model theory of a sentence in Lω1,ω(Q) can be transformed into the study
of models of a first order theory (in an expanded vocabulary) which omits a specified
family of types. This transformation is discussed in detail in Chapter 6 of [Bal09]. A
key idea is to replace each formula φ(x) by a predicate Pφ(x). Inductively, replace an
infinite conjunction φ of the form

∧
φi by adding the axioms Pφ(x) → Pφi(x) and

omitting the type {Pφi
(x) : i < ω}∪ {¬Pφ(x)}. This technique allows the translation

of an Lω1,ω(Q)-sentence into the study of a first order theory omitting types.
It is more difficult to require that the class of types omitted is all non-principal

types. For this, a result of Keisler says that if ψ ∈ Lω1,ω(Q) has less than 2ℵ1 models
in ℵ1, for each countable fragment ∆ of Lω1,ω(Q) each model of ψ realizes only
countably many ∆-types over the empty set. Then Shelah, using the Lopez-Escobar
theorem shows this implies ψ has a model of cardinality ℵ1 that is small for Lω1,ω(Q)
(realizes only countably many Lω1,ω(Q)-types over ∅). Now the transformation in the
previous paragraph can be extended to translate the models of a ψ ∈ Lω1,ω that is
ℵ1-categorical to the atomic models of a first order theory in an expanded language.
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Trying to find a uniform account of constructions that occurred in various logics
provides one motivation for Shelah’s notion of an abstract elementary class. An ab-
stract elementary class consists of a class of structures K and a relation of strong
substructure, ≺K , between members of the class which satisfies the conditions below.

Definition 1.1 An abstract elementary class (AEC) (K,≺K ) is a collection of struc-
tures3 for a fixed vocabulary τ that satisfy, where A ≺K B means in particular A is a
substructure of B,

1. If A,B,C ∈K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B;

2. Closure under direct limits of ≺K -embeddings;

3. Downward Löwenheim-Skolem. If A ⊂ B and B ∈ K there is an A′ with
A ⊆ A′ ≺K B and |A|′ ≤ |A| = LS(K).

The invariant LS(K), is a crucial property of the class. The class of well-orderings
satisfies the other axioms (under end extension) but is not an AEC.

First order logic and Lω1,ω with ≺K as elementary submodel in the respective
logic are natural examples of AEC. In order to incorporate the Q-quantifier, some
contortion is necessary (Section 6.4 of [Bal09].) We will see below that the im-
portant examples considered in this paper are further examples of AEC. Shelah and
others have carried out extensive investigations about general AEC. See for example
[She09, She10, Bal09, GV06, HK06]. Shelah’s presentation theorem shows that any
AEC can be given as a class of models of a first order theory which omit a family of
types. (This is not reversible.)

The fundamental construction enabled by the notion of an AEC with the amalga-
mation property is that of a ‘monster’ or homogeneous-universal model. The notion
extends Jónsson’s construction of such models by allowing the notion of submodel to
vary. There is an important distinction concerning the definition of homogeneity.

Definition 1.2 (Set versus model homogeneity) 1. The class K satisfies the
amalgamation property for models if for any situation4 with A,M,N ∈K:

A

M

N
��3

QQs

there exists an N1 ∈K such that

3Naturally we require that both K and ≺K are closed under isomorphism.
4The arrows denote strong embeddings.
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A

M

N1

N
��3 QQs

QQs ��3

2. The class K satisfies the set amalgamation property if in the situation of item 1)
we allow any subset A of N ∩M instead of requiring A to a submodel of each.

The standard notion of sequence homogeneity depends on the syntactic notion of a
type in first order logic.

Definition 1.3 1. A structure M is κ-sequence homogeneous if for any a,b ∈ M
of length less than κ, if (M,a) ≡ (M,b) then for every c, there exists d such
that (M,ac) ≡ (M,bd). Usually, the ‘sequence’ is omitted and one just says
κ-homogeneous.

2. M is strongly µ-sequence homogeneous if any two sequences of length less than
µ that realize the same first order type are automorphic in M .

For a complete first order theory, as Morley [Mor65] showed, we can expand the
language to make every definable set quantifier free definable and both notions of amal-
gamation hold. This implies that by iterating the amalgamation we obtain models M
which (subject to cardinality limitations) are |M |-sequence homogenous, the usual
monster model. (See Chapter 8 of [Bal09] for a careful analysis of the set theoretic
conditions.) But this strong amalgamation condition is easily seen to fail in Lω1,ω and
more importantly to fail even for ℵ1-categorical sentences that satisfy model amalga-
mation. In contrast the ‘monster model’ of an AEC with amalgamation will be only
model homogeneous.

Definition 1.4 1. M is µ-model homogeneous if for every N ≺K M and every
N ′ ∈ K with |N ′| < µ and N ≺K N ′ there is a K-embedding of N ′ into M
over N .

2. M is strongly µ-model homogeneous if it is µ-model homogeneous and for any
N,N ′ ≺K M and |N |, |N ′| < µ, every isomorphism f from N to N ′ extends
to an automorphism of M .

3. M is strongly model homogeneous if it is strongly |M |-model homogeneous.

Given a monster modelM one can define the Galois type of an element a over an
M ≺K M as the orbit of a under automorphisms of M fixing M pointwise. But
only rarely (except in first order) does this correspond to the natural syntactic notion
(even when the AEC is the class of models of an Lω1,ω-sentence). Although we only
mention Galois types here, they are the proper notion of study for AEC.

Zilber’s examples of quasiminimal excellent classes have amalgamation over mod-
els but the interesting algebraic examples discussed in Subsection 2.3 do not have set
amalgamation (see Chapter 3 of [Bal09].)

We give a simple model theoretic example to show the difficulties in obtaining
sequence homogeneity for models of sentences of Lω1,ω .
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Example 1.5 There is a first order theory T with a prime modelM such thatM has no
proper elementary submodel but M contains an infinite set of indiscernibles[Kni78].
The vocabulary contains three unary predicates, W,F, I which partition the universe.
Let W and I be countably infinite sets and fix an isomorphism f0 between them. F
is the collection of all bijections between W and I that differ from f0 on only finitely
many points. Add also a successor function on W so that (W,S) is isomorphic to
ω under successor and the evaluation predicate E(n, f, i) which holds if and only if
n ∈W, f ∈ F, i ∈ I and f(n) = i.

The resulting structure M is atomic and minimal. Since every permutation of I
with finite support extends to an automorphism of M , I is a set of indiscernibles. But
it is not ω-stable.

Now consider a two sorted structure with this model in one sort and a pure infi-
nite set in the other. This class is easily axiomatized in Lω1,ω (is the atomic models
of a first order theory). It is categorical in all uncountable powers (and the class of
atomic models is ω-stable in the sense described below). But no model is ℵ1-sequence
homogeneous.

2 Canonicity of Fundamental Structures
The structure (C,+, ·, ex, 0, 1) is Godelian: the ring of integers is defined as a translate
of {a : ea = 1}. Therefore the first order theory is undecidable and ‘wild’; there are
definable sets of arbitrary quantifier complexity and there is no reasonable notion of
dimension. Zilber conjectured that Z is the source of all the difficulty. Fix Z by adding
the axiom:

(∀x)ex = 1→
∨
n∈Z

x = 2nπ.

Here we are taking π as a constant and this axiom asserts that it is a generator
of the kernel of exponentiation. We will say something later about the connection of
this generator with the historical π. It turns out that (even conjecturally) some further
non-elementary input is required; see below.

As we’ll see there is a sentence of Lω1,ω(Q) which is categorical in all uncountable
powers and axiomatizes some expansion of the complex numbers by a homomorphism
from (C,+) to (C, ·). But we will reach this axiomatization by considering a specific
kind of AEC.

2.1 Quasiminimal excellence
Definition 2.1 A closure system is a set G together with a dependence relation

cl : P(G)→ P(G)

satisfying the following three axioms.

• A1. cl(X) =
⋃
{cl(X ′) : X ′ ⊆fin X}
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• A2. X ⊆ cl(X)

• A3. cl(cl(X)) = cl(X)

(G, cl) is pregeometry if in addition:

A4. If a ∈ cl(Xb) and a 6∈ cl(X), then b ∈ cl(Xa).

If a closure system satisfies that the closure of countable set is countable we say it
has the countable closure property (ccp). If points are closed the structure is called a
geometry. Such combinatorial geometries arise in model theory in a number of ways;
we consider here notions of minimality which yield geometries.

Definition 2.2 The structureM is strongly minimal if every first order definable subset
of any elementary extension M ′ of M is finite or cofinite.

We say a is in the algebraic closure of B and write a ∈ acl(B) if for some b ∈ B
and some φ(x,y): φ(a,b) and φ(x,b) has only finitely many solutions. It is an easy
but instructive exercise to show:

Exercise 2.3 If f mapping X to Y is an elementary isomorphism, f extends to an
elementary isomorphism from acl(X) to acl(Y ).

One can reformulate the notion of strong minimality in geometric terms.

Lemma 2.4 A complete theory T is strongly minimal if and only if it has infinite mod-
els and

1. algebraic closure induces a pregeometry on models of T ;

2. any bijection between acl-bases for models of T extends to an isomorphism of
the models

It is now immediate that any first order theory that is strongly minimal is categorical
in any uncountable power. We turn to a weaker notion that will be useful in organizing
the study of categoricity for infinitary logic.

Definition 2.5 A structure M is ‘quasiminimal’ if every first order (Lω1,ω?) definable
subset of M is countable or cocountable.

The parenthetical (Lω1,ω) appears because under natural homogeneity conditions,
the stronger condition holds, but for definitional purposes we require only the solution
sets of first order formulas be countable or cocountable. Note that we have not required
that quasiminimality is preserved under elementary extension. It is easy to see that a
quasiminimal structure whose first order theory is ℵ1-categorical is strongly minimal.
However, the notion is much weaker than categoricity. Note in particular that a strongly
minimal structure M is |M |-sequence homogenous. But such a conclusion easily fails
for quasiminality. Consider a structure M in a language with one binary relation sym-
bol which is required to be an equivalence relation with two classes. Every countable
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model is strongly ω-homogenous. But the model in ℵ1 with one countable and one
uncountable equivalence class is quasiminimal but not strongly ℵ0-homogeneous.

Consider the following notion: We say a is in the quasi-algebraic closure of X
and write a ∈ acl′(X) if there is a first order formula over X with countably many
solutions which is satisfied by a. In general acl′ is not closure operator.

Example 2.6 Let the vocabulary have two binary relations E1, E2 and let T assert
these are crosscutting equivalence relations such that E1 has two classes and E2 has
three. Consider a model M such that one E1-class is split into three classes of size ℵ0
by E2 while the other is split into two classes of size ℵ1 and one countable class. Now
if a is in an uncountable E2-class it is easy to check that acl′(a)  acl′(acl′(a)).

To remedy this, define ccln(X) by induction: ccl0(X) = X; ccln+1(X) =
acl′(ccln(X)). And let ccl(X) =

⋃
n<ω ccln(X) Zilber observed in the early 90’s

if M is quasiminimal then (M, ccl) is a closure system.
But in general the closure system is not a geometry. Pillay and Tanovic [PT],

building on Itai, Tsuboi and Wakai[ITW04], study structures that are quasiminimal;
they consider when acl′ is a closure operator and when these closure systems are pre-
geometries in terms of symmetry properties of the generic type (containing all those
formulas with uncountably many solutions). Pillay and Tanovic generalize Itai, Tsuboi,
and Wakai by replacing an assumption of strong ω-homogeneity by a weaker condition
that the generic type not split (see Definition 2.20) over the empty set.

Varying an example from [ITW04] emphasizes the distinction between the various
notions of homogeneity in studying quasiminimality. Itai, Tsuboi, and Wakai consider
the first order theory of infinitely many crosscutting equivalence relations with infinite
splitting . Let E∞ denote the intersection of these equivalence relations. It is straight-
forward to axiomatize in Lω1,ω(Q) the requirement that there be exactly one E∞-class
with uncountably many elements and that only countably many (fixed with respect to
the big class) E∞-classes are realized (each countably many times). This sentence is
quasiminimal excellent. But no uncountable model is strongly ω-homogeneous. And
no model of the underlying first order theory with cardinality strictly greater than ℵ1 is
both quasiminimal and strongly ω-homogeneous (for first-order types).

To emphasize the distinction in the various notions of homogeneity and quasimini-
mality we note the following lemma.

Lemma 2.7 Suppose there is a structure M of cardinality ℵ1 which is quasiminimal
and is the only model in ℵ1 of a sentence ψ in Lω1,ω(Q). Then acl′ is a geometry on
M .

Proof. By Shelah [She75, She87, Bal09],M has anLω1,ω(Q) elementary extension
N of cardinality ℵ2. Let A be a finite subset of N and suppose b 6∈ acl′(A), b ∈
acl′(cA) but c 6∈ acl′(bA). Let p(x, y) be the Lω1,ω(Q) type of bc overA. Let 〈bi : i <
ℵ1〉 be ℵ1 members of N − acl′(A). Since |N | = ℵ2, the meaning of the Q-quantifier
gives there is a c′ realizing all the p(bi, x). Then each bi ∈ acl′(c′A) contradicting the
definition of acl′. This gives exchange on N and a fortiori on M . �2.7

[ITW04] obtains a similar result but with the stronger hypothesis that N is strongly
ω-homogenous (but not assuming ℵ1-categoricity). And Lemma 2.7 follows trivially
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from a Lemma in [PT] if we know ψ is ω-stable. ω-stability can be derived from
ℵ1-categoricity using CH but it open whether this holds in ZFC.

The second clause of Lemma 2.4 can be split into two properties. It first asserts than
(M, cl) is geometrically homogeneous in the following sense (adapted from [PT]).

Definition 2.8 An infinite dimensional pregeometry (M, cl) is Geometrically Homoge-
nous if for each finite B ⊂ M , {a ∈ M : a 6∈ cl(B)} are the realizations in M of a
unique complete type in S(B).

And further it asserts the following extension property analogous to Exercise 2.3: If
f takesX to Y is an elementary isomorphism, andX and Y are independent f extends
to an elementary isomorphism from cl(X) to cl(Y ).

We will see below that a substantial additional hypothesis is apparently needed to
extend this last condition to acl′ for a quasiminimal structure. In order to consider
the notion of categoricity in power, Zilber moved to considering a class of structures
satisfying certain abstract properties. He strengthened the notion of quasiminimality
by requiring abstractly that a combinatorial geometry is defined. With certain weak
homogeneity conditions he recovers that the closure is in fact acl′. The classes defined
are a special case of the same move made by Shelah[She87] a few years earlier in
introducing the concept of Abstract Elementary Classes. In particular, a class K as in
Definition 2.9 with M ≺K N if M is a closed substructure of N (in the sense of the
closure system) forms an AEC.

Definition 2.9 (Basic Conditions for Quasiminimal Excellence) Let K be a class of
L-structures.

1. Suppose each M ∈ K admits a closure relation clM mapping X ⊆ M to
clM (X) ⊆M that satisfies the following properties.

(a) Each clM defines a pregeometry on M .

(b) For each X ⊆M , clM (X) ∈K.

(c) If f is a partial monomorphism from H ∈ K to H ′ ∈ K taking X ∪ {y}
to X ′ ∪ {y′} then y ∈ clH(X) iff y′ ∈ clH′(X

′).

2. ℵ0-homogeneity over models

Let G ⊆ H,H ′ ∈ K with G empty or a countable member of K that is closed
in H,H ′.

(a) If f is a partial G-monomorphism from H to H ′ with finite domain X then
for any y ∈ clH(X) there is y′ ∈ H ′ such that f ∪ {〈y, y′〉} extends f to a
partial G-monomorphism.

(b) If f is a bijection between X ⊂ H ∈ K and X ′ ⊂ H ′ ∈ K which
are separately cl-independent (over G) subsets of H and H ′ then f is a
G-partial monomorphism.
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Suppose (K, cl) satisfies the Basic Conditions. It is shown in Chapter 2 of [Bal09]
that for any finite set X ⊂M , if a, b ∈M − clM (X), a, b realize the same Lω1,ω-type
over X . Thus, the model is quasiminimal and even for formulas in Lω1,ω not just first
order logic. Moreover, (M, cl) is geometrically homogeneous. Furthermore there is
one and only one model M in ℵ1. This raises the following problem.

Question 2.10 Find a class of quasiminimal structures that satisfies the Basic Condi-
tions but is not categorical in some κ > ℵ1. (Such an example will necessarily have a
model in ℵ2. But perhaps there would be no larger model.)

We discus below examples of categoricity of a sentence φn of Lω1,ω first failing at
ℵn. But no quasiminimal (rank 1) example is known. Thus, this problem is analogous
to the question of whether there is a first order strongly minimal theory that is finitely
axiomatizable theory. ℵ1-categorical examples are known [Per80]. But no strongly
minimal or even rank one example is known.

In order to get categoricity in ℵ2 and to construct larger models we need the notion
of excellence. In the following definition it is essential that ⊂ be understood as proper
subset.

Definition 2.11 (Independent systems) 1. For any Y , cl−(Y ) =
⋃
X⊂Y cl(X).

2. We call C (the union of) an n-dimensional cl-independent system if C = cl−(Z)
and Z is an independent set of cardinality n.

Here, by independent we mean the notion of independence in the combinatorial
geometry. We employ the standard first order notion of a primary model.

Definition 2.12 Given any sequence 〈ei : i < λ〉, we write E<j for 〈ei : i < j〉. If M
can be written as A ∪ 〈ei : i < λ〉 such that tp(ej/AE<j) is isolated for each j we say
M is primary over A.

Definition 2.13 A class (of atomic models) (K, cl) is quasiminimal excellent if each
model in K admits a combinatorial geometry which satisfies the Basic Conditions and
there is a primary model over any finite independent system of countable models.

Equivalently, the last clause (excellence) can be replaced by requiring that types
over countable independent systems are dense in the following sense.

Let C ⊆ H ∈ K and let X be a finite subset of H . We say tpqf(X/C) is defined
over the finite C0 contained in C if it is determined by its restriction to C0.

Let G ⊆ H,H ′ ∈ K with G empty or in K. Suppose Z ⊂ H − G is an n-
dimensional independent system, C = cl−(Z), and X is a finite subset of cl(Z). Then
there is a finite C0 contained in C such that tpqf(X/C) is defined over C0.

Now we sketch the proof that Excellence implies by a direct limit argument:

Lemma 2.14 If (K, cl) is quasiminimal excellent an isomorphism between indepen-
dent X and Y extends to an isomorphism of cl(X) and cl(Y ).

For this version of the proof see [Bal09, Kir10]; the argument is adapted from that
in [Zil05b].
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Lemma 2.15 Suppose H,H ′ ∈ K satisfy the countable closure property. Let A,A′
be cl-independent subsets of H,H ′ with clH(A) = H , clH′(A′) = H ′, respectively,
and ψ a bijection between A and A′. Then ψ extends to an isomorphism of H and H ′.

Proof Sketch: We have the obvious directed union {cl(X) : X ⊆ A; |X| < ℵ0}
with respect to the partial order of finite subsets of X by inclusion. And H =⋃
X⊂A;|X|<ℵ0 cl(X). So the theorem follows immediately if for each finite X ⊂ A

we can choose ψX : clH(X)→ H ′ so that X ⊂ Y implies ψX ⊂ ψY .
We prove this by induction on |X|. If |X| = 1, the condition is immediate from

ℵ0-homogeneity and the countable closure property. Suppose |Y | = n+1 and we have
appropriate ψX for |X| < n+ 1. We will prove two statements.

1. ψ−Y : cl−(Y )→ H ′ defined by ψ−Y =
⋃
X⊂Y ψX is a monomorphism.

2. ψ−Y extends to ψY defined on cl(Y ).

2) is immediate from excellence; 1) requires a one-page argument [Bal09, Kir10].
�2.15

And now we can conclude.

Theorem 2.16 Suppose the quasiminimal excellent (I-IV) class K is axiomatized by a
sentence Σ of Lω1,ω , and the relations y ∈ cl(x1, . . . xn) are Lω1,ω-definable. Then,
for any infinite κ there is a unique structure in K of cardinality κ which satisfies the
countable closure property.

The proof of existence of large models is inductive using categoricity in κ to obtain
a model in κ+.

2.2 Excellence for Lω1,ω

Zilber’s argument is for a very specific kind of sentence in Lω1,ω(Q); Quasiminimal
is analogous to strongly minimal. In fact, Shelah had proved a more general result
for Lω1,ω much earlier ([She83a, She83b]). We will describe Shelah’s result and then
very briefly discuss the role of the quantifier Q. In addition to Shelah’s papers these
arguments are expounded in [Bal09].

Any κ-categorical sentence of Lω1,ω can be replaced (for categoricity purposes) by
considering the atomic models of a first order theory in an expanded language (Sub-
section 1.2).

Assumption 2.17 In this subsection K is the class of atomic models of first order
theory T . ≺K is elementary submodel.

Thus, we have switched to a first order context and consider types in the normal
first order sense of the word. But we restrict the Stone space to types satisfying the
following condition.

Definition 2.18 LetA be an atomic subset of a model of first order theory T . We define
Sat(A).

11



1. p ∈ Sat(A) if a |= p implies Aa is atomic.

2. K is ω-stable if for every countable model M , Sat(M) is countable.

Theorem 2.19 (Keisler/Shelah) (2ℵ0 < 2ℵ1 ) If K has < 2ℵ1 models of cardinality
ℵ1, then K is ω-stable.

This argument uses the continuum hypothesis twice. If the class K is assumed to
have arbitrarily large models then ω-stability is provable from ℵ1-categoricity in ZFC.

Now we turn to the more general notion of excellence for an arbitrary complete
sentence of Lω1,ω . As in the quasiminimal excellent case, we will demand the exis-
tence of a unique amalgam of finite independent systems of countable models. Just as
in passing from the rank one case to arbitrary first order theories, there is no longer a
geometry on the universe of each model. But there is an independence relation satisfy-
ing many of the properties of first order forking. Independence is now defined in terms
of splitting.

Definition 2.20 A complete type p over A splits over B ⊂ A if there are b, c ∈ A
which realize the same type over B and a formula φ(x,y) with φ(x,b) ∈ p and
¬φ(x, c) ∈ p.

Definition 2.21 Let ABC be atomic. We write A^
C
B and say A is free or indepen-

dent from B over C if for any finite sequence a from A, tp(a/B) does not split over
some finite subset of C.

It is relatively straightforward ([She83a, Bal09]) to show this notion has the basic
properties of an abstract dependence relation: monotonicity, transitivity of indepen-
dence and with somewhat more effort symmetry. However this dependence relation
is well-behaved only over models or (assuming excellence) independent systems of
models.

Definition 2.22 A set A is good if the isolated types are dense in Sat(A).

For countable A, this is the same as |Sat(A)| = ℵ0. But there may not be prime
models over good sets. There are in ℵ0 and ℵ1, but not generally above ℵ1 [Kni78,
Kue78, LS93].

Definition 2.23 1. K is (λ, n)-good if for any independent n-system S (of models
of size λ), the union of the nodes is good.

2. K is excellent if it is (ℵ0, n)-good for every n < ω. That is, there is a prime
model over any countable independent n-system.

Note that excellence does not imply by definition the property: (λ, n)-existence for
uncountable λ, i.e. that there is a primary model over an independent system of models
of size λ.

12



Definition 2.24 Let K be the class of models of a sentence of Lω1,ω . K is excellent
if K is ω-stable and any of the following equivalent conditions hold. For any finite
independent system of countable models with union C:

1. Sat(C) is countable.

2. There is a unique primary model over C.

3. The isolated types are dense in Sat(C).

Shelah proved the following three theorem in [She83a, She83b].

Theorem 2.25 (ZFC) Let λ be infinite and n < ω. Suppose K has (< λ,≤ n + 1)-
existence and is (ℵ0, n)-good. Then K has (λ, n)-existence.

Theorem 2.26 (ZFC) If an atomic class K is excellent and has an uncountable model
then

1. it has models of arbitrarily large cardinality;

2. if it is categorical in one uncountable power it is categorical in all uncountable
powers.

By the very weak generalized continuum hypothesis ( VWGCH) we mean the con-
dition:

2ℵn < 2ℵn+1 for n < ω.

2ℵn < 2ℵn+1 is equivalent to a cominatorial principle on principle on ℵn called weak
diamond. ‘Very few models in ℵn’ means at most less than 2ℵn−1 while ‘few models
in ℵn’ means less than 2ℵn .

Theorem 2.27 (VWGCH) An atomic class K that has at least one uncountable
model and very few models in ℵn for each n < ω is excellent.

The argument proceeds by a difficult induction using weak diamond a number of
time to show: Very few models in ℵn implies (ℵ0, n− 2)-goodness. It is open whether
VWGCH suffices to delete ‘very’ from ‘very few’. Examples show that categoricity
up to ℵω is essential to conclude excellence. These examples also show the divergence
between the natural ‘syntactic’ notion of type for sentences in Lω1,ω and the natu-
ral ‘semantic’ notion of Galois type. Hart-Shelah extended by Baldwin-Kolesnikov
[HS90, BK09] prove the following.

Theorem. For each 3 ≤ k < ω there is an Lω1,ω sentence φk such that:

1. φk is categorical in µ if µ ≤ ℵk−2;

2. φk is not categorical in any µ with µ > ℵk−2.

3. φk has the disjoint amalgamation property;

4. Syntactic types determine Galois types over models of cardinality at most ℵk−3;
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5. But there are syntactic types over models of size ℵk−3 that split into 2ℵk−3 -
Galois types.

6. φk is not ℵk−2-Galois stable;

7. But for m ≤ k − 3, φk is ℵm-Galois stable;

The arguments we have just discussed rely heavily on the properties of countable
models of sentences of Lω1,ω . Shelah [She09, She10] attacks the more general and
much harder situation where categoricity may begin above ℵ0. He works in AEC
which admit a ‘frame’; an axiomatic framework for independence in a fixed cardinal.
The goal is to propogate this behavior to larger cardinals.

As Zilber’s quasiminimal excellence deals with categoricity of certain sentences in
Lω1,ω(Q), (i.e. those which axiomatize quasiminimal excellent classes) it is somewhat
orthogonal to the theory for arbitrary Lω1,ω-sentences that satisfy categoricity condi-
tions that I have just sketched. Variants on Shelah’s analysis [She09] may clarify this
but I don’t know a clear reference.

2.3 Examples
We have discussed the categoricity transfer for abstract classes defined in Lω1,ω and
Lω1,ω(Q). We now consider some concrete examples.

2.3.1 Covers of Algebraic Groups

Definition 2.28 1. A Z-cover of a commutative algebraic group A(C) is a short
exact sequence

0→ ZN → V
exp→A(C)→ 1. (1)

where V is a Q vector space and A is an algebraic group, defined over k0 with
the full structure imposed by (C,+, ·) and so interdefinable with the field.

2. An E-cover is the same sequence but viewed as a sequence of End(A)-modules.

Covers can be axiomatized by some simple first order axioms plus the requirement
that the kernel is standard. Let A be a commutative algebraic group over an alge-
braically closed field F . Let TA be the first order theory asserting:

1. (V,+, fq)q∈Q is aQ-vector space.

2. The complete first order theory of A(F ) in a language with a symbol for each
k0-definable variety (where k0 is the field of definition of A).

3. exp is a group homomorphism from (V,+) to (A(F ), ·).
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Let TA + Λ = ZN result from adding Λ = ZN asserting the kernel of exp is
standard.

(∃x ∈ (exp−1(1))N )(∀y)[exp(y) = 1→
∨

m∈ZN

Σi<Nmixi = y]

Zilber[Zil03] raised the problem, ‘ Is TA + Λ = ZN categorical in uncountable pow-
ers?’ Paraphrasing Zilber:

Categoricity would mean the short exact sequence is a reasonable ‘alge-
braic’ substitute for the classical complex universal cover.

Zilber was aware in [Zil03] that the formulation in terms of Z-covers was inade-
quate in general although sufficient when A = (C, ·). After a number of years this
project has been brought to a successful conclusion by work of Zilber, Gavrilovich and
Bays [Bay09, Bay, Gav08, Gav06, BZ00, Zil06, Zil03] usingE-covers. Here is a quick
list of their results.

Theorem 2.29 1. Viewed as a Z-cover if A is

(a) (C, ·) then TA + Λ = ZN is quasiminimal excellent

(b) (F̃p, ·) then TA + Λ = ZN is not small. Each completion is quasiminimal
excellent.

(c) elliptic curve w/o cm then TA + Λ = ZN is ω-stable.

(d) elliptic curve w cm then TA + Λ = ZN is not ω-stable as Z-module

2. As an E-module any simple abelian variety is quasiminimal excellent.

The case where the quotient is the multiplicative group of the algebraic closure of a
Zp is actually of mixed characteristic because the cover is still aQ-vector space. ‘cm’
abbreviates that the elliptic curve admits complex multiplication.

Bays and Pillay [BP, Bay] have provided an exciting and different perspective on
this problem. They show that the first order theory of an E-cover (of a simple algebraic
group) is classifiable (superstable, ndop, shallow, notop). Moreover each model is de-
termined by two invariants, the isomorphism type of the kernel and the transcendence
degree of the field coordinatizing the image variety. This recovers Zilber’s categoricity
in a more first order context at the cost of the formal axiomatization. It raises the ques-
tion of which classifiable first order theories lead to quasiminimal excellent classes.
In one way this result is unsurprising; Shelah was led to the notion of notop (‘not the
omitting types order property’) by his study of excellence in the infinitary situation.

The key algebraic point in the study of covers is the selection of roots.

Definition 2.30 A multiplicatively closed divisible subgroup associated with a ∈ C∗,
is a choice of a multiplicative subgroup isomorphic toQ containing a .
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Definition 2.31 b
1
m
1 ∈ b

Q
1 , . . . b

1
m

` ∈ b
Q
` ⊂ C

∗, determine the isomorphism type of

b
Q
1 , . . . b

Q
` ⊂ C

∗ over F if given subgroups of the form c
Q
1 , . . . c

Q
` ⊂ C

∗ and φm
such that

φm : F (b
1
m
1 . . . b

1
m

` )→ F (c
1
m
1 . . . c

1
m

` )

is a field isomorphism it extends to

φ∞ : F (b
Q
1 , . . . b

Q
` )→ F (c

Q
1 , . . . c

Q
` ).

Theorem 2.32 (thumbtack lemma)
For any b1, . . . b` ⊂ C∗, there exists an m such that b

1
m
1 ∈ b

Q
1 , . . . b

1
m

` ∈ b
Q
` ⊂ C

∗,

determine the isomorphism type of bQ1 , . . . b
Q
` ⊂ C

∗ over F .

The Thumbtack Lemma (over finite independent systems of fields) is the key al-
gebraic step for proving the quasiminimal excellence (both basic conditions and ex-
cellence) of Theorem 2.29.1.a. Zilber [Zil03] showed equivalence between certain
‘arithmetic’ statements about Abelian varieties (algebraic translations of excellence)
and categoricity below ℵω of the associated Lω1,ω-sentence. The equivalence depends
on weak extensions of set theory and Shelah’s categoricity transfer theorem. Recent
work of Bays shows derives these conditions algebraically.

2.3.2 Pseudo-exponentiation

We first sketch the idea of the Hrushovski construction. There are many accounts of
this construction and the many applications of the idea (See [Bal] for an annotated
bibliography.) Similarly to the account of quasiminimal excellence we define a geom-
etry. In this case, the construction begins with a class K of models with a dimension
function

d : {X : X ⊆fin G} → N

which satisfies the axioms:

D1. d(XY ) + d(X ∩ Y ) ≤ d(X) + d(Y )

D2. X ⊆ Y ⇒ d(X) ≤ d(Y ).

Each such dimension function gives rise to a geometry as follows.

Definition 2.33 For A, b contained M , b ∈ cl(A) if dM (bA) = dM (A).

Naturally we can extend to closures of infinite sets by imposing finite character. If
d satisfies:

D3 d(X) ≤ |X|.
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we get a full combinatorial (pre)-geometry with exchange.
Note that given a class of models with a dimension such as D1 and D2, we can

derive an abstract elementary class by defining A ≤ B if for every finite sequence b,
d(b/A) ≥ 0. This insight drove the connection of the Hrushovski construction with
the analysis of probability on finite models [BS97]. In the language of quasiminimal
excellence, A ≤ B means A is closed under the geometric closure operator.

The goal of Zilber’s program is to realize (C,+, ·, exp) as a model of an Lω1,ω-
sentence discovered by the Hrushovski construction. This program has two more spe-
cific objectives

Objective A Expand (C,+, ·) by a unary function f which behaves like exponentia-
tion using a Hrushovski-like dimension function. Prove some Lω1,ω-sentence Σ
satisfied by (C,+, ·, f) is categorical and has ‘quantifier elimination’.

Objective B Prove (C,+, ·, exp) is a model of the sentence Σ found in Objective A.

The notion of ‘quantifier elimination’ in Objective A is weaker than usual. It means
that types are determined by quantifier free types. Since the class of models is not first
order one cannot conclude each first order formula is equivalent to a quantifier free
first order formula; indeed [Kir09] shows the Zilber exponential fields are not model
complete in the usual first order sense.

We say a homomorphism E from the additive to the multiplicative group of a field
satisfies the Schanuel Property if for any n linearly independent elements over Q,
{z1, . . . zn}

df (z1, . . . zn, E(z1), . . . E(zn)) ≥ n.

Schanuel conjectured that complex exponentiation satisfies this equation.
Objective A has been realized in [Zil04] where the following axioms Σ are proved

to define a quasiminimal excellent class. Let L = {+, Ri, E, 0, 1} where the Ri are
names for the all the irreducible varieties defined overQ in (C,+, ·). (K,+, ·, E) |= Σ
if

1. K is an algebraically closed field of characteristic 0.

2. E is a homomorphism from (K,+) onto (Kx, ·) and there is ν ∈ K transcen-
dental overQ with kerE = νZ.

3. E satisfies the Schanuel Property.

4. K is strongly exponentially algebraically closed.

5. kerE ≈ (Z,+).

We won’t write out the details of strong exponential closure here [Zil04, Kir08].
Nor do we discuss in detail the conjecture on intersection of tori (CIT). This is a strong
conjecture of Zilber. Certain special (proved) cases of it (called the weak CIT) are used
in the construction of the green and bad fields and permit formulating the axiom of
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strong existential closure for pseudo-exponential fields in first order logic. The last ob-
servation is not essential for proving Objective A since other axioms require Lω1,ω(Q).

The axioms Σ are both consistent and categorical in all uncountable powers This
result was first established using the Hrushovski construction with the following di-
mension function. For a finite subset X of an algebraically closed field k with a partial
exponential function E. Let

δ(X) = df (X ∪ E(X))− ld(X).

Apply the Hrushovski construction to the collection of such (k,E) with δ(X) ≥ 0
for all finite X and with standard kernel. The result is a quasiminimal excellent class.

Nominally we are left with objective B: establish the axioms Σ hold for complex
exponentiation. But that is a major project. Zilber took one step in that direction.

Theorem 2.34 (Zilber) (C,+, ·, exp) has the countable closure property.

Note that this does not suffice to obtain quasiminimality. However, establishing
the Basic Conditions of Definition 2.9, which are at least a priori weaker than full
excellence, would yield quasiminimality.

Recall Schanuel’s conjecture for complex exponentiation: If x1, . . . xn are Q-
linearly independent complex numbers then x1, . . . xn, ex1 , . . . exn has transcendence
degree at least n over Q. Assuming Schanuel, Marker [Mar06], extended by
Günaydin and Martin-Pizarro (forthcoming), have verified existential closure axioms
for (C,, ·, exp) for irreducible polynomials p(X,Y ) ∈ C[X,Y ]. This requires fairly
serious complex analysis (Hadamard factorization) plus the Schanuel conjecture, which
has remained open for 50 years. And it provides only the most basic case of the strong
exponential closure axioms.

A further natural question emerges, what are the properties of the unique pseudo-
exponential field with cardinality 2ℵ0? Does it play a role as a universal domain for
exponential fields as the complex numbers do for fields? The following definition
simplifies the following statements.

Definition 2.35 An exponential field (F,+, ·, E, 0, 1) satisfies the Schanuel Nullstel-
lensatz if every exponential polynomial p(x) over F which does not have a root in F
is of the form p(x) = E(g(x)) for some exponential polynomial g.

Theorem 2.36 (F,+, ·, E, 0, 1) satisfies the Schanuel Nullstellensatz if

1. (F,+, ·, E, 0, 1) is the standard complex exponential field [HL84];

2. or (F,+, ·, E, 0, 1) satisfies the axioms Σ [DMT09, Shk].

Statement 1) uses Nevalinna theory; statement 2) is proved using exponential al-
gebra. Shkop continues this theme by proving several consequences of Σ in [Sho10].
Kirby [Kir09] and Macintyre-Onshus (forthcoming) have made some intriguing ob-
servations about models of Σ. There is no obvious way to distinguish ±i. But since
the definitions of sin and cos are symmetric in ±i, one can define each of those func-
tions. π is then definable over the emptyset (as the generator x of the kernel with
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sin(x/2) = 1). This leads to developing an analog of complex conjugation on a very
small subfield but with no good idea of how to extend it to the entire field.

As noted there are several frameworks in which this investigation could take place.
Zilber simultaneously described the situation in a semantically defined class of Quasi-
minimal Excellence and provided axioms in Lω1,ω(Q). Kirby clarified this situation
by proving: The class of models of a quasiminimal excellent class is necessarily ax-
iomatizable in Lω1,ω(Q) [Kir10]. The universal covers are axiomatized in Lω1,ω and
can be considered from a first order standpoint [BP]. And earlier Shelah [She87] had
been led to a similar semantic approach of generalizing infinitary logics to AEC.

3 Challenge and Response
We return to study the response to the challenge of the Hrushovski construction. The
conjectures specifying Zilber’s thesis arose from the study of a model theoretic prob-
lem: is there a totally categorical first order theory which has only infinite models and
is finitely axiomatized. The solution of that problem [Zil80, Zil84a, Zil84b, CHL85]
depended on the analysis of the geometry on strongly minimal sets. Zilber identi-
fied three sorts of geometry: disintegrated (the lattice of closed subsets is distributive),
(locally) modular (over a parameter) the lattice of closed subsets is modular and other-
wise. The conjecture asserted that all other strongly structures could be interpreted in
an algebraically closed field. As noted this conjecture failed.

3.1 Zariski Structures
The new strongly minimal set constructed by Hrushoski [Hru93], provides a non-
locally modular (i.e. not group-like) strongly minimal set that cannot be interpreted
in a field; this refute’s Zilber’s conjecture. One response is to strengthen the hypothesis
of the conjecture by imposing a further condition on the strongly minimal set. The way
to do this is suggested by a basic problem with the project of formalizing algebraic
geometry through the study of algebraically closed fields: equations (and conjunctions
of equations) occupy a special role in algebraic geometry. But from a model theoretic
standpoint there is no semantic way to distinguish them among the definable sets. The
solution is to consider strongly minimal sets equipped with a topology.

Generalizing the algebraic geometric notion of Zariski geometry, Hrushovski and
Zilber in [HZ93] describe axioms on the set of definable subsets of a set X and the
powers Xn specifying a topology on each Xn and relations between the powers to
formalize the notion of ‘smooth algebraic variety’. They are able to establish that every
very ample Noetherian Zariski structure is interpretable in an algebraically closed field.
The following result (e.g. in [Zil10]) establishes that an ample (non-linear) Zariski
structure is a finite cover of an algebraic variety.

Theorem 3.1 (Hrushovski-Zilber) If M is an ample Noetherian Zariski structure then
there is an algebraically closed field K, a quasi-projective algebraic curve CM =
CM (K) and a surjective map

p : M 7→ CM
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of finite degree such that for every closed S ⊆Mn, the image p(S) is Zariski closed in
CnM (in the sense of algebraic geometry); if Ŝ ⊆ CnM is Zariski closed, then p−1(Ŝ) is
a closed subset of Mn (in the sense of the Zariski structure M ).

But such a structure may be a finite cover of the affine line, P 1(K), or of an elliptic
curve that can not be interpreted in an algebraically closed field[Zil10]. The additional
requirement that the Zariski structure be ‘very ample’ implies that the structure on the
fibers can also be recovered in the field. In an attempt to understand these structures
Zilber turns to non-commutative geometry. In particular, these n-covers induce an nth
root quantum torus[Zil10].

3.2 Analytic Structures
As another response to the Hrushovski construction, Zilber suggested weakening the
conclusion. Instead of interpreting the models in algebraically closed fields by first
order formulas, find an analytic model. A crucial issue is to specify what is meant by
‘analytic’. The choices include: real analytic, complex analytic, and ‘Zilber analytic’.
The last mean satisfy an axiomatic definition akin to the notion of a Zariski geometry
(but now non-Noetherian). (See [PZ03, Zil10] for a more precise definition.) There
can be no complex analytic structure for the finite rank case but there are real analytic
models for some closely related structures that we now examine.

Poizat produced a variant on the Hrushovski construction to expand an alge-
braically closed fields by a unary predicate for a proper subgroup of the multiplicative
group. For this structure he used the dimension function:

δ(X) = 2df (X)− ld(X ∩G).

This yields an ω-stable theory of rank ω × 2. Poizat calls this the green field; since it
was a step towards the construction of a bad field, we call it a naughty field.

Zilber proposed to find an analytic model for this theory[CZ08]. For reasons we
explain below, a near relative is also important. The basic notion is to take as the
subgroup the spiral given by: G = {exp(εt) : t ∈ R}. This structure is real analytic
but is not a model of Poizat’s theory; a result of Marker (extending his argument in
[Mar90]) shows the resulting structure is unstable. But taking copies of the spiral
indexed by Q or Z gives interesting model theoretic results at the cost of losing the
real analyticity of the model. The concept of Zilber-analyticity would try to axiomatize
a notion including some of these examples.

Theorem 3.2 (Caycedo-Zilber) Assume Schanuel’s conjecture and weak CIT; let ε =
1 + i.

The naughty/green field
(C,+, ·,G)

where G = {exp(εt + q) : t ∈ R, q ∈ Q} and exp is complex exponentiation
satisfies Poizat’s axioms and so is an ω-stable field of rank ω × 2.
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The emerald field
(C,+, ·,G′)

where G′ = {exp(εt+ q) : t ∈ R, q ∈ Z} and exp is complex exponentiation is
a superstable structure.

For the first result see [Zil05a, CZ08]; for the second see [Cay08]. Caycedo has similar
results for elliptic curves.

In attempting to understand these examples Zilber introduced still another meaning
of geometry into model theory. Connes’ theory of non-commutative geometry provides
three different descriptions of a ‘quantum torus’.

1. A structure

2. A finitely generated non-commutative C∗-algebra

3. A foliation

Zilber [Zil10] attempts to use Connes theory to understand the non-algebraic ex-
amples in Theorem 3.1 and examples in Theorem 3.2; he attaches non-commutative
C∗-algebras and or foliations to the structures. Baldwin and Gendron noticed that only
one of these is ‘the’ quantum torus.

Lemma 3.3 Assume Schanuel’s conjecture; let ε = 1 + i. The concrete superstable
(emerald field) version
R2
/G′ where

G′ = {exp(εt+ q) : t ∈ R, q ∈ Z}
and exp is complex exponentiation is the leaf space of the Kronecker foliation, the
quantum torus.

The concrete naughty (green) field is a ‘near’ Quantum Torus. That is, R2
/G

where
G = {exp(εt+ q) : t ∈ R, q ∈ Q}

and exp is complex exponentiation. This is apparently a ‘new’ structure to topologists,
a quotient of the quantum torus byQ.

Just as Zariski structures are defined axiomatically to generalize algebraic geome-
try, analytic Zariski structures [Zil10] are defined axiomatically to generalize the prop-
erties of analytic subsets of the complex numbers. A key distinction from Zariski
structures is the loss of the Noetherian property.

4 The visions of Zilber and Shelah
We have described Zilber’s thesis in terms of the connection to fundamental struc-
tures of mathematics. This thesis has led to many fascinating results and conjectures
in logic, number theory, and complex analysis. It has produced a deeper understand-
ing of complex exponentiation and suggested the notion of a new universal structure
for exponential algebra. The attempt to understand complex exponentiation has forced
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investigation of logics extending first order. And the attempt to understand counterex-
amples to various conjectures has led to connections with non-commutative geometry.
Since the entire project developed from attempts to understand the geometries associ-
ated with strongly minimal sets, it is perhaps natural that geometries that are unusual
from the model theoretic standpoint are also unusual from other mathematical view-
points.

In a sense, Shelah proceeds from the other direction (See the introduction to
[She09]. His goal is to classify classes of structures. We consider three themes of
his analysis. A key theme is finding dividing lines: a property P of a class of structures
such that both P and ¬P have strong consequences. For example, in the first order
case, a stable theory admits a nice notion of independence. On the other hand an un-
stable theory has the maximal number of models in every uncountable power, which,
Shelah argues, makes the models unclassifiable. In trying to develop the model theory
of infinitary logic, he used the same motif: model amalgamation is a key dividing line.
It is a powerful tool for obtaining structure results. The notion of excellence arises as
a condition of n-dimensional on countable models which is sufficient to guarantee the
existence of arbitrarily large models and to guarantee amalgamation in all cardinalities.
And Shelah shows (using weak-diamond) that failure of amalgamation in a categoric-
ity cardinal λ leads to many models in λ+. Variants of this argument are crucial 9in
proving Theorem 2.27. A second significant component of Shelah’s work on infinitary
logic is to discover algebraic/model theoretic notions which are cardinal dependent.
One striking example is that (ℵ0, n) goodness propagates to (ℵn, n− 1) goodness and
so (ℵ0, n) goodness for all n propagates to the existence of arbitrarily large models. In
fact, this need to build the existence of a model in larger powers from below in some
ways motivates the semantic approach of abstract elementary classes. An apparently
key observation concerning AEC’s is that they can be defined as class of first order
models omitting a family of types ([She87] and Chapter 4 of [Bal09]). This in turns
allows the use of Ehrenfeucht-Mostowski models and the calculation of the Hanf num-
ber for AEC’s. But these tools are not central to the development in [She09] That work
is ‘algebraic’; i.e. the work is with structures, not logics.

The main gap is most easily stated as every first order theory either has the maximal
number of models in sufficiently large cardinals or the number of models of T in ℵα
is bounded by iβ(α) for a β depending on T . But the real point is that the every
model of a theory with few models can be decomposed as a tree of submodels and each
of these models is determined by a family of geometries. The connections between
these geometries (regularity, orthogonality, hereditary orthogonality) were key tools
along with the study of the (modularity, triviality etc.) of the individual geometries
(geometric stability theory) both in obtaining the fine structure of spectrum of models
[HEL00] and in such crucial applications as Hrushovski’s work [Hru96] on Manin-
Mumford for function fields.
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