THE METAMATHEMATICS OF RANDOM GRAPHS

John T. Baldwin * Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

June 15, 2004

^{*}Partially supported by NSF grant DMS-0100594

EVENTUAL BEHAVIOR

Definition 1 A (round robin) tournament is a directed graph with an edge between every pair of points.

Fix k. Is there a tournament such that for each set of k-players there is another who beats each of them?

Let S_n be the set of all tournaments with n players.

$$|S_n| = 2^{\binom{n}{2}}.$$

Each of these is equally likely.

Call a k-set X bad if no element dominates each member of X. If Y(T) is the number of bad k-sets in a tournament T then

$$E(Y) = \binom{n}{k} (1 - (1/2)^k)^{n-k}.$$

Then $E(Y) \to 0$ and by Markov's inequality $P(Y \ge 1) \to 0$. So a.a., there is such a tournament.

WHAT IS A ZERO-0NE LAW?

Let Ω_n denote the set of graphs on the vertex set $\{0, \ldots, n-1\}$.

Let P_n be a probability measure assigning an element of [0, 1] to each subset of Ω_n .

Let X be a family of sequences X_n of events in Ω_n . Then (Ω_n, P_n, X) satisfies a zero-one law if for each sequence X_n ,

$$\lim_{n \to \infty} P_n(X_n) = 0$$

or

$$\lim_{n \to \infty} P_n(X_n) = 1.$$

In the example:

 P_n is the uniform probability

 X_n is the set of tournaments on n vertices such that every set of k players is dominated by one single player.

EDGE PROBABILITY

We will consider measures that are determined by the 'edge probability' p(n) of two vertices being connected.

Definition 2 Let B be a graph with |B| = n and 0 .

- 1. Let $P_n^p(B) = p^{|e(B)|} \cdot (1-p)^{\binom{n}{2}-e(B)}$.
- 2. For any $X \subset \Omega_n$,

$$P_n^p(X) = \sum \{P_n^p(B) : B \in X\}.$$

3 PROBABILITY MEASURES

- 1. p(n) is constant.
- 2. p(n) is $n^{-\alpha}$ for $0<\alpha<1$ and often irrational
- 3. $p(n) = p_n^l$ is

$$\frac{ln(n)}{n} + \frac{l \cdot ln(ln(n))}{n} + \frac{c}{n}$$

where l is an arbitrary fixed nonnegative integer, and c is a positive constant.

MOTTO

A Logician is a self-conscious mathematician!

LOGIC

 $(\forall x_1), \ldots (\forall x_k) (\exists y) \bigwedge y R x_i$

First order logic is built up from atomic formulas by Boolean operations and quantification over individuals.

k-connected is expressible; connected is not.

Definition 3 Let B be a graph with |B| = n and 0 .

1. Let
$$P_n^p(B) = p^{|e(B)|} \cdot (1-p)^{\binom{n}{2} - e(B)}$$
.

2. For any formula ϕ , let

$$P_n^p(\phi) = \sum \{P_n^p(B) : B \models \phi, |B| = n\}.$$

[Fagin and (Glebski,Y. and Kogan, V. and Liogon'kii, M.I, and Taimanov, V.A.)]

Theorem 4 If p(n) = 1/2 for each formula ϕ , $\lim_{n\to\infty} P_n^p(\phi)$ is 0 or 1.

Let T^p denote the collection of almost surely true sentences. That is, the sentences ϕ such that:

$$\lim_{n \to \infty} P_n^p(\phi) = 1.$$

EVENTS

FAMILIES of SEQUENCES of events.

We consider random graphs on finite sets with different background structure.

Two parameters:

1. logic

- (a) first order
- (b) $L_{\omega_1,\omega}$
- (c) the Ramsey quantifier: $L_{\omega,\omega}(Q_{ram,f})$
- 2. ambient vocabulary: L'
 - (a) equality
 - (b) successor
 - (c) order
 - (d) vector space?

 $L = L' \cup \{E\}$

ALMOST SURE THEORIES

We consider a family (Ω_n, P_n) and let L represent the first order sentences in a vocabulary τ .

The *almost sure* theory of (Ω_n, P_n, L) is the collection of *L*-sentences ϕ such that

$$\lim_{n \to \infty} P_n(\phi) = 1.$$

A theory T is complete if for every $L(\tau)$ -sentence ψ either $\psi \in T$ or $\neg \psi \in T$.

Thus there is a first order zero-one law for (Ω_n, P_n) just if the almost sure theory is complete.

STRATEGY: Find a collection Σ of axioms that are

- 1. almost surely true
- 2. complete

PROVING COMPLETENESS

TECHNIQUES:

- 1. categoricity
- 2. 'quantifier elimination'
- 3. Ehrenfeucht-Games
- 4. Determined Theories

THE RANDOM GRAPH

The Rado universal graph is the unique countable model of the following extension axioms.

Axioms ϕ_k :

$$(\forall v_0 \dots v_{k-1} w_0 \dots w_{k-1}) (\exists z) \land_{i < k} (Rzv_i \bigwedge \neg Rzw_i)$$

A variant on our initial probability arguments shows each extension axiom has probability 1.

And a back and forth argument shows the theory is categorical in \aleph_0 ; hence complete.

ALMOST EVERYWHERE EQUIVALENCE

Definition. The logics L and L' are almost everywhere equivalent with respect to the probability measure P if there exists a collection C of finite models such that P(C) = 1 and for every sentence θ of L there is a sentence θ' of L' such that θ and θ' are equivalent on C (and conversely).

Theorem. (Hella, Kolaitis, Luosto) FO and $L^{\omega}_{\infty,\omega}$ are almost everywhere equivalent with respect to the uniform distribution.

THE RAMSEY QUANTIFIER

Consider the quantifier $(Q_{ram,f})$ defined by $Q_f^n \mathbf{x} \phi(\mathbf{x}, \mathbf{y})$ which holds in a finite model |A| if there is a homogeneous subset for ϕ of cardinality at least f(|A|).

Theorem. If f is unbounded, the logic $L_{\omega,\omega}(Q_{ram,f})$ is almost everywhere equivalent to first order logic on graphs with respect to either the uniform distribution or edge probability $n^{-\alpha}$.

Proof Sketch.

1. Baldwin-Kueker: The Ramsey quantifier is eliminable from T in the \aleph_0 interpretation if T is either \aleph_0 -categorical or does not have the finite cover property.

2. Baldwin-Shelah: The almost sure theory T^{α} does not have the finite cover property.

But I am ahead of myself, what is T^{α} and why is it complete?

THE GREAT COINCIDENCE?

Theorem 5 (Spencer-Shelah-1988) If α is irrational, for each formula ϕ , $\lim_{n\to\infty} P_n^{\alpha}(\phi)$ is 0 or 1.

- **Theorem 6 (Hrushovski late 80's)** 1. There is an \aleph_0 categorical strictly stable theory.
 - 2. There is a strongly minimal set which is neither 'trivial', nor 'vector-space like' nor 'field-like'.

These results depend on the same fundamental ideas.

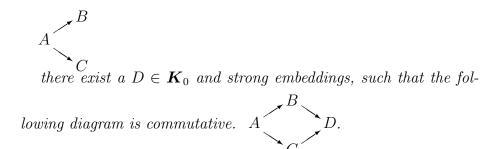
RETHINKING THE RANDOM GRAPH

The Rado random graph is the unique countable model of T^p .

Definition 7 Let \mathbf{K}_0^p be the collection of all finite graphs (including the empty graph) and write $A \prec_{\mathbf{K}} B$ if A is subgraph of B.

Note:

Definition 8 The class $(\mathbf{K}_0, \prec_{\mathbf{K}})$ satisfies the amalgamation property (\mathbf{AP}) if for any situation:



GENERIC STRUCTURES

Definition 9 The countable model M is $(\mathbf{K}_0, \prec_{\mathbf{K}})$ -generic if

- 1. If $A \leq M, A \leq B \in \mathbf{K}_0$, then there exists $B' \leq M$ such that $B \cong_A B'$,
- 2. For every finite $A \subseteq M$ there is a finite B with $A \subseteq B \prec_{\mathbf{K}} N$.

The Rado graph is $(\boldsymbol{K}_0^{.5},\prec_{\boldsymbol{K}})$ -generic.

Theorem 10 Any two countable $(\mathbf{K}_0, \prec_{\mathbf{K}})$ -generic structures are isomorphic.

PREDIMENSIONS

Fix a base language L and expand it by a new binary relation, R. Call the new language L^+ .

R is symmetric and irreflexive. For any finite B, e(B) is number of 'edges' of B.

Definition 11 Define predimensions on finite structures as follows.

1. Fix an real number α , $0 < \alpha < 1$ and let

$$\delta_{\alpha}(B) = |B| - \alpha e(B).$$

- 2. Let \mathbf{K}_{α} be all finite graphs B such that for all $A \subseteq B$, $\delta_{\alpha}(A) \ge 0$.
- 3. For any M, and finite $A \subseteq M$, $d_M(A) = \inf(\delta_{\alpha}(B) \text{ for } A \subseteq B \subseteq_{\omega} M$.

Definition 12 For $M \subseteq N$, we say that M is strong in N, and write $M \leq N$, if for all finite $X \subseteq M$,

$$d_N(X) = d_M(X).$$

STRONG SUBSTRUCTURES

Axiom Group A Let $A, B, C \in \mathbf{K}$. A1. $A \leq A$. A2. If $A \leq B$ then $A \subseteq B$. A3. If $A, B, C \in \mathbf{K}_0$, then

$$A \le B \le C \Longrightarrow A \le C.$$

THE FIRST EXPLANATION

Theorem 13 If $(\mathbf{K}_0, \prec_{\mathbf{K}})$ is a collection of finite relational structures that satisfies A1-A5 and has the amalgamation property then there is a countable \mathbf{K}_0 -generic model M.

Lemma 14 The class K_{α} satisfies A1-A5 and has the amalgamation property.

- 1. If $\alpha = .5$ the generic model is an \aleph_1 -categorical non-Desarguesian projective plane (Baldwin).
- 2. If α is irrational the theory T_{α} of the generic model is a strictly stable first order theory (Baldwin-Shi).

Problem: (A La Cameron) What are the automorphisms of the generic structure?

But emphasis on the 'generic' model is misplaced. In order to prove 0-1 laws we must identify T_{α} as an almost sure theory.

DETERMINED THEORIES

The theory T is *determined* if there is a family of functions F_M^n with the following property. For any formula $\phi(x_1 \dots x_r)$ there is an integer ℓ_{ϕ} , such that for any $M, M' \models T$ and any r-tuples $\mathbf{a} \in \mathbf{M}$ and $\mathbf{a}' \in \mathbf{M}'$ if $F_M^{\ell_{\phi}}(\mathbf{a}) \approx \mathbf{F}_{\mathbf{M}'}^{\ell_{\phi}}(\mathbf{a}')$ by an isomorphism taking \mathbf{a} to \mathbf{a}' , then $M \models \phi(\mathbf{a})$ if and only if $M' \models \phi(\mathbf{a}')$.

Theorem. If T is determined and for each $M, M' \models T$ and each $n, F_M^n(\emptyset) \approx F_{M'}^n(\emptyset)$ then T is complete.

SOME DETERMINED THEORIES

We will describe in a moment the notion of a semigeneric structure. The following theories are determined:

- 1. The semigeneric structures with respect to the class K_{α} . (Expansions of equality)
- 2. The semigeneric structures with respect to the class $\boldsymbol{K}_{\alpha}^{S}$. (Expansions of successor)
- 3. The semigeneric structures with respect to the class $\boldsymbol{K}_{\alpha}^{V}$. (Expansions of vector spaces over finite fields)
- 4. The theory T^{ℓ} of Spencer and Thoma.

The axioms of 1,2, and 4 can be proved to be almost surely true (for the appropriate probability measure).

INTRINSIC CLOSURE

Definition 15 For $A, B \in S(\mathbf{K}_0)$, we say B is an intrinsic extension of A and write $A \leq_i B$ if $\delta(B/A') < 0$ for any $A \subseteq A' \subset B$.

Definition 16 For any $M \in \mathbf{K}$, any $m \in \omega$, and any $A \subseteq M$,

 $cl_M^m(A) = \bigcup \{ B : A \leq_i B \subseteq M \& |B - A| < m \}.$

Definition 17 If $B \cap C = A$ we write $B \otimes_A C$ for the structure with universe $B \cup C$ and no relations other than those on B or C.

SEMIGENERICITY

Definition 18 The countable model M is $(\mathbf{K}_0, \prec_{\mathbf{K}})$ -semigeneric, or just semigeneric, if

- 1. $M \in \mathbf{K}$
- 2. If $A \prec_{\mathbf{K}} B \in \mathbf{K}_0$ and $g : A \mapsto M$, then for each finite m there exists an embedding \hat{g} of B into M which extends g such that
 - (a) $\operatorname{cl}_{M}^{m}(\hat{g}B) = \hat{g}B \cup \operatorname{cl}^{m}(A)$
 - (b) $M|\mathrm{cl}_M^m(gA)\hat{g}B = \mathrm{cl}_M^m(gA)\otimes_A\hat{g}B$

Lemma 19 There exist formulas $\phi_{A,B,C}^m$ such that the structure $N \in \mathbf{K}$ is semigeneric, if and only if for each $A \prec_{\mathbf{K}} B$ and $C \in \mathcal{D}_A$ and each $m < \omega$, $N \models \phi_{A,B,C}^m$

Theorem 20 If $A \prec_{\mathbf{K}} B$ and $A \leq_i C$ with $|\hat{C}| < m$ then $\lim_{n \to \infty} P_n(\phi^m_{A,B,C}) = 1.$

Under appropriate hypotheses we can prove all the semigeneric models are elementarily equivalent.

MAIN THEOREM

Definition 21 We denote by Σ_{α} the conjunction of a) the sentences axiomatizing (\mathbf{K}_0, \leq_s) -semigenericity and b) the sentences asserting that if $\mathbf{a} \in \operatorname{icl}_{\mathrm{M}}(\emptyset)$ then $\neg R(\mathbf{a})$ (for any $R \in L$ -L') and describing the L'-structure of $\operatorname{icl}_{\mathrm{M}}(\emptyset)$.

Theorem 22 If T_{α} is the theory of the semigeneric models of Σ_{α} then T_{α} is a complete theory, axiomatized by Σ_{α} . Moreover, T_{α} is nearly model complete and stable. And T_{α} is not finitely axiomatizable.

Two cases:

- 1. L' has only equality.
- 2. L' has successor.

The first case gives the 0-1 law for $n^{-\alpha} \alpha$ irrational.

The second gives the same laws for the random graph over successor.

QUANTIFIER COMPLEXITY

Nearly model complete means every formula is equivalent to a Boolean combination of existential formulas.

As given, the axioms for semigenericity are $\forall \exists \forall$.

Lemma 23 (Baldwin-Laskowski) The theory T_{α} is not π_2 -axiomatizable.

THE FUNDAMENTAL CONNECTION

L' is the ambient vocabulary: successor

L includes the graph relation R.

 $\delta(B)$ is the number of components of $(B, S) - \alpha e$ where e is the number of edges in the graph.

Definition 24 Let $A \subseteq B$ be L-structures. Fix an L'-isomorphism f from A into the L'-structure (n, S, I, F), and $M \in \Omega_n$, i.e. Mis an L-structure expanding (n, S, I, F). Let N_f be a random variable such that $N_f(M)$ is the number of extensions of f to (L-L')homomorphism over A mapping B onto M.

Lemma 25 For all sufficiently large n and all $f : A \rightarrow n$, the expectation

 $\mu_f = E(N_f) \sim n^{\delta(B/A)}.$

TECHNICAL GOAL

Theorem 26 Fix L-structures $A \subseteq B$ with $A \leq_s B$. Let V be the event (which depends on c_1): for every L'-isomorphism $f: A \to n$,

$$n^{v-r}(\ln n)^{-(v+1)} < N_f < c_1 n^{v-r}.$$
(1)

Then, for some choice of c_1

$$\lim_{n \to \infty} P_n(V) = 1.$$

The upper bound is proved exactly as in Spencer-Shelah; the lower bound is a new argument avoiding the second moment method.

LIMIT LAWS

Consider a family (Ω_n, P_n) and let L represent the first order sentences in a vocabulary τ .

 (Ω_n, P_n, L) obeys limit laws if for each $L\text{-sentences }\phi$

$$\lim_{n \to \infty} P_n(\phi)$$

exists.

Spence and Thoma consider: $p^*(n) = p_n^l$ is $\frac{ln(n)}{n} + \frac{l \cdot ln(ln(n))}{n} + \frac{c}{n}$

where l is an arbitrary fixed nonnegative integer, and c is a positive constant.

They prove limit laws for this probability by Ehrenfeucht games.

DETERMINED THEORIES AND LIMIT LAWS

Baldwin and Mazzucco prove the almost sure theory for p^* is determined for an appropriate notion of closure. In contrast to the T_{α} case the closure of the empty set is not empty. Using determined theories we obtain:

Theorem 27 There are a family of easily described sentences σ_s^l . Let $\lim_{n\to\infty} p_n^l(\sigma_s^l) = q_s^l$. For any L-sentence θ , there exists a finite set I of nonnegative integers such that $\lim_{n\to\infty} p_n^l(\theta) = \sum_{i\in I} q_i^l$ or $\lim_{n\to\infty} p_n^l(\theta) = 1 - \sum_{i\in I} q_i^l$.

TWO ALMOST SURE THEORIES

THE RANDOM GRAPH – uniform distribution

- 1. unstable; prototypical theory with independence property
- 2. \aleph_0 -categorical
- 3. has the finite cover property
- 4. elimination of quantifiers
- 5. $L^{\omega}_{\infty,\omega}$ almost equivalent to first order.
- 6. $\forall \exists$ -axiomatizable

THE RANDOM GRAPH –edge probability $n^{-\alpha}$, α irrational.

- 1. stable
- 2. not \aleph_0 -categorical; not small
- 3. does not have the finite cover property
- 4. nearly model complete, not model complete
- 5. $L^{\omega}_{\infty,\omega}$ is not almost equivalent to first order (McArthur-Spencer).
- 6. $\forall \exists \forall$ axiomatizable.

Urysohn Space

Let \mathbf{K}_0 be the set of finite metric spaces in the language containing binary relations R_q for each positive rational q. Cameron pointed out that if \mathbb{Q} is the homogeneous universal (i.e Fraïssé limit) for \mathbf{K}_0 then the completion of Q is the Urysohn space.

Vershik's version specifies a set of constant a_i and the distances between a_i and a_j .

Note that in either case, we need the *prime* model of the theory of the generic. So the infinitary logic of the model theory talks enters again – by omitting all nonprincipal types.

A PROBABILITY MODEL

Fix a slow growing (Blass) function f(n) and let L_n contain the R_q with the denominator of q less than f(n) and $0 \le q \le 1$.

Let Ω_n be the set of L_n structures with universe n that satisfy the universal axioms of metric spaces.

Let P_n be the uniform measure on Ω_n .

.

Let K_0 be the class of substructures of models in $\bigcup \Omega_n$.

Claim 28 \mathbb{Q} is the Fraissé limit of K_0 under substructure.

Conjecture 29 The extension axioms for finite metric spaces are almost surely true with respect to (Ω_n, P_n) .

SUMMARY

I. Model Theory

- A. $(\mathbf{K}_0, \prec_{\mathbf{K}})$ generic structures
- **B.** Applications
 - 1. New Strongly Minimal Set (Hrushovski)
 - **2.** \aleph_0 -categorical strictly stable theory (Hrushovski)
 - 3. \aleph_1 -categorical nonDesarguesian projective plane (Baldwin)
 - 4. Strictly stable theories T^{α} (Baldwin-Shi)
 - 5. Algebraic Constructions: Baudish, Baldwin-Holland, Chapuis, Nesin, Poizat, Tent, Zilber
 - 6. Other model theoretic phenomena, Ikeda, Pourmahdian-Wagner

II. Random Graphs

- **A.** 0-1 laws
- **B.** 0-1 laws for $p(n) = n^{-\alpha}$: T_{α}
 - 1. Graphs (Spencer-Shelah; Baldwin-Shelah)
 - 2. Arbitrary finite relational language imposed on successor (Baldwin and Shelah independently)

- **III.** The theory T_{α} is complete, stable, nearly model complete, and decidable but not finitely axiomatizable. This has consequences for 0-1 laws in extended logics.
- **IV.** The method of determined theories works for limit laws as well as 0-1 laws.

A few relevant references follow. [1] [3] [2] [4] [5] Most papers are on my homepage: http://www2.math.uic.edu/jbaldwin/model.html

References

- J.T. Baldwin. Expansions of geometries. Journal of Symbolic Logic, 68:803–827, 2003.
- [2] J.T. Baldwin and M. Mazzucco. Determined theories and limit laws. *Information and Computation*. to appear,.
- [3] J.T. Baldwin and S. Shelah. Randomness and semigenericity. Transactions of the American Mathematical Society, 349:1359– 1376, 1997.
- [4] J.T. Baldwin and Niandong Shi. Stable generic structures. Annals of Pure and Applied Logic, 79:1–35, 1996.
- [5] S. Shelah and J. Spencer. Zero-one laws for sparse random graphs. *Journal of A.M.S.*, 1:97–115, 1988.