The Eigencurve and the Fontaine-Mazur Conjecture
Robert F. Coleman
Lecture 1
Let Gq = Gal(Q/Q) and p be a prime.
One knows if F(q) = EnZl anq" is the g-expansion of a weight k& normalized
cuspidal eigenform of level N and character y, E = Q,({ay}) is a finite extention of

Q, and an odd, irreducible repesentation p: Gq — Glz(E) unramified outide of Np
such that if ¢ fNp

Tr ( Frobs) = a¢, and det( Froby) = X(K)Kk_l.

One also knows the restriction of p to a decomposition group at p is “potentially

semi-stable.”

Ezample. On Xo(49) there is a unique normalized weight 2 cusp form F(q), where
az = 1,a11 =4, a3 = 8,az29 = 2,a37 = —0,
az = as = ay3 = air = a9 = azy = 0.

Y annT =1 = a0 T4 TT) T

n>1 04T

In 1993, J.M. Fontaine and B. Mazur conjectured [F-M],

Conjecture. Suppose E is a finite extension of Q, and p:Gq — Gl3(E) is a con-
tinuous odd, irreducible representation ramified at only finitely many primes whose
restriction to a decomposition group at p is potentially semi-stable. Then p arises

from a modular form.

Mark Kisin has recently proven, using the “eigencurve” this conclusion when p

arises from an “overconvergent form of finite slope.”



Topics of course

Serre’s theory of p-adic Banach spaces [S], [C2] and [B]. Overconveregent forms
and the U-Operator [K], [C2]. The Canonical subgroup and the U-operator [K], [B2].
Pseudo-representations attached to overconvergent Forms, [H]. The Eigencurve, [C-
M]. Fontaine’s theory, [F| (see also www.math.berkeley.edu/ coleman /fontaine.html).

The Fontaine-Mazur conjecture, [F-M]. Kisin’s Theorem.

p-adic Banach spaces

A Banach Algebra is a commutative ring A with a unit element, complete and

separated with respect to a non-trivial ultrametric norm | |. Le., |1| =1,
@+ 0] < max]al,[b],  [ab] < |al0],

for a and b € A, and moreover, |a| = 0 if and only if « = 0. A Banach module over
A is an ultrametrically normed complete module E over A, such that |ae| < |a|e] if
a € Aand e € E.

An orthonormal basis for a Banach module E over A is a set {e; : ¢ € I} of
elements of E, for some index set I, such that every element m in E can be written

uniquely in the form ), ; a;e; with a; € A such that lim; o [a;| = 0 and
|m| = Sup{|a;| : i € I}.

We say FE is orthonormizable if it has an orthonormal basis.

Ezamples. Suppose A = Q, and M is the ring of analytic functions on the unit disk.

An A-homomorphism h: M — N between two Banach A-modules is said to be

completely continuous or compact if there exists a sequence of A-homomorphisms

h;: M — N of "finite rank” such that

tim ( sup |(h—hj)(m)]) = 0.

I m|<1
It turns out that if M = N, has an orthonormal basis and A is “nice,” then h has a

characteristic series (Fredholm determinant).
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www.math.berkeley.edu/ coleman/Courses/Sp02/ecfm.html

Quick introduction to rigid analysis

Let K be a complete local field with absolute value | |. By K(Xy,...,X,) I mean
the ring

A, :3ZGIXI where ar € K, |ay| = 0 as o(I) — oo.
>0

This ring is Noetherian and is called the Tate algebra of dimension n over K. One
can think of it as functions on a polydisk of radius 1. A quotient ring of this ring is
called an affinoid algebra.

Ezample. Consider {(z,y):y* = 2% — 1,]z| <1, |y| < 1}.

If F(X1,...,X0) =Y ;soar X!, put ||F|| = sup; |ar|. If a: A,, — A is surjective
we define

1 Flla = inf{[lgl|: g € An,a(g) = f}.

This is a norm on A.One can also set

[1Fllsup = inf |17
This is independent of a. The power bounded elements AY of A are the elements
f such that {||f"||o} is bounded or equivalently ||f||sup < 1 and the topologi-
cal nilpotents of A A" are the elements f such that ||f"||o — 0 or equivalently
| fllsup < 1. If A is reduced and A°/AT is an integral domain || ||sup is a norm
eq3uivalent to || ||-

Ezample. Same as above and also 5zry = p.



Compact operator over affinoid algebras

An A-homomorphism L: M — N between two Banach A-modules is said to be
compact if there exists a sequence of A-homomorphisms of finite rank h;: M — N
such that h; — L. In good situations det(1 — Th;) is defined and
lim; o0 det(1 — Th;) exists.

Suppose {¢; }i>o is an orthonormal basis for M and {d;};>0 is an orthonormal

basis for N. Suppose
L(e;) = Znivjdj'
J

Proposition. Suppose K is a finite extension of Q, and A is a reduced affinoid

algebra over K. The linear map L is compact if and only if
lim Sup;>o|ni, ;| = 0.
j—00

Proof. Let 7w, be the projection onto the submodule E,, generated by d;, j < n and
L,=mn,0L.

Now suppose L is compact. Then for each € > 0 there exists an A-linear map
L': M — N whose image is contained in a finitely generated submodule P and is such
that |[L — L'| < e.

We will show P° =: P N N? is finitely generated over A°. Assume this for now.

Claim: There exists an m > 0 such that

|7Tm|p — idp| < €.

It follows that
|IL —7mol|<e

This implies |n; ;| < € for j € T which concludes the proof. g

2



If M = N,
det(1 —=TL) = lim det(l — T(7, 0 L|ar,)).

J—o0
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J. Tate: Rigid analytic spaces, Inv. Math. 12 (1971) 257-289.

Compact Operators

Let L: M — N be a continuous linear map between orthonormizable Banach modules

over A. Suppose {¢;};>0 is an orthonormal basis for M and {d;};>¢ is an orthonormal

basis for N and
L(e;) = Znivjdj'
J

Proposition. Suppose K is a finite extension of Q, and A is a reduced affinoid

algebra over K. The linear map L is compact if and only if
lim Sup;>o|nq, ;| = 0.
j—00

Proof. Let 7w, be the projection onto the submodule E,, generated by d;, j < n and
L,=mn,0L.

Suppose L is compact. Then for each ¢ > 0 there exists an A-linear map
L'":M — N whose image is contained in a finitely generated submodule P and is
such that |L — L'| < e.

Claim: PY =: {n € P:||n|| < 1} is finitely generated over A°.

Indeed, let n; = > . b;jd; 1 <1 <k generate P. Let

k
U=A{(ar,...,ax) EAk:Zami = 0}.

=1

Since A is Noetherian, there exists r > 0 such that U = Ker F., where



Thus, if t > r

0— U — AP Eon N > At

is exact. Let By = F,'((A%)!) so that in particular ((V,s, B:)/U = P°.

End of proof. There exists an m > 0 such that |7, |p — idp| < e.

It follows that
|IL —7mol|<e

This implies |n; ;| < € for j € T which concludes the proof. g

Characteristic series

Suppose 7 is a uniformizing parameter of X and M = N = E.

Theorem. If L is a compact operator on E, then

lim det(l —T(7y 0 L)|g,,)

m—in fty

exists.

We will denote it by Pr(T).
Proof. First we can assume |L| < 1. Next we know that given k& > 0 there exist
my > 0 such that
L(e) = 7, o L(e) mod ¥,

Theorem. If L has norm at most |a| where a € A then Pr(T) is an element of

AC[[aT]] and is entire in T. Also, Pr(T) is characterized by:
(1) If {L,, }n>0 is a sequence of completely continuous operators on E, and L,, — L

then Pr, — P, coefficientwise.
(ii) If the image of L in E is contained in an orthonormizable direct factor F of

finite rank over A of E such that the projection from E onto F has norm at most 1
then
Pr(T) = det(1 — TL|F).
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The Fredholm Deteminant

Theorem. Suppose L is a compact operator on a ON Banach module E over A. If
L has norm at most |a| where a € A, then Pr(T) is an element of A°[[aT]] and is

entire in T. Also, Pr(T) is characterized by:
(i) If {L,}n>0 is a sequence of compact operators on E, and L, — L then

Py, — Py, coefficientwise.
(ii) If the image of L in E is contained in a direct factor F of finite rank over A of

FE such that the projection from E onto F' is continuous then
Pr(T) = det(1 — TL|F).

In particular, Pr,(T) depends only on the topology.

Proof. T will prove Pr(T) is entire in T and (i). Let (€;);>0 be an ONB. We can
suppose |L| < 1. Suppose L(e;) = E]‘ n; jej. For a finite set S of non-negative
integers and a permutation o of S, set
ns,e = H " o(3)
tES
Then
PL(T)=14e1T + T+ - - -,

where

em = (=)™ Z €NS, 0
S,o
|S|=m

Now let Ry > Ry > --- be the numbers r; = sup |n;;|. It follows that
i>0

|Cm| S RIRZ Rm7

1



SO

lem |M™ < (RyM)(Ry M) -+ (R M).

Now suppose, |L' — L| < e < 1.

Some other key facts.

Remark. If L: M — N is compact and F: N — M is continuous, then L o F' and

F o L are compact.

(i) If v and v are compact operators on E,
det(1 — Twu)det(l — Tw) = det((1 — Tu)(1 — Tv)).

(ii) Suppose E; and Es are orthonormizable Banach modules over A. Suppose u is
a compact homomorphism from E; to Fy; and v: E3 — FEy is a continuous homomor-
phism. Then Pyoy(T) = Pyou(T).

(iii) if ¢: A — B is a homomorphism of Banach algebras then ¢*E =: E @4 B is

orthonormizable over B and

Py, (T) = &(Pr(T)).

Given this one can define the characteristic series of a continuous operator V on

M if one only asssumes M is “locally orthonormizable.”



Riesz Theory

Suppose u is a compact operator on E. Let A{{T}} denote the ring of entire series

over A. For a polynomial of degree d whose leadin coefficient is a unit, F(T'), let

F*(T) = T'F(T~).

Theorem. Suppose P,(T) = Q(T)S(T) where S € A{{T}} and @ is a polynomial
whose leading coeicient is a unit such that Q(0) = 1 and which is relatively prime to

S. Then there is a unique direct sum decomposition

E = N,(Q)® F,(Q)

of E into closed submodules stable by u such that N,(Q) is projective of rank deg @,
Q*(u)N,(Q) =0 and Q*(u) is invertible on F,(Q). Moreover, N, (Q) and F,(Q) are
T)=Q(T) and P, T) = S(T).I

locally equivalent to orthonomizable modules and P,

|Nu(Q))( |Fu(Q)(
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Restants
See Lang’s algebra Chapter IV §8. Let e; be the i-th elementary symmetric

polynomial of Ty,...,T,.

Lemma. The subring of A[[T\,...,T,]], A{{e1,...,en}}, is equal to the subring of
A{{T\,...,T,}} consisting of elements which are left invariant under permutation of

the variables T;.

Suppose Q(T) =T" —ayT" ' +---+(=1)"a, € A[T] and P(T) € A{{T}}. Then
P(Ty)--- P(T,) = Hley,...e,) for some H € A{{X},...,X,}}. The resultant of
Q and P is

Res(Q,P) = H(ay,...,an).

Then,
Res(Q.1) =1 Res(Q.T) = (~1)"Q(0)
Res(Q,aP) = a"Res(Q, P)
Res(Q,PR) = Res(Q, P)Res(Q, R)

Res(Q.P + BQ) = Res(Q. P)

and if .S is a monic polynomial of degree m,
Res(SQ, P) = Res(S,P)Res(Q, P)
Res(@, ) = (~1)™ Res(S, Q)
Res(Q,S™) = Res(S,Q").

1



Recall Q*(T) = T"Q(T™1).

Say that an element a € A is multiplicative if |ab| = |a||b| for all b € A.

Proposition. The resultant of () and P is a linear combination of ) and P. If
Q) and P have a non-constant polynomial common factor G whose leading term is
multiplicative, then the resultant of () and P is zero and is a unit if and only if ()

and P are relatively prime in A{{T}}.

Lemma. If G(T) is a polynomial whose leading coefficient is multiplicative and

H(T) e A{{T'}} such that G(T)H(T) € A then G(T) € A or H(T) = 0.

Proof. Replacing G(T) by G(p~™T) for some positive integer M we may assume
that the absolute value of the leading coefficient ¢ of G is greater than all its other
coefficients. Suppose deg G = n. Suppose H(T) = ), b T* and m > 0 is such that
|bim | > |bg| for all k with strict inequality for k& > m.

Now suppose B(T') € A[T], B(0) = 0 and F = Q* for a monic polynomial (). Let
P(T)=1-XB(T). Let

D(B,F) = Res(Q, P) € A[X].
Now if B, F € {T}, B(0) =0, F(0) =1 let
D(B,F)(X) = lim D(By, F,)(X).
Then D(B, F)(X) € A{{X}} and

Theorem. Ifu is a compact operator on an orthonormizable Banach module E over

A and B € TA{{T}} then B(u) is compact and

Ppy(T) = D(B, P, )(T).
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Correction: Lemma. If G(T) is a polynomial whose leading coeflicient is multiplica-

tive and H(T) € A{{T}} such that G(T)H(T) € A then G(T) € Aor H(T) = 0.

Riesz Theory

Suppose A is a reduced affinoid algebra over K, E is an orthonormizable Banach
module over A and u is a compact operator on F.

We need one more thing about resultants,
Lemma. If P(T) = R(T)S(T), R,S € A{{T'}} and R(0) = S(0) = 1, then we have,
D(B,P)=D(B,R)D(B,Y5),
and if Q) is a monic polynomial, D(1 — Q*, P)(1) = Res(Q, P).

The Fredholm resolvant Fr, of v is

Pu(T) _ irpi
7w = P,(T)) _u'T".

i>0

Proposition. The Fredholm resolvant is “entire.”

Proof. Fry acts on E @4 A[[T]]. If Py(T) = >_,.somT™, Fr(u)(T) = > v, T,
where

vo =0 and vy, = ¢y + UVm—1.

Let Ry > Ry > - -- be the numbers r; = sup |n;;| where (n;;) is the matrix for u wrt.
i>0

an ONB B = {e;}.Claim: |v,,| < RiRy -+ Ry
First suppose E is free of finite rank n. Then since Fr(T)P,(T) = det(1 — Tu)

1



Now suppose u(E) C E,.

End of proof. 7, o u — u.

Lemma. Suppose Q(T) € A[T] is monic. Then (Q,P,) =1 in A{{T}} if and only
if Q*(u) is invertible.

Proof. Let v =1 — Q*(u). Suppose (@, P,) = 1.
(1 —oT)Fr,(T)=P,(T)=D(1 - Q% P,)(T).

Last time we saw D(1 — Q*, P,)(1) = Res(Q, P,).

Now suppose Q*(u)(1 — w) = 1.
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Riesz Theory (continued)

For R(T) =Y, sqanT", let

AFR(T) = (Z) an T F

n>k

and A = AL If F(T) € A{{T}} and a € A, say ais a zero F of order k if A'F(a) =0
for 1 < k and A*¥F(a) is a unit.

Lemma. Suppose a € A is a zero of P,(T) of order h. Then we have a unique
decomposition

E =N(a)® F(a)
into closed submodules such that 1 — au is invertible on F(a) and (1 — au)hN(a) =0.

Proof. Proof. We have
(1 —uD)A*Fr (T) — ulA* " Fr, (T) = A*P,(T).

So if vg = A*Fry(a). We get (1 — au)*Ttog =0 for s < h.
Let ¢ = A"P,(a),

e = c_l(l —au)v, and f = ¢ tuvy,_q.

Then
e+ f=1 and fe" = 0.

?)eh_lf’ are projectors.

The endomorphisms e and Ei21 (

1



Theorem. Suppose P,(T) = Q(T)S(T) where S € A{{T'}} and () is a monic poly-
nomial such that Q(0) = 1 and which is relatively prime to S. Then there is a unique

direct sum decomposition

E = N,(Q)® F,(Q)

of E into closed submodules stable by u such that N,(Q) is projective of rank deg @,
Q*(u)N,(Q ) = 0 and Q*(u) is invertible on F,(Q). Moreover, N, (Q) and F,(Q)

are locally equivalent to orthonomizable modules and

T)=Q(T) and P, T) = S(T).

P”|Nu(Q))( |Fu(Q)(

Proof. Let n =deg @, B(T) =1— Q*(T) and v = B(u). Then
Py(T) = D(B, P,)(T) = D(B,Q)(T) - D(B, 5)(T),

but
D(B,Q)(X) = Res(Q*,1 - X(1-Q%)) = (1 - X)",

and D(B, S)(1) = Res(Q, S).
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Riesz Theory (continued)
Last we proved, Suppose P,(T) = Q(T)S(T) where S € A{{T}} and @ is a poly-

nomial of degree h whose leading coeflicient is a unit such that Q(0) = 1 which is

relatively prime to S. Then there is a direct sum decomposition

E = N,(Q)® F,(Q)

of E into closed submodules stable by u such that Q*(u)*N,(Q ) = 0 (note the k) and
Q*(u) is invertible on F,(Q). Moreover, if Q(T) = (1 — bT)" then Q*(u)N,(Q) = 0.
Let F' = N,(Q) and e.F = F,(Q) Claim: Q*(u)N = 0 in general.

Now lets prove N, (Q) is projective of rank h. Suppose we know this when A is a
field.

Let {e;} be an ON basis for E. Let m be a maximal ideal. Let

fi:Zamej for1<:<h
g€l

be elements of N which form a basis of N, modulo m. Then djy,..., 5 such that
g =:det(a;j, ) # 0

is not zero at m. Let U be an open affinoid in MaxA where ¢ is invertible. Claim:

fis--., fn 1s a basis for Ny .

Now we prove when the leaing coeffikcikent of ) is multiplicative, det(1—Tu|N,(Q) = Q(T).}

1



Proposition. Suppose N is a free. Then, locally, there exists a norm on E equivalent

to || || such that both N and F with their induced norms are orthonormizable.

Corollary. If up is the induced operator on F, up has a characteristic series and
P,(T) =det(l — Tu|n)Pup (T).
It follows that There exist H(T) € A{{T}} such that

H(T)Q(T) = det(1 — Tuln)

We also get P, (T) = S(T).
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Serre’s Riesz theory

Suppose now A is a field. As usual F is an ON Banach space over A and u is a
compact operator on E. Let {e;} be an ONB of E.

Suppose a is a zero of P,(T) of order h and E = N @ F is the decomposition of
E into u-stable Banach subspaces such that (1 — au)® N = 0 and 1 — au is invertible
on F.

Theorem. (Serre) N is free of dimension h.

Suppose W is d-dimensional subspace of N stable by v. Claim: E = W & G with

G ONable.
Suppose dim W = 1. Suppose w € W, ||w|| = 1. Suppose

w = g a;e;

and |egx| = 1. Let G = Span{e;:i # k}.

Using this we see that
(1= Ta)y®™ ™ |P(T)

and so dim N < k.

We know
det(1 — Tu|N) - Pu|F(T) = P,(T).

Since 1 — au is invertible on F, it follows that dim N > h.



Pseudo-representations

Suppose you have a group G and functions D, T — G — R? What do you need
to know about D and T to know there is ae representation p: G — Glz(R) such that

D(o) = det(p(0)) and T(a) = Tr(p(e))? (+)

Let S be a finite set of primes. Suppose Gg is the Galois group of the maximal

Abel;ian extension of Q unramified outside of S and ¢ € Gg a complex conjugation.

Theorem. Then if R is an integfral domain whose quotient field K is not of char-

1 0

acteristic # 2, there exists a p satisfving () and p(c) = (0 1

>1‘f and only if (for
all g, h, k.l € Gs):
8(g - h) =3d(g)d(h) +&(h,g)
E(gh, k) = a(g)é(h, k) + 8(h)¢E(g, k)
£(g,hk) = a(k)€(g,h) + 6(h)¢(g, k)

E(g, (R, £) = (g, O)E(k, )

and
a(l)y=46(1)=1; a(c) =-1; d(c) =1
where
alz) = T(x) —;T(C:Jc)7 5(r) = T(x) —2T(c:1;)

{(z,y) = alzy) — a(z)a(y).

Moreover. if R € ob(C), the category of complete notherian local Z,-algebras, p is

continuous if and only if T is.

If there exist r, s € Gg such that £(r,s) # —0, the representation p is given by
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One formula I left out from the previous theorem is D(g) = a(g)d(g) — (g, 9).
Since for a pseudo-representation (T, D), D is determined by T', I will call T' a pseudo-

representation.

What pseudo-representations are good for
Suppose (N,p) = 1. Then hy(N,Z,) = limhy(I'1(Np"),Z,) is independent of the

weight and is topologically generated by Hecke operators T'(n) and (a), (a, Np) = 1.

Theorem. (Hida) Suppose A € Ob(C), where C is the category of complete
local noetherian Z,-algebras, be an integral domain with quotient field K and
Athi(N,Z,) — A is a continuous Z,-homomorphism. Then there is a unique semi-
simple representation p: Gq — Gly(K) such that

(i) p is continuous.

(ii) p is unramified outside Np.

(iii) If ¢ [Np is a prime and ¢, is a Frobenius above (

det(1 — p(d)X) =1 = MT(£)X + N{(O))X>.
Back to pseudo-representations

Proposition. Suppose R is a product of finitely many objects in C, a and b two
ideals of R and T,: Gq — R/a and Ty: Gq — R/b two continuous p-rs (pseudo-
representtions). If there exist functions t and d on a dense subseet ¥ of Gq with

values in R/(a N b) such that
(Ta()). Da(0)) = (t(0),d(0)) moda
(Tu(0)). De(0)) = (t(0),d(0)) modb,
for o € ¥ then there exists a p-r Tynp: Gq — R/(a N b) such that
(Tarb(0), Dare(0)) = (t(o),d(0)) modan b.

1



Proof. Consider

0— R/(anb)— R/ad R/b—+R/(a+ b) — 0.

Theorem (Wiles). Suppose R is a topological Z,-algebra and {p;};2, are ideals such
that R/p; € C and

R=lmR/ (5.

=1

Y is a dense subset of G, t,d are functions ¥ — R and p-rs T;: G — R/p; such that
(Ti(e), Di(0)) = (H(0), d(0)) modp;

for o € 3. Then there exists a unique p-r T: G — R such that T(o) = T;(0) modyp;
for all o0 € ¥ and all 1.

Proof.

Corollary. If \: R — A is a continuous Z,-algebra homomomorphism into an in-
tegral domain with fraction field K of characteristic different than 2, there exist a

semisimple representation p: G — Gla(K') such that

det(1 —p(0)X)=1-\NT(0)X + /\(D(U))X2
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Let G = Gq. Now will prove
Theorem. Suppose (N,p) = 1. Suppose A € Ob(C) is an integral domain with
quotient field K and A\:hy(N,Z,) — A is a continuous Z,-homomorphism. Then
there is a unique semi-simple representation p: G — Gly(K) such that
(i) p is continuous.

(ii) p is unramified outside Np.
(iii) If ¢ [Np is a prime and ¢, is a Frobenius above (

det(1 — p(6)X) = 1 — MT(0))X + A({0))(X2.

Proof. Let ¥ = {¢: ¢¢ is a Frobenius above (}.
Fixk > 2. Let R = hy(N,Z,) = liinhk(Tl(Np"), Z,). Now R,, = hy(I'1(Np"), Zp)l
is a product of finitely many objects of C and R,, contains finitely many minimal prime

ideals p,; and (), pn; = 0.

Let p,; denote its inverse image in R. It follows that
R =TlimR/()pn:.

Now, one knows if \: R,, — QPF there exists a weight k eigenform F on I'y (Np™)
such that

F(q) = Z An>1(T(n))g"™.

and by Deligne there exists an irreducible continuous representation 7: G — Gls (Qp)

such that det(r(c)) = —1 and
det(1 — 7(pe)X) =1 = MT(0)X 4+ N{(O))X?.
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Thus for each (n,7) we have a p-r with values in R/p,;. Now let

tH(¢e) = T(C) and d(¢) = ({().

Back to Banach Modules

Let K be a finite extension of Q,. Let K® = {a € K:|a| <1} and p = {a € R:|a| < 1}.}
Suppose Y is a reduced irreducible affinoid such that Y is also reduced and we will
regard A(Y") as a Banach algebra with respect to the supremum norm.

For a rigid spacs X let A(X) denote the ring of rigid analytic functions on X, and
| | denote the supremum semi-norm on A(X) and A%(X) will denote the subring in
A(X) of power bounded functions on Y. Then pA°(Y") equals the set of topologically
nilpotent elements in A(Y) and Y = Spec(A%(Y)/pA°(Y)). Let B? will denote the

n-dimensional affinoid polydisk over . Then
ABY) = K(Ty,...,T,) and A°(B}) =2 K(Th,...,Ty,).

If a € K andr € |C,| we let Byla,r] and Bg(a,r) denote the affinoid and wide open
disks of radius r about @ in Al.

Suppose X — Y is a morphism of reduced affinoids over K. Then (A(X),| |) is a
Banach module over (A(Y), ] |).

Lemma. Suppose X — Y is a morphism of reduced affinoids over K and

A%(X)/pA°(X) is free over A°(Y)/pA%(Y). Then the Banach module A(X) over
A(Y') is orthonormizable.

Proposition. Suppose f: Z — X is a map of reduced affinoids over Y, X is reduced
and A(X) is orthonormizable over A(Y') and the image of Z in X is finite over Y.
Then the map f* from A(X) to A(Z) is a compact homomorphism of Banach modules
over A(Y).
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Nuclear Families

Robert F. Coleman

Suppose M is a Banach space over C, M’ is the continuous dual space. Then

M & M' has a natural norm such that

h @ ell = ||e]| max |h(d)],
I el = llel] s, 11D

and we get a new Banach space Ny =: M@M'. This space has natural ring structure
(e@h)-(d@ f) = hd)(f @e).
Moreover, there is a natural “trace” map
Tr:e® h — h(e).

We also have a continuous linear map b: Ny — B(M) := Hom(M, M),

cont
ble @h):d — h(d)e
which turns multiplication into composition and its image is an ideal. The operators
in the image of b are called nuclear. (They are compact.) One has the Fredholm

determinant, for u € Ny,

n
det(l — zu) = exp ( — nz::l Tr (u");)

This series is entire and zeroes, counting multiplicity, are the inverses of the non-zero
spectra of b(u). (This was all extracted from Grothendieck’s La Theorie de Fredholm
(1956).)

Let H = L?([0,1],dt). Then if k(x,y) € L*([0,1] x [0,1],dt x dt) we an operator
K on H )

Kf() = [ ke f)ds

These are called Hilbert-Schmidt operators. The product of two of these is nuclear.



What about families?

Suppose one has a “family” of nuclear operators. How does the spectrum vary?
Ezample. Suppose M is a Banach space and Z is a compact Hausdorff space. Supp-
pose U is a nuclear operator on M and V € C(Z,B(M)). Then U, :=U oV (z) is a
family of nuclear operators on M. In fact, we get a Fredholm determinant Dy v (T)
whose coefficients are in A := C(Z). Call its zero locus the spectral space of the
family.

Another way to phrase this is: Let Ma = M&A = C(Z,M). Then we have an

operator on M4 over A
e f — (:1; — Ulx)e ®f(:1;)>,

and this operator is “nuclear” over A. One can replace C' with An everywhere.

Questions. Suppose Z is a closed disk and U and V are analytic. Under what
conditions is the zero locus of Dy v (T) a finite union of connected components and

when do these components have finite genus?

The U-operator and modular forms

Let p be a prime. The compactification Xo(p) of the Riemann surface H/T'o(p)
(one has to add tvhe cusps 0 and co) can be described with equations over Z and

thought about over Q,. It has two natural p-adic analytic pieces W, and Wy,

Let X, be the neighborhood of X, of “radius” r. For r small there is a natural
finite morphism ¢: X, — X,1/,. We can think of points on Xy(p) as pairs (E,C)
where F is an elliptic curve and C' is a subgroup of order p. For some elliptic curves

E there is a canonical subroup of order p, K(E) and
¢ (E,K(F)) — (E/K(E),K(E/K(E))).
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Now we have “nuclear” operator on M := A(X,)

X 1/p X
:: r O r
U ResXT Tr X

(¢)-

There is a weight p — 1 Eisentein series E,_; and therefore a function E on X, (for

small ) whose g-expansion is

Ey—1(9)/ Ep-1(d").

Since this g-expansion is = 1 mod p, E® makes sense for |s| <1 and is in A(X,)
for small r, so we have
V:BI[0,1] — B(M),
Vis)lg=E"-g
and so we get a family of nuclear operators Uy on M. If k = (p — 1)n one calls the
elements of My = E}_; M weight k overconvergent modular forms. It contains the

classical weight k forms on I'g(p) and if F is classical
F = E"_ U, (F/EI_,)
is the classical weight k U-operator. We get a spectral curve S over B0, 1].

The Eigencurve

There are other operators T'(n) for any integer n prime to p and using the fact that
nuclear operators make up an ideal we can use U o T'(n) to make another spectral
curve S,. The eigencurve & is essentially the fiber product of all these spectral
curves. A point = on the eigencurve corresponds to a normalized overconvergent
eigenforms F, with non-zero U-eigenvalue. These have ¢g-expansion s.

For each eigenform mod p f there is a component £ of € whose points correspond
to normalized overonvergent eigenforms whose g-expansion s reduce to that of f.

One can attach a representation ps: Gq — Glz(F,) unramified away from p such

that
Tr Pf(ébé) = day

3



if ¢ # pand f(q) = >, ang”. If ps is irreducible one can attach a representation
pe:Gq — Gl3(C,) to each point z in & unramified away from p which “lifts” py
such that

Trpo(¢e) = A

if { #pand Fp(q) =3, Anqg".

Fontaine-Mazur and Kisin

Conjecture. Suppose E is a finite extension of Q, and p:Gq — Gl3(E) is a con-
tinuous odd, irreducible representation ramified at only finitely many primes whose
restriction to a decomposition group at p is “semi-stable.” Then p arises from a

classical modular form.

Mark Kisin has recently proven this conclusion when p arises from an overconver-
gent eigenform with non-zero U eigenvalue using the eigencurve (Coleman-Mazur)

and the following

Theorem (C, 94). If F is an overconergent eigenform of weight k and the valuation

of its U-eigenvalue is < k — 1 then F is classiscal.
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Li’s Example
Suppose H = {v = } ;5 aieiiai € C, o[ = 32,5, ail < oo}, Consider the

e
operator L:e; — —.

) g €; @ e
L:nh_{rolob(Zi.)

4

Why doesn’t L have a trace?

A Compact Source

Proposition. Suppose f: Z — X is a map of reduced affinoids over Y, X is reduced
and A(X) is orthonormizable over A(Y') and the image of Z in X is finite over Y.
Then f*: A(X) — A(Z) is a compact homomorphism of A(Y')-Banach modules.

Proof. Let B = A°(Y), C = A°(Z) and D = A°(X). Let 21,...,2, be elements of
D such that the map from B(Ty,...,T,), T; — x; is surjective onto D. There are
monic polynomials ¢;(S) € B[S], 1 < i < n such that f*g,(z;) € #C for some 7 € K°

such that |r| < 1. We can write any element of D as

ZGI,Nng(x)Nv

IN

where @ = (21,...,24), ¢ = (¢1,---,9n), I,N € N" (ordered lexographically),
I < deg(g) and ar v € B. Now let {e;};er be an ON basis for A(X) over A(Y).
Then e; € D. Let F; ,, be an element in the B-span of

{f*(27g(x)N): T < degg and S(N) < m}

1



such that F; ,,, = f*e; modn™C. Define L,,: A(X) — A(Z) by Ly(ei) = F; . Then

L,, is of finite rank and converges to f* g

Call such a morphism f inner over Y. If Y = SpecK call f inner.

Ezamples.

Overco nvergnce

Suppose Z is an affinoid. Then an overconvergent function f on Z is a rigid
function such that there exists some inner embedding Z — X and a function F on
X which extends f.

When Z has good reduction one can use the same X for any two functions.

Ezamples.

When f is a section of a sheaf F one does something similar.

Suppose (N,p) = 1. Then X;(Np) has a model whose reduction has two
components, Xg =: Xo(N) and X, =: X (N), Let Woo = Red'X. and
Zi(N) = Red ' X — Xgo. Define Wy similarly. Then W, N W, is a untion of annuli
As where s is a ss point of X;(N). There exist w, € N and T, : Ay =2 A(p~™",1)
such that |Ts(z)] - 1 as o — Zy(N). If + £0,1728 or N >4, ws =1

Let Weo(r) =: W (N)(r) be theset of € W, x € Z1(N) or s and v(T,(x)) <r.
(In particular, W ((Nn)(0) = Z1(Nn).)
One has a canonical sheaf w on X1(Np) (if Np > 5).

An overconvergent form of weight & is an overconvergent section of w®* on Z;(N).

It extends to Weo(r) for some r.
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Overconvergnce

Suppose Z is an affinoid. Then an overconvergent function f on Z is a rigid
function such that there exists some inner embedding Z — X and a function F on

X which extends f.

Lemma. Overconvergent functions form a ring.

Lemma. If Z is reduced and has good reduction, Z — Y is inner and f is an
ovewrconvergent function on Z. There exists an affinoid Y, morphisms Z — X — Y

such that Z — X is inner and a function F on X which extends f.

Ezamples.

Suppose (N,p) = 1. Then X;(Np) = Xo U X, Let Wy = Red ' X, and
Zy(N) =: Z;(Np) = Red ! (X.—Xp). Thereexist w, € Nand T, : A, = A(p~**,1)
such that |T,(z)| — 1 as @ — Z;(N). Let Wao(r) =: Wao(N)(r) be the set of 2 € W,
w € Zy(N)or s and v(Ty(x)) < r. There is a canonical sheaf w on X (Np) (if Np > 5).

An overconvergent form of weight & is an overconvergent section of w®* on Z;(N).

Eisenstein Series

Suppose p is odd. Let #P~! = —p. For a character X:Zy — C3, let fy denote
its “conductor”. Let W = Hom(Z;,C}) (weight space). Z injects naturally into

cont
W(Qp)§
kel — (a — ak>.

1



Let 7 denote the Teichmuller character and 1 denote the trivial character.

Suppose K € W(C,p), k #1,and n > 1 € Z, let

1

* _ -1 * _ -1

i) = X s ) = / A0~ 0B, )
(d,p)=1

for any ¢ € Zj such that x(c) is not 1. So that, when x(a) = ((a))’x(a) (is

arithmetic) where s € C,, |s| < |n/p|, and x is a character of finite order

C*() = Ly(1 = 5,). Let

When r(a) = ((a))¥x(a), where k is an integer and y is a character of finite order
on Zj such that x(—1) = 1, Gy (q) is the g-expansion of a weight k overconvergent
modular form G¥ on T'y( LCM(p, f,)) and character y7=*. It is classical if k is at
least 1.

If (*(k) #0and k # 1, let Ef(q) = 2G%(q)/(* (k) and also Ei(q) = 1. Suppose
k € W(C,) and & is trivial on p(Q,), then [(*(x)| > 1 and |Ef(¢) — 1] < 1.

Let B* = B(0,|r/p|) and W* = B* x Z/(p — 1)Z. For s = (t,1) € W*(C,) let
ws(a) = a® =: {{a))i7%(a). Let E=E

For m > 0,N > 0 (N,p) = 1 let Z;(Np™) denote the connected component of

Note that E(¢) = 1 mod p.

k(1,0

the ordinary locus in X;(Np™) containing co.

Lemma. Suppose r(a) = ((a))*x(a) is arithmetic and y is trivial on ;1(Q,). Then
E} (which converges on) does not vanish on Z(p™) where p™ = LCM (p, fy).

Proof. First E¥ converges on Z;1(p™) because it is overconvergent. Next, the lemma is
true for E. Now observe that F = E*/E* is a function on Z; (p™) whose g-expansion

1s congruent to 1.
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Some remarks on overconvergnce
First we can define overconvergent differentials of degree d, Qdf (X), on an affinoid

X in the same way we defined overconvergent functions Al (X) = QOT(X) and this
module is a finite rank AT (X)-module. Next we can sheafify these things.

Some speculation:
If F is a coherent sheaf on a rigid space X, an overconvergent a structure Flisa

sheaf on X coherent over (’)L such that F = Ox® t FT. Then we get overconvergent
OX

structures on Q% and if (F, .7:J[) and (G, QT) are two coherent sheaves with OS so is

(F @oy Q,J-"T ® t QT) Moreover, if f: X — Y is a proper morphism of rigid spaces
OX

(R?* F,RY, .7:J[)) is an overconvergent structure on the coherent sheaf RY F.
Since wyr = Rf*Q}El(M)/Xl(M)v if M > 5, we get a canonical overconvergent

7

® _
structures on w where w = wNp|Z1(Np).

Back to Eisenstein Series

Suppose p is odd, 7’71 = —p.
For k e W(C,), ks #1,andn>1¢€ Z,
1
* _ -1 * _ -1
omw-;m@d,c®—ayj/fwzwmw

(d,p):l

for any ¢ € Z7 such that (c) is not 1 and

i) = U LY ot )y



If C*(r) # 0 and x # 1, let EZ(q) = 2G%(q)/¢*(r) and also Ei(q) = 1. Suppose
K € W(C,) and # is trivial on (Q,), then |(*(r)| > 1 and |E(q) — 1] < 1.

Let B* = B(0,|/p|) and W* = B* x Z/(p — 1)Z. For s = (t,i) € W*(C,) let
ro(a) = a® =: ({a))'v'(a). If E = E,, . E(q) =1 modp.

For m > 0,N > 0, (N,p) = 1, let Z;(Np™) denote the connected component of

the ordinary locus in X;(Np™) containing co.

q is a parameter at oo and any section of w®* has a g-expansion .

Lemma. Suppose x(a) = ((a))*x(a) and ¥ is trivial on 1(Q,). Then E} (which
converges on) does not vanish on Z;(p™) where p™ = LCM (p, fy).

Proof. First E} converges on Z1(p™). Next, the lemma is true for E. Now observe
that F = E}/E* is a function on Z;(p™) whose g-expansion is congruent to 1. -

Xi(Np) =Wo(N)UW(N). Woe N Wy =, As. Suppose Ty : A, =2 A(p™™=,1)
such that |Ts(x)| — 1l asx — Z1(Np). Let W[r] =: Woo(N)[r] be the set of & € W,
x € Z1(Np) or & € A for some s and v(Ts(x)) < rws.

If d € Z;, we have an operator (d) in Ey(Np)/Xi(Np) and hence on wy, and w.
If k is an integer, and s = (k,¢) an overconvergent form F of weight-character

#, are sections of w* on Z;(Np) which extend to Wa.[r] for some r > 1 and satisfy

Frobenius
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Weight-Characters

Xi(Np) =Wo(N)UW(N). Woe N Wy =, As. Suppose Ty : A, =2 A(p™™=,1)
such that |Ts(x)| — 1l asx — Z1(Np). Let W[r] =: Woo(N)[r] be the set of & € W,
x € Z1(Np) or & € A for some s and v(Ts(x)) < rws.

If d € Z;, we have an operator (d) in Ey(Np)/Xi(Np) and hence on wy, and w.
If k is an integer, and s = (k,¢) an overconvergent form F of weight-character

#, are sections of w* on Z;(Np) which extend to Wa.[r] for some r > 1 and satisfy
(d)F = r'(d)F.
In particular, E,, has weight-character xs.

Frobenius

Suppose N >4 and n > 1 are integers such that (N,p) = 1. Let A = EP~L.
Let E1(N)(v) denote the pullback of E1(Np) to X1(N)(v). Then, for v < 1/(p+1).

If £ is an elliptic curve with a canonical sdubgroup, denote this subgroup K(FE).
Theorem. There is a commutative diagram of rigid morphisms;

Ei(N)(v) % Ei(N)(pv)

! . !
Xi(N)(v)  — Xa(N)(po)

$(E,in,a) = (Be(E),Bron,a’)

1



where fp:E — [p(E) =: E/K(E) and o'(() = fgr(a) where pa = «o(() and
a'(pp) C K(Be(E)).

Call the above diagram ® /¢, a morphism from

Ey(Nn)(v)/ X1 (N)(v) to By (N)(po) /X1 (N)(pv).

Proof. Let U be the family of kernels of reduction and if r € pQ@ < 1, U[r] the
subfamily of affinoid disks of radius r. If s < p/(p + 1), Frank has shown that there

exists an r < 1 such that

Fy, = (Ed[N]lp) 0 UI) ., )

is the family K, of canonical subgroups over X;(N)(s).
Lemma. Fj is finite over X1(N)(s).

Proof. Frank showed that K(FE) equals the zero locus of zP — t.4,(E)z. Using
Weierstrass preparartion (Theorem 5.2..2/1) one sees that t.q, is a locally analytic

function on X1 (N)(s).

Now use Stein factorization (Theorem 9.6.2/5 of [BGR]).

From this we get a morphism
L'/ Er(N)(v)/ X1 (N)(v) = Eo(N)(pv)/Xo(N)(pv).
We have a section of order p, o: X1 — Ey. Define 7: X1(pv) — Ei(pv) by
T(Xi(pv)) =T (p~ o (X1) N T (Ko(pv)))

[BGR] Bosh, S., U. Giintzer and R. Remmert, Non-Archimedian Analysis, Springer-
Verlag, (1984).
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Frobenius

Ifn>0andv < p/p"(p+1) and E corresponds to a point in X;(N)(v), there exists

a unique cyclic subgroup of E, K,(FE), of order p"*! such that
Ko(E)= K(E),pK,(E) = K,—1(E) and K,(E)/K(E) = K,_1(E/K(E)).

Theorem. Suppose N > 4 and v < 1/(p+1). There is a commutative diagram of

rigid morphisms; o
E\(N)(v) —  Ei(N)(pv)

! . !
Xi(N)(v)  — Xa(N)(po)

$(E,in,a) = (Be(E),Bron,a’)

where Op:E — [p(E) =: E/K(E) and o'(¢) = Pg(a) where a € K(E) and
pa = a(().

Proof. Let U be the family of kernels of reduction and if r € pQ@ < 1, U[r] the
subfamily of affinoid disks of radius r. If s < p/(p 4 1), there exists an r < 1 such
that

K, = (BNl VU] ¢ vy o)

is the family of canonical subgroups over Xi(N)(s).

Is K finite over X;(N)(s)?
Proof. Frank showed that, after choosing a good parameter, z, on E, K(FE) equals
the zero locus of 2P — t.4n(E)z. For x a supersingular point, Ts our parameter on
Ay andr € Q, 0 < r < 1, let Cx(N)(r) be the circle in A, of points y such that

v(Ty(y)) = rw,. Using



Weierstrass Preparation ([BGR] Theorem 5.2.2/1). Suppose

FIX)Y) = Y, s0a(X)Y" € K(X)Y), ai(X) is a unit and |aq| > |an| for
all n with strict inequality for n > d. Then there exists a unique monic poly-
nomial of degree d, P(X,Y), in R(X)[Y] and U(X,Y) € K(X,Y)* such that
FX,)Y)=P X, Y)UX,Y).

one sees that t.,, is analytic on every residue disk in X;(N)(0) or Cu(N)(r) if
0<r<p/(p+1).

Theorem (Proposition 6.3.2/1 of [BGR]). If f: X — Y is a morphism of reduced
affinoids and f is finite, then f is finite.

We get a (homo)morphism
[/ Ex(N)(v)/ X1 (N)(v) = E(N, p)(v)/X(N,p)(v).

Pick a p-th root of unity. Then we have a section of order p, 0: X7 — FE;. Define
7: X1(pv) — E1(pv) by

T(Xi(pv)) = T(p_la(Xl) N T_l(f&’o(pv))>.

[BGR] Bosh, S., U. Giintzer and R. Remmert, Non-Archimedian Analysis, Springer-
Verlag, (1984).
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Review and improvements

Let X(n,p) be the modular curve whose points correspond to triples (E..,C)
where ¢y — FE 1s an embedding and C is a subgroup of order p. Then
X(N,p) = Wo(N)U W (N). Woe N Wy = U, As. Suppose T, : Ay =2 A(p™™=,1)
such that |Ts(x)] — 1 as @ — Z(N,p) =: Z(n,p)(0) =: W (N) — Wy(N). For
1 >wv > 0let Z(N,p)(v) be the set of + € W, x € Z(N,p) or v € A, for some s
and v(Ts(z)) < rws. We can also well define Z;(N)(v) for 0 < v < 1,

If n >0 and v < p/p"(p + 1) and E corresponds to a point in X(N,p)(v),
there exists a unique cyclic subgroup of E, K,(E), of order p"t! such that
Ko(E)= K(E),pK,(E) = K,—1(E) andK,(E)/K(E)= K,_:(E/K(E)).

Moduli problems See Katz—Mazur

Let &€ be the category of elliptic curves over rigid spaces. A moduli problem P on & is
a functor from € to sets. P is said to be representible if there is an object E(P)/M(P)
in P such that for every E/S € £

P(E/S)= Homg(E/S,E(P)/M(P)).

If N > 4 anid (N,p) = 1, the moduli problem E/S goes to pairs (¢,C') where
t:S x puny — E/S is an embedding C is a subgroup of E/S flat over S of rank p is
representble by a pair E(N,p)/X (N, p).



Frobenius

Theorem. Suppose N > 4 and v < 1/(p+1). There is a commutative diagram of

rigid morphisms; o
E(N,p)(v) — E(N,p)(pv)

1 . 1
X(N,p)(v) — X(N,p)(pv)

qb(EvaC) = (E/CvﬁE o chl)
where fp: E — E/K(F) and C' = K(E/C) (which exists).
Lemma. Ifv < p/(p+ 1) there exists a unique section of X(N,p) — X1(N). More-
over, s(X3(N))(0) = X(N, p)(v).

Proof.

Let V be the family of subgroups o order p of E(N,p)/X(N,p).

Let U be the family of kernels of reduction in Ey(N) and if r € pQ < 1, U[r] the
subfamily of affinoid disks of radius r. If v < p/(p + 1), there exists an r < r’ <1
such that

Ky = (Ex[NlpI N U) g, )00y
with ¢+ = r or v’ is the family of canonical subgroups over X;(N)(v). In particular
(Io)oo = tip-

Proposition. s*V = K.

Proof. Claim: K|z, (0)/Z1(0) is finite.

Let my: X(N,p) = X1(N) be (E,(,C) — (E/C,t modC). Now we can define ¢

as § 0Ty O S.
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Notation

In X(n,p) for 0 < v < 1, we have subspaces Z(N,p)(v) defined as follows:
Z(N,p) =: Z(n,p)(0) =: W(N) — Wo(N). Suppose T, : A, = A(p~™+,1) such
that |Ts(x)] — 1 as @ —. Then if 1 > v > 0, Z(N,p)(v) be the set of x € W,
x € Z(N,p) or & € Ay for some s and v(Ts(z)) < rws. We can also well define
Z1(N)(v) for 0 <wv < 1,

Frobenius

Theorem. Suppose N > 4 and v < 1/(p+1). There is a commutative diagram of
rigid morphisms;

E(N,p)(v) — E(N,p)(pv)

3 . 3

X(N,p)(v) — X(N,p)(pv)

qb(EvaC) = (E/CvﬁE o chl)
where fp: E — E/K(F) and C' = K(E/C) (which exists).
Proof.

Proposition. There exists a section t of X(N,p) — X1(N) over Z1(N)(v) if
v <p/(p+1). Moreover, in this case, t(Z1(N)(v)) = Z(N,p)(v).

We will use

Lemma. If f: X — Y isa morphism of reduced curves over K andU C X andV CY
are affinoid subdomains such that f(U) CV and f:U — V is an isomorphism. Then

there exists a strict neighborhood Z of V in Y and a section Z — X of F.

and



Lemma. If f:A(p~',1) — B(0,1) is a finite morphism of degree p + 1 and

degA[r] f =1 for r near 1, then there exist a section of f on A(p_P%, 1)

Proof of proposition

Our ¢ will be t o 3 where All we have to show is that (A, o) = (4, o, K(4))

Let V be the family of subgroups of order p of E(N,p)/X(N,p).

Let U be the family of kernels of reduction in Ey(N) and if r € pQ < 1, U[r] the
subfamily of affinoid disks of radius r. If v < p/(p + 1), there exists r < r’ < 1 such
that

Ky = (Ex[NlpI N U) g, )00y
with t = r or v/ is the family of canonical subgroups over X;(N)(v). In particular
(Io)oo = tip-

Proposition. s*V = K.

Proof. Claim: K|z, (0)/Z1(0) is finite.

A (little) higher level

Let X1(Np)(v) be the inverse image of X (N, p)(v) under the forgetful map f.

Theorem. Suppose N > 4 and v < 1/(p+1). There is a commutative diagram of

rigid morphisms;
]
E\(Np)(v) —  Ei(Np)(pv)

1 . 1
Xi(Np)(v) — Xi(Np)(pv)
Qb(EvaO‘) = (ﬁE(E)vﬁE o L,Oz/)

where fp: E — (p(E) =: E/K(E) and o'(¢() = Pg(a) where a € K{(FE) and
pa = a(().



$oF
E\(Np)(v) —  E(N,p)(pv)
Proof. 'We have, l pof l so all we need is a rigid map
Xi(Np)(v) — X(N,p)(pv)

B: X1 (Np)(pv) — Kp, compatible with tihe other maps, of order p.
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Frobenius “finished”

Last time we proved,

Proposition. There exists a unique section t of X(N,p) — X1(N) over Z1(N)(v) if
v <p/(p+1). Moreover, in this case, t(Z1(N)(v)) = Z(N,p)(v).

Also,
Lemma. If m3: X(N,p) — Xi(N) is the map (E,.,C) — (E/C,. modC) then
w2 (Z(N,p)(v)) = Z1(N)(pv).

Proof.

Our ¢ will be t o 7. All we have to show is that t(A, o) = (4, o, K(A)).

Let V be the family of subgroups of order p of E(N,p)/X(N,p) and U the family
of kernels of reduction in E;(N) and if r € pQ < 1, U[r] the subfamily of affinoid
disks of radius r. If v < p/(p + 1), there exists r < 7' < 1 such that

K, = (E{[N][p]|n U[ﬂ)xl(N)(v)

with ¢+ = r or v’ is the family of canonical subgroups over X;(N)(v). In particular
(Io)oo = tip-
Proposition. t*V = K.

Proof. Claim: K|z, (n)/Z1(NN) is finite. Fix a residue class U. Using what Frank
showed K7 equals the zero locus of zP —t.,,2 for a some good family of parameters

z at the origin on E;(N )y and some invertible function t.4, on U.

1



[ am leaving the details of ®/¢ on E1(Np)/X1(Np) as an exercise. One can also
deal with N < 4.

The U operator
For v > 0, let My (N,v) = w*(X;(N)[v]). Now, Mi(N,v) has a natural structure as

a Banach space over I and when 0 < v < # there is an operator on this space,
Uy Let F € My(N,v), v < ]ﬁ. Suppose & € X1 (N)[v] corresponds to (E, iy, ).

Then, pointwise,

U<k><F><x>=}9 S GiF(y).

1
D> and" = p > anpd”
Why is this analytic?
First, Uy = ]lj Tr 4. Now recall, we have a weight one Eisenstein series E on

X1(p) which we can consider as an element of M;(N,v). Considered as a form vy on

E{(N,p)(v), on (Gm/qz,LNp) it is

Now ®*vp has g-expansion pE(qp)%. Let E? be the section of M;j(N,v),
v < 1/(p+ 1), with g-expansion E(q?). For v close enough to 1, 1/E® € M_;(N,v).
Then,

U F = E*Us(F/(E®)F).
Uk is compact.

Proof.

N < 4
Suppose A,B € Z, A,B > 4, (AB,p) = 1 and (A,B) = N, we define My ;(v)
with the intersection of the images via the forgetful maps of M4 x(v) and Mp k(v) in

Mrpena,Byk(v). One has to show that these are all canonically isomorphic.
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“Continuity” explained

Suppose v < p/(p+1). First W = t*V is finite over X;(N)(v) as is each connected

component. Finally, if » <’ < 1 are such that

Ky = (Ex[NlpI N U) g, )00y

with t = r or ', U[r] and E1(N) — U[r'] are disconnected and
W= (U[r]nW)U((E«(N)-U[r"])nW).

The U operator

For v > 0, let Z;(Np)(v) = #=1(Z(N,p)(v)) and let My(N,v) = w*(Z;(Np)). Now,

My (N,v) has a natural structure as a Banach space over K and when 0 < v < ]ﬁ
there is an operator on this space, Uy Let F € Mip(N,v), v < #. Suppose

x € Z1(Np)(v) corresponds to (E,¢,a). Then, pointwise,

U<k><F><x>=}9 S GiF(y),
o(y)=x

where 3,: E, — E,/K(E,) = E. Also, if E = G,,,/¢% and « is the natural embed-
dings and F(z) = (Y] an(L)q")(%)k then

Ui (F)() = ( anm? )y ()"

Why is this analytic?



First, Mo((N,v)) = A(Z1(Np)(v)) and Uy is

1 Z1(NP)(%) Z1(Np)(v)
Z_)Tr¢|Z1(Np)(U) ° Reszl(szj)(%)'

Now recall, we have a weight one Eisenstein series E on X1 (p),

E(q) = 1 —|— ﬁ Z:l ( dz|: T_l(d)>qn7
- (d7p;1=1

which we can consider as an element vy of Mi(N,v). Now ®*vp has ¢-expansion
pE(qp)%. Let E? be the section of M;(N,v), v < 1/(p + 1), with g-expansion
E(g?). For v close enough to 0, we showed 1/E? € M_;(N,v) (in fact, v < 1/(p+ 1)
is enough). Then,

U F = E*'Uo(F/(E?)").

Uk is compact.

Proof.

w Mi(N,v) is pretty big and one can show det(1 — TU,) has infinitely many

zeroes. However,

Theorem. If F € My(N,v) is an eigenvector of Uy with eigenvaluew a and
v(a) < k —1 then F is classical.

(The proof is now on the web.)

N < 4

Suppose A,B € Z, A,B > 4, (AB,p) = 1 and (A,B) = N, we define My (N,v) to
be the intersection of the images of My r(v) and Mp x(v) in Map r(v). One has to

show that these are all canonically isomorphic.



The Eigencurve and the Fontaine-Mazur Conjecture

Robert F. Coleman

Lecture 22

“Another” definition of U

First, Mo((N,v)) = A(Z1(Np)(v)) and Uy is

1 Z1(Np)(Z) Z1(Np)(v)
Z_)Tr¢|Z1(Np)(U) ° Reszl(szj)(%)'

Recall, we have a weight one Eisenstein series E on X1 (p),

E(q) = 1 —|— ﬁ Z:l ( dz|: T_l(d)>qn7
- (d7p;1=1

which we can consider as an element vy of Mi(N,v). Now ®*vp has ¢-expansion
pE(qp)%. Let E? be the section of M;(N,v), v < 1/(p + 1), with g-expansion
E(g?). For v close enough to 0, we showed 1/E? € M_;(N,v) (in fact, v < 1/(p+ 1)
is enough). Then, define

U F = E*Us(F/(EB®)").

Uk is compact.

Proof.

Now My (N,v) is pretty big and one can show det(1 —TU()) has infinitely many

zeroes. However,

Theorem. If F € My(N,v) is an eigenvector of Uy with eigenvaluew a and
v(a) < k —1 then F is classical.

(The proof is “Classical and Overconvergent Forms” which is now on the web.)

1



The U operator in families

We defined Uy (F) = E*Uy(F/(E?)*). Let € = E/E®. This is a function close to 1
on Z1(N)(v) for v small. In fact, for v < 1/(p + 1),

€1 < plrDv=1,
So if uy, is the operator on Mg)(N,v), G = Ug)(G - &r),
E~*U ) (F) = ug(F/E"),
but since & is close to 1, uy makes sense for any k € C,, which is not too big. Suppose

|s| < |#/p| then v such that
€ = 1] <[ /s]

on Z1(Np)(v) this means

n

58:1+(5—1)+---+<S>(5—1)"+...

converges on Z1(Np)(v).Thus, if r € pQ < |x/p| and |€ — 1| < |x|/r on Z1(Np)(v),
we get an operator U, , over A(B[0,r]) on M(r,v) =: A(B[0,r] x Z1(Np)(v)) which
18

(U(O) @ 1) omes.
We know this operator is compact. Thus we get characteristic series P, ,(T) for every

(r,v), as above. But they are all “the same.”

Theorem. There is a unique rigid analytic function P(s,T) = Pn(s,T) on B* x C,
defined over Q,, i.e. P(s,T) is a power series over Q, in s and T, which converges

for |s| < |r/p|, such that for k € Z and v € Q such that 0 < v < p/(p+ 1),

P(k,T) = det(1 — TU | M(v)).

N < 4
Suppose A,B € Z, A,B > 4, (AB,p) = 1 and (A,B) = N, we define My (N,v) to
be the intersection of the images of My r(v) and Mp x(v) in Map r(v). One has to

show that these are all canonically isomorphic.
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Classical forms

Suppose F(q) = Y, > anq" is the g-expansion of a normalized weight k eigen-
form on X;(N) of character x. Associated to F' there are (at most) two eigenforms

(oldforms) on X (N, p) whose U, eigenvalues are the roots of

X? —a, X + x(p)p*!

The Spectral Curve

Theorem. There is a unique rigid analytic function P(s,T) = Pn(s,T) on B* x C,
defined over Q,, i.e. P(s,T) is a power series over Q, in s and T, which converges

for |s| < |r/p|, such that for k € Z and v € Q such that 0 < v < p/(p+ 1),
P(k,T) = det(l — TU | Mp(v)).

Proof. Because “If ¢:A — B is a homomorphism of Banach algebras then

¢*FE =: F @4 B is orthonormizable over B and
Py (T) = ¢(PL(T))."
our P, ,(T) is “independent of r.” Now because ¢ is finite, if p/(p+1) > v > v' > v/p,
T/" o Ry, =Ry oTY/? o RY,, .

where T'= Tr and R = Res. As

(/7 0 Ry 0mee) o Ry = T3/ o Ry omee = Upy,

1



the “independence” of v follows from: “Suppose E; and FEj; are orthonormizable
Banach modules over A. Suppose u is a compact homomorphism from E; to E; and
2

v: By — Ey is a continuous homomorphism. Then Pyoy(T) = Pyou(T).

Now D =: (Z/pZ)* acts on Z(N,p)(v) and

€€D
and
= [[ P-(s.T)
e€D
where

Pe(s,T)|Bo,gxc, = det(l — TU, | M(t,v,€)).

Thus we get an entire function on W* x C,,. Its zero locus is the fiber of the spectral

curve of U over W*.

A Formula

Theorem. Suppose N > 4. Then

d
T——Pn(T)/P A, T™
ap PN/ PN (T) mz;l

where A,, is the element of Z,[[Z,]] C A(W?*), expressed by the finite sum,

S Y WO)By(0,4) -

YEWp,m O€0, o

where By (O,~) is the number of elements of O/NQO of order N fixed under multi-
plication by 7.

For an order O in a number field, let h(O) denote the class number of O. If 7 is
an algebraic integer, let O, be the set of orders in Q(~) containing ~. Finally, for m
an integer, let W, ,, denote the finite set of v € Q,, such that Q(v) is an imaginary
a7 (5) = p™ and v(y) = 0.

quadratic field, ~ is an algebraic integer, Norm
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“Review”

As always (N,p) = 1. W(N) is the rigid analytic space whose C, points are
continuous characters from (Z/NZ)* x Z; into C;. W*(N) is the open subspace
of characters of the form y - (( ))® where x is a character on (Z/NpZ)* and

|s| < |7/p|. We call the corresponding spaces of character on 1 + pZ,, B and B*. If
D(M) = Hom((2/MZ)",C3),

W(N) = D(N) x B and W*(N) = D(N) x B".

Also B =2 B(1,1) and B* = B(O,p%). Now (Z/NpZ)* acts on Z1(Np)(v) (by “dia-
mond operators”). For each v > 0, ¢ > 0 and y € D(Np) let M(v, x) and M(v,t, )
be the spaces of rigid analytic functions on Z;(Np)(v) and B(0,t) x Z1(Np)(v) with
character y. These spaces are affinoids if v € Q and t € pQ. We have a compact
U-operator on all these spaces (Ugy @ 1) o mge if v is sufficiently small (< p/(p + 1))

—2

and ¢ <p§T1.

Theorem. There are unique rigid analytic functions P\(s,T) on B* x C, defined

over Q,, such that for k € Z and v € Q such that 0 < v < p/(p+1),
Py (k,T) = det(1 — TU )| My (v, x)).
Let @ be the rigid function on W*(N) x C, defined by Q(x,s,z) = Py(s, z), for
X € D(Np), s € B* and z € C,,.
Theorem. @ extends analytically to a function on W(N) x C,,.

See “On the coefficients of the characteristic series of the U-operator,” which is

now on the course webpage.



The key object(s) to consider is the g-expansion E(q) which at € B is

2 * n
Eﬁ(Q) = 1+ C*(H) ;Uﬁ(n)q .

Proposition. There is an an analytic function E, on a “strict” neighborhood of

Zp =: B x Z1(p) in B x X1(p) with g-expansion at r E.(q)/E«(¢") bounded by 1 on
ZB.

We may now use the operator U =: (U @ 1) o mg, on Mt (N), the space of
g-expansions F'(q) with coeficients in A(B) such that F(q)/E(q) is the ¢-expansion of
an analytic function which converges on a “strict” neighborhood of Zg =: B x Z;(pN)
in B x X1(pN).

We also get to define: A series EnZl anq™, a, € K is “the g-expansion of an
OC form of type a = x - k" if F(q)/E(q) is the g-expansion of an OC function on
Z1(Np) with charater y. When «(a) = a*, k € Z, F(q) will be the g-expansion of an

OC form of weight k and character y - w™".

Hecke Operators
First, if | € (Z/NZ)* X Z}, k € B,

(FI0)* @)1 = <) EL (@) (52| a)

When x(a) =d’, k € Z,

(FUD" )k = 1" F|(1).

For prime ¢, let ¢y be the operator on A(B)[[q]]

oY ang”) = aneg".

n n

Proposition. For each prime number [ there is a unique continuous operator T'({)

on MJ[(N) such that, for F' € MJ[(N), when [ = p,

Fy

(EIT(p)lx = Bc-U(5"). when N FIT(0)(q) = v4(F(q))

K

and when | {Np
(FIT(1)(q) = ve(F(q) + (T (FUO™) ().
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Hecke opertors

We now have the operator T(p) on M (N) which is

F(q) = E(q)(Uo @ 1)(

If k is arithmetic, k = v - ({ ))¥ where 1 is a character on 1+ pZ, of finite order and
k € Z, F.(q) is the g-expansion of weight & modular form G, of tame level N, and

(F(9)|T(p))x = (GIT(p))(9)-

If ¢ € (Z/NZ)* x Z3, s € B,

(FID* (9))]x = H(K)Eﬁ(Q)(E—ﬁW)(Q)-

When « is arithmetic, as above,

(F(@(0))x = (" F|(0)(q).

For prime ¢, let ¢y be the operator on A(B)[[q]]

oY ang”) = aneg".

n n

Proposition. For each prime number ( there is a unique continuous operator T(()

on MT(N) such that, for F' € MT(N), when (|Np

FIT(0)(q) = ¥e(F(q))

and when ( {Np
(FIT(1)(q) = ve(F(q) + (T (FUO™) ().

1



Suppose £ # p. For any prime £ we have a function E; on a strict neighborhood
of W x Z({) with g-expansion E(q)/E(¢").
Proof. Let M = Np. We first look at X(M;() the modular xurve which classifies
triples (E, ayr, C) where |C] = ¢ and Image (a3r) N C = 0 and define Z(M;0)(v).
We have
91,92: Z(M; 0)(v) — Zy(M)(v)

and

07t Try, 095

on AT(M) which on g-expansions if ¢|N is ;. Now

Je(F(g)) = E(g (% - EM)).

We define T(n), for positive integers n by:

S TTa-mory T - + =),

n>1 l[[Np (L,Np)=1

where the products are over primes (.
Let T be the ring generated by the operators T(¢) and (d)*, (d, Np) = 1.

We will use (), T and Riesz theory to build the eigencurve.
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Building the Eigencurve

We now have a space MT(N) of “families of g-expansions of overconvergent forms of
tame level N.” It is a module over A(B) and we have an A(B) algebra T =: T(N) gen-
erated by operators (d)*, d € (Z/NZ)* x Zy, and T(n), nso € Z. If X is any affinoid
in B, Mx =: MT(N)®A(X) is the direct limit of Banach submodules N,, on which
T(p) acts compactly. In fact, for each character y € D(Np) = ((Z/NpZ)*)A there is
an power series Py (s,T) € A(B)[[T]] whose restiction to X is det(1 — T(p)|N,(x))-
Let
Sy ={(b,z) € BxC,:P(s,z) =0}

Fix y and let S = 5, and P = P,.

Lemma. Suppose X C B and Y C Sx are affinoid subdomains, Y and S — Y
are disconnected and Y is finite over X. Then there exists R(T) € A(X)[T] and
Q(T) € A(X)[[T]] such that R is monic Q is entire, R(0) is a unit, Q(0) = 1,
(R(T),Q(T)) =1,

P(T) = RY(T)Q(T)
and Y is the zero locus of R. (A(Y') = A(X)[T]/R(T).)

Riesz theory tells us
Mx =N(Y )& F(Y),

where N(Y') is projective of rank dy =: deg R, R*(T(p)) annihilates N(Y) and is
invertible on F(Y'). In particular, T acts on N(Y").

Let Ty =: Ty(N) denote the image of T in End4(x)(N(Y)).

1



Proposition. Ty is finite of degree dy over A(X).

Proof. Define

(. 2Ty x N(Y) = A(X) by
(h, F) = a1 (F|h).

This pairing is perfect. The key point is that

(T(n), F) = an(F).

Thus we get an affinoid Ey (N) finite over X, x: By (N) — X.

Gouvea-Mazur

Suppose x € D(Np), p € B, r<; € pQ and a>o € Q. First
Y =i {(r,2) € Silr(14p) — pl(1+p)| < ry0(z) = a)

is an affinoid subdomain of S quasi-finite over X = B[p,r]. In fact, if r is small

enough 1t is finite and Y 1s disconnected from S — Y.

Proposition. Suppose, p = ¢ - ({ ))* where ¢ has finite order, k € Z and o < k — 1.
Then the degree of Ey (N) over X equals the number of classical eigenforms of tame
level N and character x -3 - w™*. Moreover, if v € Ey(N)(L), r(x) =v¢ - {{ )} € X,
JEZ, o<y —1.

Y T(n)(x)q"

n>1
is the g-expansion of a classical eigenform (minus its constant term), of tame level N

of character y - - w™7.

Conjecture. One can taker = p~°.
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Comments on Last Time

First, inside MT(N) we have CT(N) which are the elements with constant term 0. T
acts on C.

(Recall, we've fixed y.) Suppose X is an affinoid in B and Y is a “clopen” affinoid
in Sx finite of degree d over X. Then we got a projective module N(Y') of rank d in
Mx and we defined Ty to be the image of T in Endx (N (Y)).We started proving,

Proposition. Ty is finite of degree d over A(X).

Let N°(Y) = Cx NN(Y). Then N°(Y) is projective of rank d — § where § = 1 or
0. Also let TS the image of T in Endy(N°(Y)) .
We proved, TY is finite of degree d — § over A(X).

01— Ty =T} -0and0— N(Y) = NY)—J =0

and we have perfect pairing (i,7) — ao(J|i).

Also the conjecture stated in the last lecture is true by Hida when o = 0.

Glueing

For every Y C S = S, such that Y is finite over X C B and “clopen” in Sx we
found an affiniod Ey (N) which is finite over X and such that A(Ey(N)) = Tx(N).
Let C be the collection of these Y.

Proposition. S is admissibly covered by C.

This means if A(S) =: A(B)[[T]]*"""¢/P(T) and h: A(S) — A is a continuous
homomorphism into an affinoid algebra. There exists a finite collection Y; € C such

that if f € A(S) vanishes on all the Y;, h(f) = 0.

1



Proposition. Suppose Y1.Y; € C. (i) Y3 =: Y1 NY,; € C. (ii) Ey,(N) is naturally a
subdomain of Ey,(N) and Ey,(N).

Proof.

Now we make FE, is [[ycc Ey(N) with the identifications 3i(z) = Fa(x) if
r € Ey,ny,(N) and
Bit Evirv (N) = Ey; (N)

is the natural morphism. We can also mske E;)( C E,.

Properties of the Eigencurve

I. We have a natural surjective morphism x: B, — B. v

I1. There are analytic functions (d)*, d € (Z/NZ)* x Zj, and T(n), nso € Z and
T(p) is invertible.

III. If ZnZO anq" is the g-expansion of an overconvergent eigenform on X;(Np™) of
weight &k and character y - ¥ - w™F such that a, # 0 then there exists a point = € E,
such that

an =T(n)(x) forn>0.

IV.If x € E, and s(x) = - ({ })F,

is the g-expansion of an OC eigenform (minus its constant term), of tame level N
and character y - ¢ - w™F,
V. The morphism ¢ — (k(x), T(p)(x)) a locally finite from E, onto S,.

VI. There exists a pseudo-repreentation p = (T, D): Gq — T such that, if (¢, Np) =1,

T(Froby) = T({) and D(Frob,) = (£)*/L.
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Glueing

For every Y C S = S, such that Y is finite over X C B and “clopen” in Sx we
found an affiniod Ey (N) which is finite over X and such that A(Ey(N)) = Tx(N).
Let C be the collection of these Y.

Proposition. S is admissibly covered by C.

This means that thw image of every morphism of an affinoid into .S isa coved9 by

finitely many elements of C.

Proposition. Suppose Y1.Y; € C. (i) Y3 =: Y1 NY,; € C. (ii) Ey,(N) is naturally a
subdomain of Ey,(N) and Ey,(N).

Proof.

Now we make E, is HYeC Ey(N) with the identifications (y(x) = [2(x) if
r € Ey,ny,(N) and

Bi: By, nv; (N) = Ey;(N)

is the natural morphism. We can also mske E;)( C E,.



Properties of the Eigencurve

I. We have a natural surjective morphism x: B, — B. v

I1. There are analytic functions (d)*, d € (Z/NZ)* x Zj, and T(n), nso € Z and
T(p) is invertible.

III. If ZnZO anq" is the g-expansion of an overconvergent eigenform on X;(Np™) of
weight &k and character y - ¥ - w™F such that a, # 0 then there exists a point = € E,
such that

an =T(n)(x) forn>0.

IV.If x € E, and s(x) = - ({ })F,

is the g-expansion of an OC eigenform (minus its constant term), of tame level N

and character y - ¢ - w™F,

V. The morphism ¢ — (k(x), T(p)(x)) a locally finite from E, onto S,.
VI. There exists a pseudo-representation p = (7,D):Gq — T such that, if
((,Np) =1,

T(Froby) = T({) and D(Frob,) = (£)*/L.
This requires,

Theorem (corrected) (Wiles). Suppose R is a topological Z,-algebra and {p,}32, are
ideals such that R/p; € C and

R=lmR/ (.
=1
Y is a dense subset of G, t,d are functions ¥ — R and p-rs T;: G — R/p; such that
(Ti(e), Di(0)) = (H(0), d(0)) modp;

for o € 3. Then there exists a unique p-r T: G — R such that T(o) = T;(0) modyp;
for all o0 € ¥ and all 1.
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Properties of the Eigencurve

I. We have a natural morphism x: E, — B.
II. There are analytic functions (d)*, d € (Z/NZ)* x Zy, and T(n), n>o € Z and
T(p) is invertible. Let T be lim Ty (N).
Yecl
I If 3 o ang™ is the g-expansion of an overconvergent eigenform on X (Np™) of

weight k& and character y - - w™* over K such that a, # 0 then there exists a point
x € E\(K) such that

klz)=x-v-(()) and a, = T(n)(x) forn > 0.

IV.If € E and x(z) = - (( e,

is the g-expansion of an OC eigenform (minus its constant term), of tame level N
and character y - ¢ - w™*.
V. The morphism ¢ — (k(x), T(p)(x)) a locally finite from E, onto S,.

VI. There exists a pseudo-representation (T, D): Gq — T, such that, if ({, Np) =1,
T(Froby) = T({) and D(Frob,) = (£)*/L.

Theorem (corrected) (Wiles). Suppose R is a topological Z,-algebra and {p,}32, are

ideals such that R/p; is a local complete Z,-algebra and R = lim R/Ni_ipi, Tisa

dense subset of G, t,d are functions ¥ — R and p-rs (T}, D;): G — R/p; such that
(Ti(e), Di(0)) = (H(0), d(0)) modp;

1



for o € X. Then there exists a unique p-r (T, D): G — R such that (T(c), D(0))
for all o0 € ¥ and all 1.

(Ti(o), Di(o)) mod:

Lemma. If F(T) € 1+ TA(B)[[T]]¢"""" and U is a connected component of the zero

locus of F' in B x C,, the complement of the image of U in B is finite.

Proof of VI. Let D be the subset of ¥ € C such that 3 a p-r (Ty,Dy): Gq — Ey,
Ey = Ey(N), such that

Ty (Froby) = T(()|g, and Dy (Froby) = ({)*/l|g, .

Now, [Jy¢p Y is a union of connected components of S.
Suppose x € Ey, k(z) = ¢ - (( W*, k>y € Z and v(T(p)(x)) < k — 1. Then, by
Deligne, there exists a rep p,: Gq — Gl2(Q,(x)) such that if (¢, Np) =1,
Tr py(Froby) = T({)(x) and
det p,(Froby) = x () (0)¢F 1
= (O (x)/L.

What about a,?

Suppose E is finite extention of Q, and = € E,(E). We define the weight k(z) of «

to be 1 + %. There is a subring B;’;is of BL—SR which contains W(R) and

t = logle] on which Gq, acts whith a Frobenius endomorphism ¢ which commutes

with Ggq, such that
o(ab) = a”P(b) and ¢t = pt, o € W(R).

and

Theorem (Kisin). Suppose a, =: T(p)(z), and p: Gq — Autp(V) is a representa-

tion attached to x, then there exists a non-zero Gq,-equivariant E-linear map

V = (BLi, Oq-p B)7".
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The Faemily of Peudo-reps
Theorem. There exists a pseudo-representation
(T,D):Gq — Ty
such that, if ({, Np) =1,
T(Frobe) = T({) and D(Frob,)= ({)*/L.

Ingrediants of the proof.

Theorem (Wiles). Suppose R is a topological Z,-algebra and {p;};2, are ideals such
that R/p; is a local complete Z,-algebra and R = lim R/ (\i_, p;, T is a dense subset
of G, t,d are functions ¥ — R and p-rs (T;, D;): G — R/p; such that

(Ti(0), Do) = ((0), d(0)) modp;

for o € X. Then there exists a unique p-r (T, D): G — R such that (T(c), D(0))
for all o0 € ¥ and all 1.

(Ti(0),D;(0)) mod:

Let Tg)( be the subring of T, which is the completion of the ring generated over
(B) = R\ [[T]] by (d)*,d € (Z/NZ)* x Z*, and T(n), nsg € Z.

p?

0
AQP(X)

Proposition. Tg)( is compact.
This comes down to,
Theorem (after Hida). If kez > 2 and hy(Np”) is the Hecke algebra acting on

weight k modular forms of level Np” over Z,,.

P T = Ry @z, limhy(Np")

X v



Suppose = € Ey, k(z) = ¢ - ({ W¥, kez > 2, and v(T(p)(z)) < k — 1. Then, by
Deligne, there exists a rep p,: Gq — Gl2(Q,(x)) such that if (¢, Np) =1,

Tr po(Froby) = T({)(z) and det p,(Froby) = x(£)y(£)¢*!
= ()" (x)/L.

For each = ae above we get a prime ideal p, of Tg)(

What about a,?

Suppose E is finite extention of Q, and = € E,(E). We define the weight k(x)

of x to be 1 + %. There is a subring B;’;is of BL—SR which contains W(R)

and t = log[e] on which Gq, acts with a Frobenius endomorphism ¢ which commutes

with Ggq, such that
o(ab) = a”P(b) and ¢t = pt, o € W(R).

and

Theorem (Kisin). Suppose a, =: T(p)(z), and p: Gq — Autp(V) is a representa-

tion attached to x, then there exists a non-zero Gq,-equivariant E-linear map

V = (BY;, ©q, B)'™".



Preview of B.,;s and Bg;.

Let B,yis = B;’;is[l/t]. This embeds naturally in Bpg. Set Fil' Bupis = BepisN FiliBDR.I
Also ((Beris) 9% = K.

We need to consider another ring By; which is Bf[1/t] where
B, = B [{{(u):u € Frac(R)"}],

where
U(wo) = Llw) + ((v) and ((u) = log % + log u(o),
u
if v(u® — 1) > 0. We extend ¢ to B, by setting ¢({(u)) = pl(u) and let N be the

unique derivation over B.,;s on By such that
N1=0 and N{(u) = v(u(o)).

No¢=ppoN and

0 — Beris — BstlBst —0



The Eigencurve and the Fontaine-Mazur Conjecture

Robert F. Coleman
Lecture 31
Preview of B,

We know Bris = B;';,is[l/t] and this embeds naturally in Bpgr. Set
Fil' B.yis = Beris N Fil'Bpg.

GrB.yis = Bgyr and GrBl. = B};T.

cres

We need to consider another ring By; which is BY,[1/t] where
B, = B [{l(u):u € Frac(R)"}],

and
U(wo) = Llw) + ((v) and ((u) = log % + log u(o),
u

if v(u® —1) > 0. We extend F to By by setting F({(u)) = pl(u) and let N be the

unique derivation over B.,;s on By such that
N1=0 and N{(u) = v(u(o)).
Then NF = pFN and
0 — Beris — BstiBst — 0

Periods of Classical Eigenforms

Suppose x € E,, M =: Q,(z) C L and F,(q) is classical eigenform of weight
k. Let p:Gq — GI(V) be a reepreesentation “attached” to = where V is a two

dimensional vector space over M. Then
Theorem (Faltings). V@ C, = C, & C,(k —1).

Suppose L is a finite extension of Q,. The Weil group, W7y, is the subgroup of

G, consisting of elements w whose restriction to L™ is an integral power, o(w), of

1



absolute Frobenius. The Weil-Deligne group of L is a group scheme WDy, over Q
which is the semi-direct product of the constant group sheme W and G, on which

W acts by

wrw ™t = p* Wy

If M is a field, a representation of WD over M is an M vector space V with
homomorphism of group schemes ¢: WD (M) — GL(V). These are equivalent to
representations pg of Wy, on an M-vector space A together with an M-linear operator
N on A satisfying

N o pof) = p= pofw) o .
Indeed, ¢(x) = exp(aNy) for « € G,.

Let V* = Hom(V, L) and set

Dyu(V) = |J (But @ V")
L'JL

. Now WDy, operates on Dys(V) whih finite dimensional over K™". First W}, acts
and second

Nrym = Nm.

Ny, acts nilpotently on D,s (V). Let J(V') denote the the invriants by inertia in the

kernel of Ny. Let o be the inverse of relative Frobenius.
Therorem (Saito). (1 — a,p™*)~! divides det(1 — ap™%|.J)~ L.
Frank will prove,

Theorem . There exists a non-zero Gq, -equivariant E-linear map
V= (Bl ©q, B)"7".

After Faltings it is enough to prove, There exists a non-zero Ggq,-equivariant
E-linear map

V — (ch‘s ®QP E)¢:ap.
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Clarification of Weil-Deligne

Suppose pg of W, on a finite dimensional M-vector space A and N is aan M-linear

operator on A satisfying
N o po(w) = p~**po(w) o N.

Then N is nilpotent and p(z,w) = exp(xN)po(w), (x,w) € WDy, is a representation.

Periods of Classical Eigenforms

Suppose x € E\(Q,), M =: Qy(x). Let p,:Gq — GI(V;) be a repreesentation
“attached” to = where V, is a two dimensional vector space over M. We want to

prove,

Theorem. Let a, = T(p)(x). There exists a non-zero Gq,-equivariant M-linear

map

Ve — (B

cres

®qQ, M)?=ar,

Frank explained why this is true when Fj,(q) is classical. I will now explain its

conection to Fontaine-Mazur.



Fontaine-Mazur

Let 0% ay = ) nan,q" and x: Gq, — Z; be the cyclotomic character.

Proposition. If F(q) is the ¢-expansion of a weight 2 — k OC form where k € Z,
k> 2, 0* 1 F(q) is the q-expansion of a weight k — 1 OC form.

A rep p: Gxg — GL(V) is called potentially semi-stable (pst) if
dil’l’l[(nr Dpst(v) == dlmM V.

Theorem (Kisin). Suppose V, when viewed as a Gq,-rep is pst. Then,

(i) k = k(z) € Z and o =: v(T(p)(2)) < max{0,k — 1}. (ii) If k > 2, either F,(q)
is classical or &« = k — 1 and 3 OC G of weight 2 — k such that F, = §*~'G and
Ve 2 el @ e L

Corollary. If p, is semi-stable and irreducible, then x is classical.
Proof of Theorem. First PST implies HT

dimg (V @ Byr)©% = dimy V.

and Hodge-Tate reps have integral weight.
Suppose V =: V. is ST over a finite Galois extension K of Q, and let

D =: Dst(v*) = HomG]((V177BSt) = (Vl’* ® BSt)GI{'

Claim:

Dg(V*) = (Dgy(V*) @g, K) Gal(rx/Q,)
This follows from the fact that
BSt ®I(O IX’ — Bdr

Thus Dy, (V*) is a 2 dimensional M-space and it has an M-linear HEoQrl_action.
Thus D = Dy, (V*) ®q, Ko is a free M @ K¢ module of rank 2 and its Newton polygon

has at most two slopes of the same run [M, Q,].
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Assuming,

Theorem. Let a, = T(p)(x). There exists a non-zero Gq,-equivariant M-linear
map

Ve — (B

cres

®qQ, M)?=ar,
we’ll prove,

Theorem. Suppose V, when viewed as a Gq,-rep is pst. Then, k =: k(z) € Z and
a=:v(T(p)(x)) <max{0,k—1}.

To simplify notation, I will assume Q,(z) = M = Q, and that V, is semistable.
We already checked that k(x) € Z. One of the facts we used was that B, embeds
in Bg,. Recall, By = B;’;[l/t] where

B, = B, [{(u):u € Frac(R)"},

U(wo) = Llw) + ((v) and ((u) = log M + log u(o),

1 (0)
if v(u(o) — 1) > 0. We already know how to embed B.,;s into By,. Choose a branch
of the logarithm log. Then send ((u) to

log % + log u®.
u

This makes sense since 8([u]) = u(%).

Suppose D is a filtered (F, N)-module over I, i.e. a Ky-module D with a o-linear
isomorhism F' and an endomorphism N such that NF = pF'N as well as a decreasing,
exhaustive, separated filtration on Dy, D', like D(V*) =: (V* Qu Bst)GQP. The
Hodge numbers of D are

hy(D,i) = dim D'/ D!

1



If D=Dg(V*), hg(D,i) =1if i =0 or k — 1 and is zero otherwise .For a rational
number a = r/s let Dyq be the Ky-subspace of K @ r, D spanned by the elements
x such that (0 @ F)*z = p"x. The Newton numbers are

hn(D,a) = dimg, Diq.

Suppose dimpg, D < oo. If D = D(V*), hn(D,[v(ap)]) > 1. We also know
hn(D,k —1—=Tv(ap)]) = hn(D,[v(ap)]).
Put

Y

tu(D) =Y ihy(D,i) andty(D,a) =Y ahy(D,a).
1€Z aeQ

Then D is weakly admissible if t5(D’) < tn(D’) for all K%subspaces D' of D
stable by F' and N with equality when D' = D.

Theorem. If W is PST then D,q(W) is WA.

Suppose D = D(V*). This is WA. Also the submodule Eﬁ<0 Dig) is (F, N)-stable
and thus

0< Z ahy(D, )

acQ
a<0
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Fontaine-Mazur

Theorem. Let a, = T(p)(x). There exists a non-zero Gq,-equivariant M-linear

map

Ve — (B

cres

®qQ, M)¢:ap.
Assuming this, and “continuity o Hodge-Tate-Sen” weights, we’ll prove,

Theorem. Suppose V, when viewed as a Gq,-rep is pst. Then, k =: k(z) € Z and
a=:v(T(p)(x)) <max{0,k—1}.

Suppose D is a finite dimensional filtered (F, N )-module over K, i.e., a Ky-module
D with a o-linear isomorhism F' and an endomorphism N such that NF = pFN as
well as a decreasing, exhaustive, separated filtration on Dx, D*. The Hodge polygon

of D is the lower convex hull of the vertices

() dimD*/D"',) " idim D'/D'H)
i< i<
For a rational number o = r/s let Dyq be the Ky-subspace of Kg @5, D spanned
by the elements x such that (¢ @ F)%x = p"x.

The Newton polygon of D is the lower convex hull of

(Z dim Dy, Z /3 dim Dyg)

Lo BLa

Then D is weakly admissible if the Newton polygon of D’ lies above the Hodge
polygon of D’ for all (F, N)-submodules with induced filtration and these polygons

have the same endpoints when D = D’.



Theorem. If W is PST then D,q(W) is WA.

Proof of Kisin’s Theorem
To simplify notation, I will assume Q,(z) = M = Q, and that V, is semistable.
Suppose D = D(V}). This is WA. Using Sen theory (which I'll discus next week),
we know when k # 1, Dyp(V) = C,(0)® C,(k—1). Suppose a < b. Then the Hodge

polygon of D is

F and N for Tate Elliptic curves

Suppose E = C]’;/qzz, where ¢z0 € pZ,. Then E=U UV and UNV =AU B. We

have
Hpr(A) @ Hpg(B) = Hpgr(E) = Hhp(U) ® Hpp(V) — Hpr(A) & Hpg(B)

Then N is

Res
Hpr(E) = Hpr(A) @ Hhp(B)==3Hpr(A) @ Hhp(B) = Hpp(E)

To get F all we have to do is “split”
Hpp(A) @ Hpp(B) = Hpg(E).

Suppose ({wu,wv},{fa,fB}) is a l-cocycle (wy —wy = df). If we choose a branch
of log we can solve

dFy =wy and dFy = wy

Let
ca=(Fu—Fv)la—fa and cp = (Fu — Fv)|p — fB.
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Sen-Polynomials

Let x:Gq, — Zj be the cyclotomic character and I' = Gal(Q(p1p)/Qp). Sup-
pose E a finite extension of Q, contained in K. Finally, let I'(K) = Gal(K/K)
where Ko, = K(ptp~). Sen’s proves in Contiuous Cohomology and p-adic Galois

representaions, (Invent. Math. 62 (1980)),

Theorem. SupposeV is a finite dimensional vector space over E and p: Gx — GLg(V)}}
is a continuous representation. There exists a finite extension L of K in K., and an

M € GLc,(C, @g V) such that o — 7(0) =: M~1p(o)o(M) is a representation of
G into GL(L @g V) which factors through I'(L). Moreover, if o € G and its
image in I' is non-trivial

Sp(T) =: det (T ~ M)

log x()
is independent of the choices of L and o and lies in K[T|. In fact, this polynomial is
independent of K or E.

Eg. (i) (CFT) Suppose n =1 and K = E = Q,. Then if v € I" sufficiently close to 1,
T(v) = p(o), if o~ and T —e(p) =: S,(T).

(ii) (Hodge-Tate) Suppose A is an Abelian variety of dimension g over K and
p: G — GL2y(Q,) coming from the p-Tate module of A. Then

S,(T) = T9(T — 1)".

(iii) (Faltings) Suppose p is the restriction to a decomposition group above p of a

represention coming from a weight k& modular form. Then,
S)(T) = T(T — (k- — 1))

1



(iv) Suppase V @ C, =2 Cp(a1) & --- Cp(ay). Then,

SUT) = (T —ar) - (T~ a,),

Variation.

Let C be a topologically finitely generated complete local ring over R =: Opg
whose residue field is a finite extension of k = R/wgpR, C = R[[T1,...,T,]]/I. Let
(C') be the rigid space associated to C.

Suppose p: Gx — GL,(C) is a continuous representation.
Eg. Suppose k is a finite field of characteristic p and a: Gal(Q/Q) — GLy(k) is a
representation. Then, Mazur has shown there exists a topologically finitely generated

complete local ring M, over Z, and a versal deformation of a
a: Gal(Q/Q) — Gl(M,)

(which is universal when o is absolutely irreducible). When « is odd, (M,) is con-
jectured to have dimension 3.

A slight improvemewnt of Sen’s result in The Analytic Variation of p-adic Hodge
Structure (Ann. Math. 127 (1988)) is,

Theorem. There is a unique monic polynomial, f,(1'), whose coefficients are ana-
Iytic functions on the nilreduction of (C)x and whose specialization to x € (C)(E)
is S, (T).

Corollary. If a is modular and x € (M,),
Sa,(T) =T(T — e(det &y)).

Let E, be the component of the eigencurve such that for = € Ea(Qp), Pr 18 a

deformation of a.

Corollary. IfV, ispst k(z) € Z and V, @ C, 2 C, & C,(k(x) — 1).
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Application of Sen’s Theory

For a representation p: G — GI(V') where V is vector space over a finite extention
of Q, let S,(T) be the Sen polynomial. We know if p is attached to ae weight k
modular form S,(T) =T(T—(k—1)). Alsoif V@ C, =2 Cp(a1)&---C,(ay,). Then,
So(T) = (T — 1) (T — an).

Proposition. If = is a point on an eigencurve and V, is pst k(z) € Z and

Ve ®Cp=C,aCpk(x) —1).

Variation.

Suppose C = Og[[Ty,...,T,]]/I. Let (C) be the rigid space associated to C.
Suppose p: Gx — GL,(C) is a continuous representation.
Eg. Suppose k is a finite field of characteristic p and a: Gal(Q/Q) — GLa(k) is a
representation. Then, Mazur has shown there exists a topologically finitely generated

complete local ring M, over Z, and a versal deformation of a
a: Gal(Q/Q) — Gla(M,).

Theorem. There is a unique monic polynomial, f,(1'), whose coefficients are ana-
Iytic functions on the nilreduction of (C)x and whose specialization to x € (C)(E)
is S, (T).

Suppose the above a is modular of level N and let E, be the component of the

eigencurve Ey such that for = € Ea(Qp), pz 1s a deformation of «.

The Galois interpretation of «a,



Theorem. Suppose v € Hom((Z/NpZ)*,C}), * € Ey. Let ay = T(p)(x) and

M = Q,(z). There exists a non-zero Gq,-equivariant M-linear map

Ve — (B

cres

®qQ, M)P=a,

(Also, see forthcoming paper of Stevens and lovita.)

Suppose y € Ey(K), k(y) € Z. We'll the following simplifying assumption: There
exists an affinoid X in E, defined over K containing y which is isomorphic via x
to a closed disk in W, and a free rank 2 module V over R =: A(X) with an action
of Galois whose restriction V., @ € X to k(x) € Z, k(z) >> 0, is classical and

crystaline.

Lemma. After removing the weight one points (if they exist) from X,
V*®KCP = (R®KCP) b ((R®KCP)(X/“)

as G i -modules where x is the cyclotomic character.

Indeed, W, = (V*®KCP)HK has a basis over a finite extention L of K such that
the Rr-module Wy, spanned by this basis is Galois stable and if v»; € I'(L) the linear

operator on Wy,
_log~y
log x(7)

has characterististic polynomial T(T + (k(x) — 1)).

Lemma. Suppose 7 > 0. After removing a finite set of points S; from X,
(V*®@ B;r/Bér)GK is a free Ry =: A(X — S;)-module of rank 1.

Corollary. Suppose j > 0 and v € X — 5;. There exists a non-zero G g -equivariant
map az: Ve — B;r/Bér.

Proof of Lemma. We need Tate’s Theorem C,(k)“% = 0 (p-Divisible Groups, in
Proceedings of a Conference on Local Fields, Driebergen 1966, pp 158-183, Springer
(1967).)) unless k = 0. Suppose j = 1.



