Robert F. Coleman

Lecture 1

Let $G_{\mathbf{Q}} = \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ and p be a prime.

One knows if $F(q) = \sum_{n\geq 1} a_n q^n$ is the q-expansion of a weight k normalized cuspidal eigenform of level N and character χ , $E = \mathbf{Q}_p(\{a_n\})$ is a finite extention of \mathbf{Q}_p and an odd, irreducible representation $\rho: G_{\mathbf{Q}} \to \mathbf{Gl}_2(E)$ unramified outide of Np such that if $\ell \not| Np$

$$\operatorname{Tr}(\operatorname{Frob}_{\ell}) = a_{\ell} \text{ and } \det(\operatorname{Frob}_{\ell}) = \chi(\ell)\ell^{k-1}.$$

One also knows the restriction of ρ to a decomposition group at p is "potentially semi-stable."

Example. On $X_0(49)$ there is a unique normalized weight 2 cusp form F(q), where

$$a_2 = 1, a_{11} = 4, a_{23} = 8, a_{29} = 2, a_{37} = -6,$$

$$a_3 = a_5 = a_{13} = a_{17} = a_{19} = a_{31} = 0.$$

$$\sum_{n \ge 1} a_n n^{-s} = \prod_{\ell \ne 7} (1 - a_\ell \ell^{-s} + \ell^{-2s})^{-1} (1 + 7^{-s})^{-1}.$$

In 1993, J.M. Fontaine and B. Mazur conjectured [F-M],

Conjecture. Suppose E is a finite extension of \mathbf{Q}_p and $\rho: G_{\mathbf{Q}} \to \mathbf{Gl}_2(E)$ is a continuous odd, irreducible representation ramified at only finitely many primes whose restriction to a decomposition group at p is potentially semi-stable. Then ρ arises from a modular form.

Mark Kisin has recently proven, using the "eigencurve" this conclusion when ρ arises from an "overconvergent form of finite slope."

Topics of course

Serre's theory of p-adic Banach spaces [S], [C2] and [B]. Overconvergent forms and the U-Operator [K], [C2]. The Canonical subgroup and the U-operator [K], [B2]. Pseudo-representations attached to overconvergent Forms, [H]. The Eigencurve, [C-M]. Fontaine's theory, [F] (see also www.math.berkeley.edu/coleman/fontaine.html). The Fontaine-Mazur conjecture, [F-M]. Kisin's Theorem.

p-adic Banach spaces

A Banach Algebra is a commutative ring A with a unit element, complete and separated with respect to a non-trivial ultrametric norm $| \cdot |$. I.e., |1| = 1,

$$|a+b| \le \max |a|, |b|, \quad |ab| \le |a||b|,$$

for a and $b \in A$, and moreover, |a| = 0 if and only if a = 0. A **Banach module** over A is an ultrametrically normed complete module E over A, such that $|ae| \leq |a||e|$ if $a \in A$ and $e \in E$.

An **orthonormal basis** for a Banach module E over A is a set $\{e_i : i \in I\}$ of elements of E, for some index set I, such that every element m in E can be written uniquely in the form $\sum_{i \in I} a_i e_i$ with $a_i \in A$ such that $\lim_{i \to \infty} |a_i| = 0$ and

$$|m| = Sup\{|a_i| : i \in I\}.$$

We say E is **orthonormizable** if it has an orthonormal basis.

Examples. Suppose $A = \mathbf{Q}_p$ and M is the ring of analytic functions on the unit disk.

An A-homomorphism $h: M \to N$ between two Banach A-modules is said to be **completely continuous** or **compact** if there exists a sequence of A-homomorphisms $h_j: M \to N$ of "finite rank" such that

$$\lim_{j \to \infty} \left(\sup_{|m| \le 1} |(h - h_j)(m)| \right) = 0.$$

It turns out that if M = N, has an orthonormal basis and A is "nice," then h has a characteristic series (Fredholm determinant).

- [B] Buzzard, K: email.
- [B2] Buzzard, K: Analytic continuation of overconvergent eigenforms. (Preprint). www.ma.ic.ac.uk/ kbuzzard/maths/research/papers/index.html
- [C1] Coleman, R: Classical and overconvergent modular forms. Invent. Math. 124 (1996) 215-241.
- [C2] : P-adic Banach spaces and families of modular forms. Invent. Math. 127 (1997) 417-479.
- [C-M] ____ and B. Mazur: The Eigencurve. Galois Representations and Arithmetic Algebraic Geometry, CUP 1998. www.math.berkeley.edu/coleman/preprints.html
- [F] Fontaine, J-M: Le corps des périodes p-adiques. Périods p-adiques, Astèrisque 223, Soc. Math. de France, (1994) 509-111.
- [F-M] Fontaine, J.M. and B. Mazur: Geometric Galois representations. Elliptic curves, modular forms and Fermat's last theorem (Hong Kong 1993) Internat. Press 1993.
- [H] Hida, H: Nearly Ordinary Hecke Algebras and Galois Representations of Several Variables. JAMI Inaugural Conference Proceedings, (supplement to) Amer. J. Math. (1990), 115–134.
- [K] Katz, N: P-adic properties of modular schemes and modular forms, Modular Functions of one Variable. Antwerp III, SLN 350, (1972) 69-190.
- [Ki] Kisin, M: Overconvergent modular forms and the Fontaeine-Mazur conjecture, (preprint).
- [S] Serre, J-P: Endomorphismes complètements continues des espaces de Banach p-adiques. Publ. Math. I.H.E.S., 12 (1962) 69-85.

Robert F. Coleman

Lecture 2

www.math.berkeley.edu/ coleman/Courses/Sp02/ecfm.html

Quick introduction to rigid analysis

Let K be a complete local field with absolute value | |. By $K\langle X_1, \ldots, X_n \rangle$ I mean the ring

$$\mathbf{A}_n =: \sum_{I>0} a_I X^I$$
 where $a_I \in K$, $|a_I| \to 0$ as $\sigma(I) \to \infty$.

This ring is Noetherian and is called the **Tate algebra** of dimension n over K. One can think of it as functions on a polydisk of radius 1. A quotient ring of this ring is called an affinoid algebra.

Example. Consider $\{(x,y): y^2 = x^3 - 1, |x| \le 1, |y| \le 1\}.$

If $F(X_1, \ldots, X_n) = \sum_{I \geq 0} a_I X^I$, put $||F|| = \sup_I |a_I|$. If $\alpha: \mathbf{A}_n \to A$ is surjective we define

$$||f||_{\alpha} = \inf\{||g|| : g \in \mathbf{A}_n, \alpha(g) = f\}.$$

This is a norm on A.One can also set

$$||f||_{sup} = \inf_{n \in \mathbb{N}} ||f^n||_{\alpha}^{1/n}.$$

This is independent of α . The **power bounded** elements A^0 of A are the elements f such that $\{||f^n||_{\alpha}\}$ is bounded or equivalently $||f||_{sup} \leq 1$ and the **topological nilpotents** of A A^+ are the elements f such that $||f^n||_{\alpha} \to 0$ or equivalently $||f||_{sup} < 1$. If A is reduced and A^0/A^+ is an integral domain $|| ||_{sup}$ is a norm eq3uivalent to $|| ||_{\alpha}$.

Example. Same as above and also 5xy = p.

Compact operator over affinoid algebras

An A-homomorphism $L: M \to N$ between two Banach A-modules is said to be **compact** if there exists a sequence of A-homomorphisms of finite rank $h_j: M \to N$ such that $h_j \to L$. In good situations $\det(1 - Th_j)$ is defined and $\lim_{j \to \infty} \det(1 - Th_j)$ exists.

Suppose $\{e_i\}_{i\geq 0}$ is an orthonormal basis for M and $\{d_j\}_{j\geq 0}$ is an orthonormal basis for N. Suppose

$$L(e_i) = \sum_{j} n_{i,j} d_j.$$

Proposition. Suppose K is a finite extension of \mathbf{Q}_p and A is a reduced affinoid algebra over K. The linear map L is compact if and only if

$$\lim_{i \to \infty} Sup_{i \ge 0} |n_{i,j}| = 0.$$

Proof. Let π_n be the projection onto the submodule E_n generated by d_j , $j \leq n$ and $L_n = \pi_n \circ L$.

Now suppose L is compact. Then for each $\epsilon > 0$ there exists an A-linear map $L': M \to N$ whose image is contained in a finitely generated submodule P and is such that $|L - L'| < \epsilon$.

We will show $P^0 =: P \cap N^0$ is finitely generated over A^0 . Assume this for now. Claim: There exists an $m \geq 0$ such that

$$|\pi_m|_P - \mathrm{id}_P| < \epsilon.$$

It follows that

$$|L - \pi_m \circ L'| < \epsilon.$$

This implies $|n_{i,j}| < \epsilon$ for $j \notin T$ which concludes the proof.

If
$$M = N$$
,

$$\det(1 - TL) = \lim_{j \to \infty} \det(1 - T(\pi_n \circ L|_{M_n})).$$

Robert F. Coleman

Lecture 3

J. Tate: Rigid analytic spaces, Inv. Math. 12 (1971) 257-289.

Compact Operators

Let $L: M \to N$ be a continuous linear map between orthonormizable Banach modules over A. Suppose $\{e_i\}_{i\geq 0}$ is an orthonormal basis for M and $\{d_j\}_{j\geq 0}$ is an orthonormal basis for N and

$$L(e_i) = \sum_{j} n_{i,j} d_j.$$

Proposition. Suppose K is a finite extension of \mathbf{Q}_p and A is a reduced affinoid algebra over K. The linear map L is compact if and only if

$$\lim_{i \to \infty} Sup_{i \ge 0} |n_{i,j}| = 0.$$

Proof. Let π_n be the projection onto the submodule E_n generated by d_j , $j \leq n$ and $L_n = \pi_n \circ L$.

Suppose L is compact. Then for each $\epsilon > 0$ there exists an A-linear map $L': M \to N$ whose image is contained in a finitely generated submodule P and is such that $|L - L'| < \epsilon$.

Claim: $P^0 =: \{n \in P : ||n|| \le 1\}$ is finitely generated over A^0 .

Indeed, let $n_i = \sum_i b_{ij} d_j$ $1 \le i \le k$ generate P. Let

$$U = \{(a_1, \dots, a_k) \in A^k : \sum_{i=1}^k a_i n_i = 0\}.$$

Since A is Noetherian, there exists $r \geq 0$ such that $U = \operatorname{Ker} F_r$, where

$$F_t(a_1,\ldots,a_k) = \pi_t \left(\sum_{i=1}^k a_i n_i\right).$$

Thus, if $t \geq r$

$$0 \to U \to A^k \xrightarrow{F_t} \pi_t N \cong A^t$$

is exact. Let $B_t = F_t^{-1}((A^0)^t)$ so that in particular $(\bigcap_{t\geq 0} B_t)/U \cong P^0$. \blacksquare End of proof. There exists an $m\geq 0$ such that $|\pi_m|_P - \mathrm{id}_P| < \epsilon$.

It follows that

$$|L - \pi_m \circ L'| < \epsilon.$$

This implies $|n_{i,j}| < \epsilon$ for $j \notin T$ which concludes the proof.

Characteristic series

Suppose π is a uniformizing parameter of K and M = N = E.

Theorem. If L is a compact operator on E, then

$$\lim_{m\to in\,fty}\det(1-T(\pi_m\circ L)|_{E_m})$$

exists.

We will denote it by $P_L(T)$.

Proof. First we can assume $|L| \leq 1$. Next we know that given $k \geq 0$ there exist $m_k \geq 0$ such that

$$L(e) \equiv \pi_{m_k} \circ L(e) \mod \pi^k$$
.

Theorem. If L has norm at most |a| where $a \in A$ then $P_L(T)$ is an element of $A^0[[aT]]$ and is entire in T. Also, $P_L(T)$ is characterized by:

- (i) If $\{L_n\}_{n\geq 0}$ is a sequence of completely continuous operators on E, and $L_n \to L$ then $P_{L_n} \to P_L$ coefficientwise.
- (ii) If the image of L in E is contained in an orthonormizable direct factor F of finite rank over A of E such that the projection from E onto F has norm at most 1 then

$$P_L(T) = \det(1 - TL|F).$$

Robert F. Coleman

Lecture 4

The Fredholm Determinant

Theorem. Suppose L is a compact operator on a ON Banach module E over A. If L has norm at most |a| where $a \in A$, then $P_L(T)$ is an element of $A^0[[aT]]$ and is entire in T. Also, $P_L(T)$ is characterized by:

- (i) If $\{L_n\}_{n\geq 0}$ is a sequence of compact operators on E, and $L_n \to L$ then $P_{L_n} \to P_L$ coefficientwise.
- (ii) If the image of L in E is contained in a direct factor F of finite rank over A of E such that the projection from E onto F is continuous then

$$P_L(T) = \det(1 - TL|F).$$

In particular, $P_L(T)$ depends only on the topology.

Proof. I will prove $P_L(T)$ is entire in T and (i). Let $(e_i)_{i\geq 0}$ be an ONB. We can suppose $|L|\leq 1$. Suppose $L(e_i)=\sum_j n_{i,j}e_j$. For a finite set S of non-negative integers and a permutation σ of S, set

$$n_{S,\sigma} = \prod_{i \in S} n_{i\,\sigma(i)}$$

Then

$$P_L(T) = 1 + c_1 T + c_2 T^2 + \cdots,$$

where

$$c_m = (-1)^m \sum_{\substack{S,\sigma \\ |S| = m}} \epsilon_{\sigma} n_{S,\sigma}.$$

Now let $R_1 \geq R_2 \geq \cdots$ be the numbers $r_j = \sup_{i \geq 0} |n_{ij}|$. It follows that

$$|c_m| \leq R_1 R_2 \cdots R_m$$

SO

$$|c_m|M^m \le (R_1M)(R_2M)\cdots(R_mM).$$

Now suppose, $|L' - L| < \epsilon < 1$.

Some other key facts.

Remark. If $L: M \to N$ is compact and $F: N \to M$ is continuous, then $L \circ F$ and $F \circ L$ are compact.

(i) If u and v are compact operators on E,

$$\det(1 - Tu) \det(1 - Tv) = \det((1 - Tu)(1 - Tv)).$$

- (ii) Suppose E_1 and E_2 are orthonormizable Banach modules over A. Suppose u is a compact homomorphism from E_1 to E_2 and $v: E_2 \to E_1$ is a continuous homomorphism. Then $P_{u \circ v}(T) = P_{v \circ u}(T)$.
- (iii) if $\phi: A \to B$ is a homomorphism of Banach algebras then $\phi^*E =: E \otimes_A B$ is orthonormizable over B and

$$P_{\phi^*L}(T) = \phi(P_L(T)).$$

Given this one can define the characteristic series of a continuous operator V on M if one only asssumes M is "locally orthonormizable."

Riesz Theory

Suppose u is a compact operator on E. Let $A\{\{T\}\}$ denote the ring of entire series over A. For a polynomial of degree d whose leadin coefficient is a unit, F(T), let $F^*(T) = T^d F(T^{-1})$.

Theorem. Suppose $P_u(T) = Q(T)S(T)$ where $S \in A\{\{T\}\}$ and Q is a polynomial whose leading coefficient is a unit such that Q(0) = 1 and which is relatively prime to S. Then there is a unique direct sum decomposition

$$E = N_u(Q) \oplus F_u(Q)$$

of E into closed submodules stable by u such that $N_u(Q)$ is projective of rank $\deg Q$, $Q^*(u)N_u(Q)=0$ and $Q^*(u)$ is invertible on $F_u(Q)$. Moreover, $N_u(Q)$ and $F_u(Q)$ are locally equivalent to orthonomizable modules and $P_{u|_{N_u(Q)}}(T)=Q(T)$ and $P_{u|_{F_u(Q)}}(T)=S(T)$.

Robert F. Coleman

Lecture 5

Restants

See Lang's algebra Chapter IV §8. Let e_i be the *i*-th elementary symmetric polynomial of T_1, \ldots, T_n .

Lemma. The subring of $A[[T_1, \ldots, T_n]]$, $A\{\{e_1, \ldots, e_n\}\}$, is equal to the subring of $A\{\{T_1, \ldots, T_n\}\}$ consisting of elements which are left invariant under permutation of the variables T_i .

Suppose $Q(T) = T^n - a_1 T^{n-1} + \dots + (-1)^n a_n \in A[T]$ and $P(T) \in A\{\{T\}\}$. Then $P(T_1) \cdots P(T_n) = H(e_1, \dots e_n)$ for some $H \in A\{\{X_1, \dots, X_n\}\}$. The **resultant** of Q and P is

$$Res(Q, P) = H(a_1, \dots, a_n).$$

Then,

$$Res(Q, 1) = 1$$
 $Res(Q, T) = (-1)^n Q(0)$
 $Res(Q, aP) = a^n Res(Q, P)$
 $Res(Q, PR) = Res(Q, P) Res(Q, R)$
 $Res(Q, P + BQ) = Res(Q, P)$

and if S is a monic polynomial of degree m,

$$Res(SQ, P) = Res(S, P)Res(Q, P)$$

$$Res(Q, S) = (-1)^{mn}Res(S, Q)$$

$$Res(Q, S^*) = Res(S, Q^*).$$

Recall $Q^*(T) = T^n Q(T^{-1}).$

Say that an element $a \in A$ is **multiplicative** if |ab| = |a||b| for all $b \in A$.

Proposition. The resultant of Q and P is a linear combination of Q and P. If Q and P have a non-constant polynomial common factor G whose leading term is multiplicative, then the resultant of Q and P is zero and is a unit if and only if Q and P are relatively prime in $A\{\{T\}\}$.

Lemma. If G(T) is a polynomial whose leading coefficient is multiplicative and $H(T) \in A\{\{T\}\}$ such that $G(T)H(T) \in A$ then $G(T) \in A$ or H(T) = 0.

Proof. Replacing G(T) by $G(p^{-M}T)$ for some positive integer M we may assume that the absolute value of the leading coefficient c of G is greater than all its other coefficients. Suppose $\deg G = n$. Suppose $H(T) = \sum_k b_k T^k$ and $m \geq 0$ is such that $|b_m| \geq |b_k|$ for all k with strict inequality for k > m.

Now suppose $B(T) \in A[T]$, B(0) = 0 and $F = Q^*$ for a monic polynomial Q. Let P(T) = 1 - XB(T). Let

$$D(B,F) = Res(Q,P) \in A[X].$$

Now if $B, F \in \{T\}, B(0) = 0, F(0) = 1$ let

$$D(B,F)(X) = \lim_{n \to \infty} D(B_n, F_n)(X).$$

Then $D(B,F)(X) \in A\{\{X\}\}$ and

Theorem. If u is a compact operator on an orthonormizable Banach module E over A and $B \in TA\{\{T\}\}$ then B(u) is compact and

$$P_{B(u)}(T) = D(B, P_u)(T).$$

Robert F. Coleman

Lecture 6

Correction: Lemma. If G(T) is a polynomial whose leading coefficient is multiplicative and $H(T) \in A\{\{T\}\}$ such that $G(T)H(T) \in A$ then $G(T) \in A$ or H(T) = 0.

Riesz Theory

Suppose A is a reduced affinoid algebra over K, E is an orthonormizable Banach module over A and u is a compact operator on E.

We need one more thing about resultants,

Lemma. If P(T) = R(T)S(T), $R, S \in A\{\{T\}\}$ and R(0) = S(0) = 1, then we have, D(B, P) = D(B, R)D(B, S),

and if Q is a monic polynomial, $D(1 - Q^*, P)(1) = Res(Q, P)$.

The **Fredholm resolvant** Fr_u of u is

$$\frac{P_u(T)}{(1-Tu)} = P_u(T) \sum_{i>0} u^i T^i.$$

Proposition. The Fredholm resolvant is "entire."

Proof. Fr_u acts on $E \otimes_A A[[T]]$. If $P_u(T) = \sum_{m \geq 0} c_m T^m$, $Fr(u)(T) = \sum_m v_m T^m$, where

$$v_0 = 0$$
 and $v_m = c_m + uv_{m-1}$.

Let $R_1 \geq R_2 \geq \cdots$ be the numbers $r_j = \sup_{i \geq 0} |n_{ij}|$ where (n_{ij}) is the matrix for u wrt. an ONB $B = \{e_I\}$. Claim: $|v_m| \leq R_1 R_2 \cdots R_m$.

First suppose E is free of finite rank n. Then since $Fr(T)P_u(T) = \det(1 - Tu)$

Now suppose $u(E) \subseteq E_n$.

End of proof. $\pi_n \circ u \to u$.

Lemma. Suppose $Q(T) \in A[T]$ is monic. Then $(Q, P_u) = 1$ in $A\{\{T\}\}$ if and only if $Q^*(u)$ is invertible.

Proof. Let $v = 1 - Q^*(u)$. Suppose $(Q, P_u) = 1$.

$$(1 - vT)Fr_v(T) = P_v(T) = D(1 - Q^*, P_v)(T).$$

Last time we saw $D(1 - Q^*, P_v)(1) = Res(Q, P_u)$.

Now suppose $Q^*(u)(1 - w) = 1$.

Robert F. Coleman

Lecture 7

Riesz Theory (continued)

For $R(T) = \sum_{n \ge 0} a_n T^n$, let

$$\Delta^k F(T) = \sum_{n>k} \binom{n}{k} a_n T^{n-k}$$

and $\Delta = \Delta^1$. If $F(T) \in A\{\{T\}\}$ and $a \in A$, say a is a zero F of **order** k if $\Delta^i F(a) = 0$ for i < k and $\Delta^k F(a)$ is a unit.

Lemma. Suppose $a \in A$ is a zero of $P_u(T)$ of order h. Then we have a unique decomposition

$$E = N(a) \oplus F(a)$$

into closed submodules such that 1-au is invertible on F(a) and $(1-au)^hN(a)=0$.

Proof. Proof. We have

$$(1 - uT)\Delta^s Fr_u(T) - u\Delta^{s-1} Fr_u(T) = \Delta^s P_u(T).$$

So if $v_s = \Delta^s Fr_u(a)$. We get $(1 - au)^{s+1} v_s = 0$ for $s \le h$. Let $c = \Delta^h P_u(a)$,

$$e = c^{-1}(1 - au)v_h$$
 and $f = c^{-1}uv_{h-1}$.

Then

$$e + f = 1$$
 and $fe^h = 0$.

The endomorphisms e^h and $\sum_{i\geq 1} \binom{h}{i} e^{h-1} f^i$ are projectors.

Theorem. Suppose $P_u(T) = Q(T)S(T)$ where $S \in A\{\{T\}\}$ and Q is a monic polynomial such that Q(0) = 1 and which is relatively prime to S. Then there is a unique direct sum decomposition

$$E = N_u(Q) \oplus F_u(Q)$$

of E into closed submodules stable by u such that $N_u(Q)$ is projective of rank $\deg Q$, $Q^*(u)N_u(Q) = 0$ and $Q^*(u)$ is invertible on $F_u(Q)$. Moreover, $N_u(Q)$ and $F_u(Q)$ are locally equivalent to orthonomizable modules and

$$P_{u|_{N_u(Q)}}(T) = Q(T)$$
 and $P_{u|_{F_u(Q)}}(T) = S(T)$.

Proof. Let $n = \deg Q$, $B(T) = 1 - Q^*(T)$ and v = B(u). Then

$$P_v(T) = D(B, P_u)(T) = D(B, Q)(T) \cdot D(B, S)(T),$$

but

$$D(B,Q)(X) = Res(Q^*, 1 - X(1 - Q^*)) = (1 - X)^n,$$

and D(B,S)(1) = Res(Q,S).

Robert F. Coleman

Lecture 8

Riesz Theory (continued)

Last we proved, Suppose $P_u(T) = Q(T)S(T)$ where $S \in A\{\{T\}\}$ and Q is a polynomial of degree h whose leading coefficient is a unit such that Q(0) = 1 which is relatively prime to S. Then there is a direct sum decomposition

$$E = N_u(Q) \oplus F_u(Q)$$

of E into closed submodules stable by u such that $Q^*(u)^h N_u(Q) = 0$ (note the h) and $Q^*(u)$ is invertible on $F_u(Q)$. Moreover, if $Q(T) = (1 - bT)^h$ then $Q^*(u)N_u(Q) = 0$. Let $F = N_u(Q)$ and $e \cdot F = F_u(Q)$ Claim: $Q^*(u)N = 0$ in general.

Now lets prove $N_u(Q)$ is projective of rank h. Suppose we know this when A is a field.

Let $\{e_i\}$ be an ON basis for E. Let m be a maximal ideal. Let

$$f_i = \sum_{j \in I} a_{i,j} e_j$$
 for $1 \le i \le h$

be elements of N which form a basis of N_m modulo m. Then $\exists j_1, \ldots, j_h$ such that

$$g =: \det(a_{i j_k}) \neq 0$$

is not zero at m. Let U be an open affinoid in MaxA where g is invertible. Claim: f_1, \ldots, f_h is a basis for N_U .

Now we prove when the leaing coeffikcikent of Q is multiplicative, $\det(1-Tu|N_u(Q)=Q(T))$.

Proposition. Suppose N is a free. Then, locally, there exists a norm on E equivalent to || || such that both N and F with their induced norms are orthonormizable.

Corollary. If u_F is the induced operator on F, u_F has a characteristic series and

$$P_u(T) = \det(1 - Tu|_N)P_{u_F}(T).$$

It follows that There exist $H(T) \in A\{\{T\}\}$ such that

$$H(T)Q(T) = \det(1 - Tu|_N)$$

We also get $P_{u_F}(T) = S(T)$.

Robert F. Coleman

Lecture 9

Serre's Riesz theory

Suppose now A is a field. As usual E is an ON Banach space over A and u is a compact operator on E. Let $\{e_i\}$ be an ONB of E.

Suppose a is a zero of $P_u(T)$ of order h and $E = N \oplus F$ is the decomposition of E into u-stable Banach subspaces such that $(1 - au)^h N = 0$ and 1 - au is invertible on E.

Theorem. (Serre) N is free of dimension h.

Suppose W is d-dimensional subspace of N stable by u. Claim: $E = W \oplus G$ with G ONable.

Suppose dim W=1. Suppose $w \in W$, ||w||=1. Suppose

$$w = \sum a_i e_i$$

and $|e_k| = 1$. Let $G = \operatorname{Span}\{e_i : i \neq k\}$.

Using this we see that

$$(1 - Ta)^{\dim W} | P_u(T)$$

and so dim $N \leq h$.

We know

$$\det(1 - Tu|N) \cdot P_{u|F}(T) = P_u(T).$$

Since 1 - au is invertible on F, it follows that dim $N \ge h$.

Pseudo-representations

Suppose you have a group G and functions $D, T \to G \to R$? What do you need to know about D and T to know there is an expresentation $\rho: G \to \mathbf{Gl}_2(R)$ such that

$$D(\sigma) = \det(\rho(\sigma))$$
 and $T(\sigma) = \operatorname{Tr}(\rho(\sigma))$? (*)

Let S be a finite set of primes. Suppose G_S is the Galois group of the maximal Abel;ian extension of \mathbf{Q} unramified outside of S and $\mathbf{c} \in \mathbf{G_S}$ a complex conjugation.

Theorem. Then if R is an integfral domain whose quotient field K is not of characteristic $\neq 2$, there exists a ρ satisfying (*) and $\rho(\mathbf{c}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ if and only if (for all $g, h, k, \ell \in G_S$):

$$\delta(g \cdot h) = \delta(g)\delta(h) + \xi(h, g)$$

$$\xi(gh, k) = \alpha(g)\xi(h, k) + \delta(h)\xi(g, k)$$

$$\xi(g, hk) = \alpha(k)\xi(g, h) + \delta(h)\xi(g, k)$$

$$\xi(g, h)\xi(k, \ell) = \xi(g, \ell)\xi(k, h)$$

and

$$\alpha(1) = \delta(1) = 1; \ \alpha(\mathbf{c}) = -1; \ \delta(\mathbf{c}) = 1$$

where

$$\alpha(x) = \frac{T(x) + T(cx)}{2}, \ \delta(x) = \frac{T(x) - T(cx)}{2}$$
$$\xi(x, y) = \alpha(xy) - \alpha(z)\alpha(y).$$

Moreover. if $R \in ob(\mathcal{C})$, the category of complete notherian local \mathbf{Z}_p -algebras, ρ is continuous if and only if T is.

If there exist $r, s \in G_S$ such that $\xi(r, s) \neq -0$, the representation ρ is given by

$$g \mapsto \begin{pmatrix} \alpha(g) & \frac{\xi(g,s)}{\xi(r,s)} \\ \xi(r,g) & \delta(g) \end{pmatrix}.$$

Robert F. Coleman

Lecture 10

One formula I left out from the previous theorem is $D(g) = \alpha(g)\delta(g) - \xi(g,g)$. Since for a pseudo-representation (T, D), D is determined by T, I will call T a pseudo-representation.

What pseudo-representations are good for

Suppose (N, p) = 1. Then $h_1(N, \mathbf{Z}_p) = \lim_{\leftarrow} h_k(\Gamma_1(Np^n), \mathbf{Z}_p)$ is independent of the weight and is topologically generated by Hecke operators T(n) and $\langle a \rangle$, (a, Np) = 1.

Theorem. (Hida) Suppose $A \in Ob(\mathcal{C})$, where \mathcal{C} is the category of complete local noetherian \mathbf{Z}_p -algebras, be an integral domain with quotient field K and $\lambda: h_1(N, \mathbf{Z}_p) \to A$ is a continuous \mathbf{Z}_p -homomorphism. Then there is a unique semi-simple representation $\rho: G_{\mathbf{Q}} \to \mathbf{Gl}_2(K)$ such that

- (i) ρ is continuous.
- (ii) ρ is unramified outside Np.
- (iii) If $\ell \not| Np$ is a prime and ϕ_{ℓ} is a Frobenius above ℓ

$$\det(1 - \rho(\phi_{\ell})X) = 1 - \lambda(T(\ell))X + \lambda(\langle \ell \rangle)\ell X^{2}.$$

Back to pseudo-representations

Proposition. Suppose R is a product of finitely many objects in C, \mathfrak{a} and \mathfrak{b} two ideals of R and $T_{\mathfrak{a}}: G_{\mathbf{Q}} \to R/\mathfrak{a}$ and $T_{\mathfrak{b}}: G_{\mathbf{Q}} \to R/\mathfrak{b}$ two continuous p-rs (pseudorepresenttions). If there exist functions t and d on a dense subsect Σ of $G_{\mathbf{Q}}$ with values in $R/(\mathfrak{a} \cap \mathfrak{b})$ such that

$$(T_{\mathfrak{a}}(\sigma)), D_{\mathfrak{a}}(\sigma)) \equiv (t(\sigma), d(\sigma)) \mod \mathfrak{a}$$

$$(T_{\mathfrak{b}}(\sigma)), D_{\mathfrak{b}}(\sigma)) \equiv (t(\sigma), d(\sigma)) \mod \mathfrak{b},$$

for $\sigma \in \Sigma$ then there exists a p-r $T_{\mathfrak{a} \cap \mathfrak{b}}: G_{\mathbf{Q}} \to R/(\mathfrak{a} \cap \mathfrak{b})$ such that

$$(T_{\mathfrak{a} \cap \mathfrak{b}}(\sigma), D_{\mathfrak{a} \cap \mathfrak{b}}(\sigma)) \equiv (t(\sigma), d(\sigma)) \mod \mathfrak{a} \cap \mathfrak{b}.$$

Proof. Consider

$$0 \to R/(\mathfrak{a} \cap \mathfrak{b}) \longrightarrow R/\mathfrak{a} \oplus R/\mathfrak{b} \stackrel{\alpha}{\longrightarrow} R/(\mathfrak{a} + \mathfrak{b}) \to 0.$$

Theorem (Wiles). Suppose R is a topological \mathbb{Z}_p -algebra and $\{\mathfrak{p}_i\}_{i=1}^{\infty}$ are ideals such that $R/\mathfrak{p}_i \in \mathcal{C}$ and

$$R = \lim_{\stackrel{\longleftarrow}{-}} R / \bigcap_{i=1}^{n} \mathfrak{p}_i,$$

 Σ is a dense subset of G, t, d are functions $\Sigma \to R$ and p-rs $T_i: G \to R/\mathfrak{p}_i$ such that

$$(T_i(\sigma), D_i(\sigma)) \equiv (t(\sigma), d(\sigma)) \mod \mathfrak{p}_i$$

for $\sigma \in \Sigma$. Then there exists a unique p-r $T: G \to R$ such that $T(\sigma) \equiv T_i(\sigma) \mod \mathfrak{p}_i$ for all $\sigma \in \Sigma$ and all i.

Proof.

Corollary. If $\lambda: R \to A$ is a continuous \mathbb{Z}_p -algebra homomomorphism into an integral domain with fraction field K of characteristic different than 2, there exist a semisimple representation $\rho: G \to \mathbf{Gl}_2(K)$ such that

$$\det(1 - \rho(\sigma)X) = 1 - \lambda(T(\sigma))X + \lambda(D(\sigma))X^{2}$$

Robert F. Coleman

Lecture 11

Let $G = G_{\mathbf{Q}}$. Now will prove

Theorem. Suppose (N,p)=1. Suppose $A \in Ob(\mathcal{C})$ is an integral domain with quotient field K and $\lambda: h_1(N, \mathbf{Z}_p) \to A$ is a continuous \mathbf{Z}_p -homomorphism. Then there is a unique semi-simple representation $\rho: G \to \mathbf{Gl}_2(K)$ such that

- (i) ρ is continuous.
- (ii) ρ is unramified outside Np.
- (iii) If $\ell \not\mid Np$ is a prime and ϕ_{ℓ} is a Frobenius above ℓ

$$\det(1 - \rho(\phi_{\ell})X) = 1 - \lambda(T(\ell))X + \lambda(\langle \ell \rangle)\ell X^{2}.$$

Proof. Let $\Sigma = \{\phi_{\ell} : \phi_{\ell} \text{ is a Frobenius above } \ell\}.$

Fix $k \geq 2$. Let $R = h_1(N, \mathbf{Z}_p) = \lim_{\longrightarrow} h_k(\Gamma_1(Np^n), \mathbf{Z}_p)$. Now $R_n = h_k(\Gamma_1(Np^n), \mathbf{Z}_p)$ is a product of finitely many objects of \mathcal{C} and R_n contains finitely many minimal prime ideals \mathfrak{p}_{ni} and $\bigcap_i \mathfrak{p}_{ni} = 0$.

Let \mathfrak{p}_{ni} denote its inverse image in R. It follows that

$$R = \lim_{\stackrel{\longleftarrow}{n}} R / \bigcap \mathfrak{p}_{ni}.$$

Now, one knows if $\lambda: R_n \hookrightarrow \overline{\mathbf{Q}}_p F$ there exists a weight k eigenform F on $\Gamma_1(Np^n)$ such that

$$F(q) = \sum \lambda_{n \ge 1} (T(n)) q^n.$$

and by Deligne there exists an irreducible continuous representation $\pi: G \to \mathbf{Gl}_2(\overline{\mathbf{Q}}_p)$ such that $\det(\pi(\mathbf{c})) = -1$ and

$$\det(1 - \pi(\phi_{\ell})X) = 1 - \lambda(T(\ell))X + \lambda(\langle \ell \rangle)\ell X^{2}.$$

Thus for each (n,i) we have a p-r with values in R/\mathfrak{p}_{ni} . Now let

$$t(\phi_{\ell}) = T(\ell)$$
 and $d(\phi_{\ell}) = \ell \langle \ell \rangle$.

Back to Banach Modules

Let K be a finite extension of \mathbb{Q}_p . Let $K^0 = \{a \in K : |a| \leq 1\}$ and $\wp = \{a \in R : |a| < 1\}$. Suppose Y is a reduced irreducible affinoid such that \widetilde{Y} is also reduced and we will regard A(Y) as a Banach algebra with respect to the supremum norm.

For a rigid space X let A(X) denote the ring of rigid analytic functions on X, and | | denote the supremum semi-norm on A(X) and $A^0(X)$ will denote the subring in A(X) of power bounded functions on Y. Then $\wp A^0(Y)$ equals the set of topologically nilpotent elements in A(Y) and $\bar{Y} = Spec(A^0(Y)/\wp A^0(Y))$. Let \mathbf{B}_K^n will denote the n-dimensional affinoid polydisk over K. Then

$$A(\mathbf{B}_K^n) \cong K\langle T_1, \dots, T_n \rangle$$
 and $A^0(\mathbf{B}_K^n) \cong K^0\langle T_1, \dots, T_n \rangle$.

If $a \in K$ and $r \in |\mathbf{C}_p|$ we let $B_K[a, r]$ and $B_K(a, r)$ denote the affinoid and wide open disks of radius r about a in \mathbf{A}_K^1 .

Suppose $X \to Y$ is a morphism of reduced affinoids over K. Then (A(X), | |) is a Banach module over (A(Y), | |).

Lemma. Suppose $X \to Y$ is a morphism of reduced affinoids over K and $A^0(X)/\wp A^0(X)$ is free over $A^0(Y)/\wp A^0(Y)$. Then the Banach module A(X) over A(Y) is orthonormizable.

Proposition. Suppose $f: Z \to X$ is a map of reduced affinoids over Y, \tilde{X} is reduced and A(X) is orthonormizable over A(Y) and the image of \overline{Z} in \overline{X} is finite over \overline{Y} . Then the map f^* from A(X) to A(Z) is a compact homomorphism of Banach modules over A(Y).

Robert F. Coleman

Lecture

Nuclear Families

Robert F. Coleman

Suppose M is a Banach space over \mathbb{C} , M' is the continuous dual space. Then $M \otimes M'$ has a natural norm such that

$$||h \otimes e|| = ||e|| \max_{||d|| \le 1} |h(d)|,$$

and we get a new Banach space $N_M =: M \hat{\otimes} M'$. This space has natural ring structure

$$(e \otimes h) \cdot (d \otimes f) = h(d)(f \otimes e).$$

Moreover, there is a natural "trace" map

$$\operatorname{Tr}: e \otimes h \to h(e).$$

We also have a continuous linear map $b: N_M \to \mathcal{B}(M) := \underset{cont}{Hom}(M, M),$

$$b(e \otimes h): d \to h(d)e$$

which turns multiplication into composition and its image is an ideal. The operators in the image of b are called **nuclear.** (They are compact.) One has the Fredholm determinant, for $u \in N_M$

$$\det(1 - zu) = \exp\left(-\sum_{n=1}^{\infty} \operatorname{Tr}\left(u^{n}\right) \frac{z^{n}}{n}\right).$$

This series is entire and zeroes, counting multiplicity, are the inverses of the non-zero spectra of b(u). (This was all extracted from Grothendieck's La Theorie de Fredholm (1956).)

Let $H=L^2([0,1],dt)$. Then if $k(x,y)\in L^2([0,1]\times [0,1],dt\times dt)$ we an operator K on H

$$Kf(x) = \int_0^1 k(x, y)f(y)dy.$$

These are called Hilbert-Schmidt operators. The product of two of these is nuclear.

What about families?

Suppose one has a "family" of nuclear operators. How does the spectrum vary? Example. Suppose M is a Banach space and Z is a compact Hausdorff space. Suppose U is a nuclear operator on M and $V \in C(Z, \mathcal{B}(M))$. Then $U_x := U \circ V(x)$ is a family of nuclear operators on M. In fact, we get a Fredholm determinant $D_{U,V}(T)$ whose coefficients are in A := C(Z). Call its zero locus the **spectral space** of the family.

Another way to phrase this is: Let $M_A = M \hat{\otimes} A = C(Z, M)$. Then we have an operator on M_A over A

$$e \otimes f \to (x \to U(x)e \otimes f(x)),$$

and this operator is "nuclear" over A. One can replace C with An everywhere.

Questions. Suppose Z is a closed disk and U and V are analytic. Under what conditions is the zero locus of $D_{U,V}(T)$ a finite union of connected components and when do these components have finite genus?

The U-operator and modular forms

Let p be a prime. The compactification $X_0(p)$ of the Riemann surface $\mathcal{H}/\Gamma_0(p)$ (one has to add twhe cusps 0 and ∞) can be described with equations over \mathbf{Z} and thought about over \mathbf{Q}_p . It has two natural p-adic analytic pieces W_{∞} and W_0 ,

Let X_r be the neighborhood of X_{∞} of "radius" r. For r small there is a natural finite morphism $\phi: X_r \to X_{r^{1/p}}$. We can think of points on $X_0(p)$ as pairs (E, C) where E is an elliptic curve and C is a subgroup of order p. For some elliptic curves E there is a canonical subroup of order p, K(E) and

$$\phi: (E, K(E)) \to (E/K(E), K(E/K(E))).$$

Now we have "nuclear" operator on $M := A(X_r)$

$$U =: \operatorname{Res}_{X_r}^{X_{r^{1/p}}} \circ \operatorname{Tr}_{X_{r^{1/p}}}^{X_r}(\phi).$$

There is a weight p-1 Eisentein series E_{p-1} and therefore a function \mathbf{E} on X_r (for small r) whose q-expansion is

$$E_{p-1}(q)/E_{p-1}(q^p).$$

Since this q-expansion is $\equiv 1 \mod p$, \mathbf{E}^s makes sense for $|s| \leq 1$ and is in $A(X_r)$ for small r, so we have

$$V: B[0,1] \to \mathcal{B}(M),$$

$$V(s)g = \mathbf{E}^s \cdot g$$

and so we get a family of nuclear operators U_s on M. If k = (p-1)n one calls the elements of $M_k = E_{p-1}^n M$ weight k overconvergent modular forms. It contains the classical weight k forms on $\Gamma_0(p)$ and if F is classical

$$F \to E_{p-1}^n U_n(F/E_{p-1}^n)$$

is the classical weight k U-operator. We get a **spectral curve** S over B[0,1].

The Eigencurve

There are other operators T(n) for any integer n prime to p and using the fact that nuclear operators make up an ideal we can use $U \circ T(n)$ to make another spectral curve S_n . The **eigencurve** \mathcal{E} is essentially the fiber product of all these spectral curves. A point x on the eigencurve corresponds to a normalized overconvergent eigenforms F_x with non-zero U-eigenvalue. These have q-expansion s.

For each eigenform mod p f there is a component \mathcal{E}_f of \mathcal{E} whose points correspond to normalized overonvergent eigenforms whose q-expansion s reduce to that of f.

One can attach a representation $\rho_f: G_{\mathbf{Q}} \to \mathbf{Gl}_2(\overline{\mathbf{F}}_p)$ unramified away from p such that

$$\operatorname{Tr} \rho_f(\phi_\ell) = a_\ell$$

if $\ell \neq p$ and $f(q) = \sum_n a_n q^n$. If ρ_f is irreducible one can attach a representation $\rho_x : G_{\mathbf{Q}} \to \mathbf{Gl}_2(\mathbf{C}_p)$ to each point x in \mathcal{E}_f unramified away from p which "lifts" ρ_f such that

$$\operatorname{Tr} \rho_x(\phi_\ell) = A_\ell$$

if
$$\ell \neq p$$
 and $F_x(q) = \sum_n A_n q^n$.

Fontaine-Mazur and Kisin

Conjecture. Suppose E is a finite extension of \mathbf{Q}_p and $\rho: G_{\mathbf{Q}} \to \mathbf{Gl}_2(E)$ is a continuous odd, irreducible representation ramified at only finitely many primes whose restriction to a decomposition group at p is "semi-stable." Then ρ arises from a classical modular form.

Mark Kisin has recently proven this conclusion when ρ arises from an overconvergent eigenform with non-zero U eigenvalue using the eigencurve (Coleman-Mazur) and the following

Theorem (C, 94). If F is an overconergent eigenform of weight k and the valuation of its U-eigenvalue is < k - 1 then F is classiscal.

Robert F. Coleman

Lecture 13

Li's Example

Suppose $H = \{v = \sum_{i \geq 1} a_i e_i : a_i \in \mathbb{C}, ||v|| =: \sum_{i \geq 1} |a_i| < \infty\}$. Consider the operator $L: e_i \to \frac{e_i}{i}$.

$$L = \lim_{n \to \infty} b\left(\sum_{i=1}^{n} \frac{e'_{i} \otimes e_{i}}{i}\right)$$

Why doesn't L have a trace?

A Compact Source

Proposition. Suppose $f: Z \to X$ is a map of reduced affinoids over Y, \tilde{X} is reduced and A(X) is orthonormizable over A(Y) and the image of \overline{Z} in \overline{X} is finite over \overline{Y} . Then $f^*: A(X) \to A(Z)$ is a compact homomorphism of A(Y)-Banach modules.

Proof. Let $B = A^0(Y)$, $C = A^0(Z)$ and $D = A^0(X)$. Let x_1, \ldots, x_n be elements of D such that the map from $B\langle T_1, \ldots, T_n \rangle$, $T_i \mapsto x_i$ is surjective onto D. There are monic polynomials $g_i(S) \in B[S]$, $1 \le i \le n$ such that $f^*g_i(x_i) \in \pi C$ for some $\pi \in K^0$ such that $|\pi| < 1$. We can write any element of D as

$$\sum_{I,N} a_{I,N} x^I g(x)^N,$$

where $x = (x_1, \ldots, x_n)$, $g = (g_1, \ldots, g_n)$, $I, N \in \mathbb{N}^n$ (ordered lexographically), I < deg(g) and $a_{I,N} \in B$. Now let $\{e_i\}_{i \in I}$ be an ON basis for A(X) over A(Y). Then $e_i \in D$. Let $F_{i,m}$ be an element in the B-span of

$$\{f^*(x^Ig(x)^N): I < \deg g \text{ and } S(N) < m\}$$

such that $F_{i,m} \equiv f^* e_i \mod \pi^m C$. Define $L_m: A(X) \to A(Z)$ by $L_m(e_i) = F_{i,m}$. Then L_m is of finite rank and converges to f^*

Call such a morphism f inner over Y. If Y = SpecK call f inner. Examples.

Overconvergnce

Suppose Z is an affinoid. Then an overconvergent function f on Z is a rigid function such that there exists some inner embedding $Z \to X$ and a function F on X which extends f.

When Z has good reduction one can use the same X for any two functions. Examples.

When f is a section of a sheaf \mathcal{F} one does something similar.

Suppose (N,p)=1. Then $X_1(Np)$ has a model whose reduction has two components, $X_0=:X_0(N)$ and $X_\infty=:X_\infty(N)$, Let $W_\infty=\mathrm{Red}^{-1}X_\infty$ and $Z_1(N)=\mathrm{Red}^{-1}X_\infty-X_0$. Define W_0 similarly. Then $W_\infty\cap W_0$ is a untion of annuli A_s where s is a ss point of $X_1(N)$. There exist $w_s\in \mathbb{N}$ and $T_s:A_s\cong A(p^{-w_s},1)$ such that $|T_s(x)|\to 1$ as $x\to Z_1(N)$. If $x\neq 0,1728$ or N>4, $w_s=1$

Let $W_{\infty}(r) =: W_{\infty}(N)(r)$ be the set of $x \in W_{\infty}$, $x \in Z_1(N)$ or s and $v(T_s(x)) \leq r$. (In particular, $W_{\infty}((Nn)(0) = Z_1(Nn)$.)

One has a canonical sheaf ω on $X_1(Np)$ (if $Np \geq 5$).

An overconvergent form of weight k is an overconvergent section of $\omega^{\otimes k}$ on $Z_1(N)$. It extends to $W_{\infty}(r)$ for some r.

Robert F. Coleman

Lecture 14

Overconvergnce

Suppose Z is an affinoid. Then an overconvergent function f on Z is a rigid function such that there exists some inner embedding $Z \to X$ and a function F on X which extends f.

Lemma. Overconvergent functions form a ring.

Lemma. If Z is reduced and has good reduction, $Z \to Y$ is inner and f is an ovewronvergent function on Z. There exists an affinoid Y, morphisms $Z \to X \to Y$ such that $Z \to X$ is inner and a function F on X which extends f.

Examples.

Suppose (N,p)=1. Then $\overline{\mathcal{X}_1(Np)}=X_0\cup X_\infty$, Let $W_\infty=\mathrm{Red}^{-1}X_\infty$ and $Z_1(N)=:Z_1(Np)=\mathrm{Red}^{-1}(X_\infty-X_0)$. There exist $w_s\in \mathbb{N}$ and $T_s:A_s\cong A(p^{-w_s},1)$ such that $|T_s(x)|\to 1$ as $x\to Z_1(N)$. Let $W_\infty(r)=:W_\infty(N)(r)$ be the set of $x\in W_\infty$, $x\in Z_1(N)$ or s and $v(T_s(x))\leq r$. There is a canonical sheaf ω on $X_1(Np)$ (if $Np\geq 5$).

An overconvergent form of weight k is an overconvergent section of $\omega^{\otimes k}$ on $Z_1(N)$.

Eisenstein Series

Suppose p is odd. Let $\pi^{p-1} = -p$. For a character $\chi: \mathbf{Z}_p^* \to \mathbf{C}_p^*$, let f_{χ} denote its "conductor". Let $\mathcal{W} = \underset{cont}{Hom}(\mathbf{Z}_p^*, \mathbf{C}_p^*)$ (weight space). \mathbf{Z} injects naturally into $\mathcal{W}(\mathbf{Q}_p)$;

$$k \in \mathbf{Z} \to (a \to a^k).$$

Let τ denote the Teichmuller character and 1 denote the trivial character.

Suppose $\kappa \in \mathcal{W}(\mathbf{C}_p)$, $\kappa \neq 1$, and $n \geq 1 \in \mathbf{Z}$, let

$$\sigma_{\kappa}^{*}(n) = \sum_{\substack{d \mid n \\ (d,p)=1}} \kappa(d)d^{-1}, \quad \zeta^{*}(\kappa) = \frac{1}{\kappa(c)-1} \int_{\mathbf{Z}_{p}^{*}} \kappa(a)a^{-1}dE_{1,c}(a)$$

for any $c \in \mathbf{Z}_p^*$ such that $\kappa(c)$ is not 1. So that, when $\kappa(a) = \langle \langle a \rangle \rangle^s \chi(a)$ (is **arithmetic**) where $s \in \mathbf{C}_p$, $|s| < |\pi/p|$, and χ is a character of finite order $\zeta^*(\kappa) = L_p(1-s,\chi)$. Let

$$G_{\kappa}^*(q) = \frac{\zeta^*(\kappa)}{2} + \sum_{n \ge 1} \sigma_{\kappa}^*(n) q^n.$$

When $\kappa(a) = \langle \langle a \rangle \rangle^k \chi(a)$, where k is an integer and χ is a character of finite order on \mathbf{Z}_p^* such that $\chi(-1) = 1$, $G_\kappa^*(q)$ is the q-expansion of a weight k overconvergent modular form G_κ^* on $\Gamma_1(\operatorname{LCM}(p, f_\chi))$ and character $\chi \tau^{-k}$. It is classical if k is at least 1.

If $\zeta^*(\kappa) \neq 0$ and $\kappa \neq 1$, let $E_{\kappa}^*(q) = 2G_{\kappa}^*(q)/\zeta^*(\kappa)$ and also $E_1^*(q) = 1$. Suppose $\kappa \in \mathcal{W}(\mathbf{C}_p)$ and κ is trivial on $\mu(\mathbf{Q}_p)$, then $|\zeta^*(\kappa)| > 1$ and $|E_{\kappa}^*(q) - 1| < 1$.

Let $\mathcal{B}^* = B(0, |\pi/p|)$ and $\mathcal{W}^* = \mathcal{B}^* \times \mathbf{Z}/(p-1)\mathbf{Z}$. For $s = (t, i) \in \mathcal{W}^*(\mathbf{C}_p)$ let $\kappa_s(a) = a^s =: \langle \langle a \rangle \rangle^t \tau^i(a)$. Let $E = E_{\kappa_{(1,0)}}$. Note that $E(q) \equiv 1 \mod p$.

For $m \geq 0, N > 0$ (N, p) = 1 let $Z_1(Np^m)$ denote the connected component of the ordinary locus in $X_1(Np^m)$ containing ∞ .

Lemma. Suppose $\kappa(a) = \langle \langle a \rangle \rangle^k \chi(a)$ is arithmetic and χ is trivial on $\mu(\mathbf{Q}_p)$. Then E_{κ}^* (which converges on) does not vanish on $Z_1(p^m)$ where $p^m = LCM(p, f_{\chi})$.

Proof. First E_{κ}^* converges on $Z_1(p^m)$ because it is overconvergent. Next, the lemma is true for E. Now observe that $F = E_{\kappa}^*/E^k$ is a function on $Z_1(p^m)$ whose q-expansion is congruent to 1.

Robert F. Coleman

Lecture 15

Some remarks on overconvergnce

First we can define overconvergent differentials of degree d, $\Omega^{d\dagger}(X)$, on an affinoid X in the same way we defined overconvergent functions $A^{\dagger}(X) = \Omega^{0\dagger}(X)$ and this module is a finite rank $A^{\dagger}(X)$ -module. Next we can sheafify these things.

Some speculation:

If \mathcal{F} is a coherent sheaf on a rigid space X, an overconvergent a structure \mathcal{F}^{\dagger} is a sheaf on X coherent over \mathcal{O}_X^{\dagger} such that $\mathcal{F} = \mathcal{O}_X \otimes_{\mathcal{O}_X^{\dagger}} \mathcal{F}^{\dagger}$. Then we get overconvergent structures on Ω_X^d and if $(\mathcal{F}, \mathcal{F}^{\dagger})$ and $(\mathcal{G}, \mathcal{G}^{\dagger})$ are two coherent sheaves with OS so is $(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}, \mathcal{F}^{\dagger} \otimes_{\mathcal{O}_X^{\dagger}} \mathcal{G}^{\dagger})$. Moreover, if $f: X \to Y$ is a proper morphism of rigid spaces $(R_{f_*}^n \mathcal{F}, R_{f_*}^n \mathcal{F}^{\dagger})$ is an overconvergent structure on the coherent sheaf $R_{f_*}^n \mathcal{F}$.

Since $\omega_M = R_{f_*} \Omega^1_{E_1(M)/X_1(M)}$, if $M \geq 5$, we get a canonical overconvergent structures on $\omega^{\otimes n}$ where $\omega = \omega_{Np}|_{Z_1(Np)}$.

Back to Eisenstein Series

Suppose p is odd, $\pi^{p-1} = -p$.

For $\kappa \in \mathcal{W}(\mathbf{C}_p)$, $\kappa \neq \mathbf{1}$, and $n \geq 1 \in \mathbf{Z}$,

$$\sigma_{\kappa}^{*}(n) = \sum_{\substack{d \mid n \\ (d,p)=1}} \kappa(d)d^{-1}, \quad \zeta^{*}(\kappa) = \frac{1}{\kappa(c)-1} \int_{\mathbf{Z}_{p}^{*}} \kappa(a)a^{-1} dE_{1,c}(a)$$

for any $c \in \mathbf{Z}_p^*$ such that $\kappa(c)$ is not 1 and

$$G_{\kappa}^{*}(q) = \frac{\zeta^{*}(\kappa)}{2} + \sum_{n \ge 1} \sigma_{\kappa}^{*}(n)q^{n}.$$

If $\zeta^*(\kappa) \neq 0$ and $\kappa \neq 1$, let $E_{\kappa}^*(q) = 2G_{\kappa}^*(q)/\zeta^*(\kappa)$ and also $E_1^*(q) = 1$. Suppose $\kappa \in \mathcal{W}(\mathbf{C}_p)$ and κ is trivial on $\mu(\mathbf{Q}_p)$, then $|\zeta^*(\kappa)| > 1$ and $|E_{\kappa}^*(q) - 1| < 1$.

Let $\mathcal{B}^* = B(0, |\pi/p|)$ and $\mathcal{W}^* = \mathcal{B}^* \times \mathbf{Z}/(p-1)\mathbf{Z}$. For $s = (t, i) \in \mathcal{W}^*(\mathbf{C}_p)$ let $\kappa_s(a) = a^s =: \langle \langle a \rangle \rangle^t \tau^i(a)$. If $E = E_{\kappa_{(1,0)}}$. $E(q) \equiv 1 \mod p$.

For $m \geq 0, N > 0$, (N, p) = 1, let $Z_1(Np^m)$ denote the connected component of the ordinary locus in $X_1(Np^m)$ containing ∞ .

q is a parameter at ∞ and any section of $\omega^{\otimes k}$ has a q-expansion .

Lemma. Suppose $\kappa(a) = \langle \langle a \rangle \rangle^k \chi(a)$ and χ is trivial on $\mu(\mathbf{Q}_p)$. Then E_{κ}^* (which converges on) does not vanish on $Z_1(p^m)$ where $p^m = LCM(p, f_{\chi})$.

Proof. First E_{κ}^* converges on $Z_1(p^m)$. Next, the lemma is true for E. Now observe that $F = E_{\kappa}^*/E^k$ is a function on $Z_1(p^m)$ whose q-expansion is congruent to 1.

 $X_1(Np) = W_0(N) \cup W_\infty(N)$. $W_\infty \cap W_0 = \bigcup_s A_s$. Suppose $T_s : A_s \cong A(p^{-w_s}, 1)$ such that $|T_s(x)| \to 1$ as $x \to Z_1(Np)$. Let $W_\infty[r] =: W_\infty(N)[r]$ be the set of $x \in W_\infty$, $x \in Z_1(Np)$ or $x \in A_s$ for some s and $v(T_s(x)) \le rw_s$.

If $d \in \mathbf{Z}_p^*$ we have an operator $\langle d \rangle$ in $E_1(Np)/X_1(Np)$ and hence on ω_{Np} and ω . If k is an integer, and s = (k, i) an overconvergent form F of **weight-character** κ_s are sections of ω^k on $Z_1(Np)$ which extend to $W_{\infty}[r]$ for some r > 1 and satisfy

$$\langle d \rangle F = \tau^i(d) F.$$

Frobenius

Robert F. Coleman

Lecture 16

Weight-Characters

 $X_1(Np) = W_0(N) \cup W_{\infty}(N)$. $W_{\infty} \cap W_0 = \bigcup_s A_s$. Suppose $T_s : A_s \cong A(p^{-w_s}, 1)$ such that $|T_s(x)| \to 1$ as $x \to Z_1(Np)$. Let $W_{\infty}[r] =: W_{\infty}(N)[r]$ be the set of $x \in W_{\infty}$, $x \in Z_1(Np)$ or $x \in A_s$ for some s and $v(T_s(x)) \le rw_s$.

If $d \in \mathbf{Z}_p^*$ we have an operator $\langle d \rangle$ in $E_1(Np)/X_1(Np)$ and hence on ω_{Np} and ω . If k is an integer, and s = (k, i) an overconvergent form F of **weight-character** κ_s are sections of ω^k on $Z_1(Np)$ which extend to $W_{\infty}[r]$ for some r > 1 and satisfy

$$\langle d \rangle F = \tau^i(d) F.$$

In particular, E_{κ_s} has weight-character κ_s .

Frobenius

Suppose N > 4 and $n \ge 1$ are integers such that (N, p) = 1. Let $A = E^{p-1}$.

Let $E_1(N)(v)$ denote the pullback of $E_1(Np)$ to $X_1(N)(v)$. Then, for v < 1/(p+1). If E is an elliptic curve with a canonical sdubgroup, denote this subgroup K(E).

Theorem. There is a commutative diagram of rigid morphisms;

$$E_1(N)(v) \xrightarrow{\Phi} E_1(N)(pv)$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_1(N)(v) \xrightarrow{\phi} X_1(N)(pv)$$

$$\phi(E, \iota_N, \alpha) = (\beta_E(E), \beta_E \circ \iota_N, \alpha')$$

where $\beta_E: E \to \beta_E(E) =: E/K(E)$ and $\alpha'(\zeta) = \beta_E(a)$ where $pa = \alpha(\zeta)$ and $\alpha'(\mu_p) \subset K(\beta_E(E))$.

Call the above diagram Φ/ϕ , a morphism from

$$E_1(Nn)(v)/X_1(N)(v)$$
 to $E_1(N)(pv)/X_1(N)(pv)$.

Proof. Let U be the family of kernels of reduction and if $r \in p^{\mathbb{Q}} < 1$, U[r] the subfamily of affinoid disks of radius r. If s < p/(p+1), Frank has shown that there exists an r < 1 such that

$$F_s = \left(E_1[N][p] \cap U[r]\right)_{X_1(N)(s)}$$

is the family K_s of canonical subgroups over $X_1(N)(s)$.

Lemma. F_s is finite over $X_1(N)(s)$.

Proof. Frank showed that K(E) equals the zero locus of $z^p - t_{can}(E)z$. Using Weiersträss preparation (Theorem 5.2..2/1) one sees that t_{can} is a locally analytic function on $X_1(N)(s)$.

Now use Stein factorization (Theorem 9.6.2/5 of [BGR]).

From this we get a morphism

$$\Gamma/\gamma: E_1(N)(v)/X_1(N)(v) \to E_0(N)(pv)/X_0(N)(pv).$$

We have a section of order $p, \sigma: X_1 \to E_1$. Define $\tau: X_1(pv) \to E_1(pv)$ by

$$\tau(X_1(pv)) = \Gamma(p^{-1}\sigma(X_1) \cap \Gamma^{-1}(K_0(pv)))$$

[BGR] Bosh, S., U. Güntzer and R. Remmert, Non-Archimedian Analysis, Springer-Verlag, (1984).

Robert F. Coleman

Lecture 17

Frobenius

If $n \geq 0$ and $v < p/p^n(p+1)$ and E corresponds to a point in $X_1(N)(v)$, there exists a unique cyclic subgroup of E, $K_n(E)$, of order p^{n+1} such that

$$K_0(E) = K(E), pK_n(E) = K_{n-1}(E)$$
 and $K_n(E)/K(E) = K_{n-1}(E/K(E)).$

Theorem. Suppose N > 4 and v < 1/(p+1). There is a commutative diagram of rigid morphisms;

$$E_{1}(N)(v) \xrightarrow{\Phi} E_{1}(N)(pv)$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{1}(N)(v) \xrightarrow{\phi} X_{1}(N)(pv)$$

$$\phi(E, \iota_{N}, \alpha) = (\beta_{E}(E), \beta_{E} \circ \iota_{N}, \alpha')$$

where $\beta_E: E \to \beta_E(E) =: E/K(E)$ and $\alpha'(\zeta) = \beta_E(a)$ where $a \in K_1(E)$ and $pa = \alpha(\zeta)$.

Proof. Let U be the family of kernels of reduction and if $r \in p^{\mathbf{Q}} < 1$, U[r] the subfamily of affinoid disks of radius r. If s < p/(p+1), there exists an r < 1 such that

$$K_s = \left(E_1[N][p] \cap U[r]\right)_{X_1(N)(s)}$$

is the family of canonical subgroups over $X_1(N)(s)$.

Is
$$K_s$$
 finite over $X_1(N)(s)$?

Proof. Frank showed that, after choosing a good parameter, z, on E, K(E) equals the zero locus of $z^p - t_{can}(E)z$. For x a supersingular point, T_s our parameter on A_x and $r \in \mathbf{Q}$, 0 < r < 1, let $C_x(N)(r)$ be the circle in A_x of points y such that $v(T_x(y)) = rw_x$. Using

Weierstrass Preparation ([BGR] Theorem 5.2.2/1). Suppose

 $F(X,Y) = \sum_{n\geq 0} a_n(X)Y^n \in K\langle X,Y\rangle$, $a_d(X)$ is a unit and $|a_d| \geq |a_n|$ for all n with strict inequality for n>d. Then there exists a unique monic polynomial of degree d, P(X,Y), in $R\langle X\rangle[Y]$ and $U(X,Y)\in K\langle X,Y\rangle^*$ such that F(X,Y)=P(X,Y)U(X,Y).

one sees that t_{can} is analytic on every residue disk in $X_1(N)(0)$ or $C_x(N)(r)$ if 0 < r < p/(p+1).

Theorem (Proposition 6.3.2/1 of [BGR]). If $f: X \to Y$ is a morphism of reduced affinoids and \tilde{f} is finite, then f is finite.

We get a (homo)morphism

$$\Gamma/\gamma: E_1(N)(v)/X_1(N)(v) \to E(N,p)(v)/X(N,p)(v).$$

Pick a p-th root of unity. Then we have a section of order $p, \sigma: X_1 \to E_1$. Define $\tau: X_1(pv) \to E_1(pv)$ by

$$\tau(X_1(pv)) = \Gamma(p^{-1}\sigma(X_1) \cap \Gamma^{-1}(K_0(pv))).$$

[BGR] Bosh, S., U. Güntzer and R. Remmert, Non-Archimedian Analysis, Springer-Verlag, (1984).

Robert F. Coleman

Lecture 18

Review and improvements

Let X(n,p) be the modular curve whose points correspond to triples $(E.\iota,C)$ where $\iota:\mu_N\to E$ is an embedding and C is a subgroup of order p. Then $X(N,p)=W_0(N)\cup W_\infty(N).$ $W_\infty\cap W_0=\bigcup_s A_s.$ Suppose $T_s:A_s\cong A(p^{-w_s},1)$ such that $|T_s(x)|\to 1$ as $x\to Z(N,p)=:Z(n,p)(0)=:W_\infty(N)-W_0(N).$ For 1>v>0 let Z(N,p)(v) be the set of $x\in W_\infty, x\in Z(N,p)$ or $x\in A_s$ for some s and $v(T_s(x))\leq rw_s.$ We can also well define $Z_1(N)(v)$ for $0\leq v<1$,

If $n \geq 0$ and $v < p/p^n(p+1)$ and E corresponds to a point in X(N,p)(v), there exists a unique cyclic subgroup of E, $K_n(E)$, of order p^{n+1} such that $K_0(E) = K(E), pK_n(E) = K_{n-1}(E)$ and $K_n(E)/K(E) = K_{n-1}(E/K(E))$.

Moduli problems

See Katz-Mazur

Let \mathcal{E} be the category of elliptic curves over rigid spaces. A moduli problem \mathcal{P} on \mathcal{E} is a functor from \mathcal{E} to sets. \mathcal{P} is said to be representible if there is an object $E(\mathcal{P})/M(\mathcal{P})$ in \mathcal{P} such that for every $E/S \in \mathcal{E}$

$$\mathcal{P}(E/S) = Hom_{\mathcal{E}}(E/S, E(\mathcal{P})/M(\mathcal{P})).$$

If N > 4 and (N, p) = 1, the moduli problem E/S goes to pairs (ι, C) where $\iota: S \times \mu_N \to E/S$ is an embedding C is a subgroup of E/S flat over S of rank p is representable by a pair E(N, p)/X(N, p).

Frobenius

Theorem. Suppose N > 4 and v < 1/(p+1). There is a commutative diagram of rigid morphisms;

$$E(N,p)(v) \xrightarrow{\Phi} E(N,p)(pv)$$

$$\downarrow \qquad \qquad \downarrow$$

$$X(N,p)(v) \xrightarrow{\phi} X(N,p)(pv)$$

$$\phi(E,\iota,C) = (E/C, \beta_E \circ \iota, C')$$

where $\beta_E: E \to E/K(E)$ and C' = K(E/C) (which exists).

Lemma. If v < p/(p+1) there exists a unique section of $X(N,p) \to X_1(N)$. Moreover, $s(X_1(N))(v) = X(N,p)(v)$.

Proof.

Let V be the family of subgroups o order p of E(N, p)/X(N, p).

Let U be the family of kernels of reduction in $E_1(N)$ and if $r \in p^{\mathbf{Q}} < 1$, U[r] the subfamily of affinoid disks of radius r. If v < p/(p+1), there exists an r < r' < 1 such that

$$K_v = \left(E_1[N][p] \cap U[t]\right)_{X_1(N)(v)}$$

with t = r or r' is the family of canonical subgroups over $X_1(N)(v)$. In particular $(K_v)_{\infty} = \mu_p$.

Proposition. $s^*V = K_v$.

Proof. Claim: $K_v|_{Z_1(0)}/Z_1(0)$ is finite.

Let $\pi_2: X(N,p) \to X_1(N)$ be $(E,\iota,C) \mapsto (E/C,\iota \mod C)$. Now we can define ϕ as $s \circ \pi_2 \circ s$.

Robert F. Coleman

Lecture 19

Notation

In X(n,p) for $0 \le v < 1$, we have subspaces Z(N,p)(v) defined as follows: $Z(N,p) =: Z(n,p)(0) =: W_{\infty}(N) - W_0(N)$. Suppose $T_s : A_s \cong A(p^{-w_s},1)$ such that $|T_s(x)| \to 1$ as $x \to$. Then if 1 > v > 0, Z(N,p)(v) be the set of $x \in W_{\infty}$, $x \in Z(N,p)$ or $x \in A_s$ for some s and $v(T_s(x)) \le rw_s$. We can also well define $Z_1(N)(v)$ for $0 \le v < 1$,

Frobenius

Theorem. Suppose N > 4 and v < 1/(p+1). There is a commutative diagram of rigid morphisms;

$$E(N,p)(v) \xrightarrow{\Phi} E(N,p)(pv)$$

$$\downarrow \qquad \qquad \downarrow$$

$$X(N,p)(v) \xrightarrow{\phi} X(N,p)(pv)$$

$$\phi(E,\iota,C) = (E/C, \beta_E \circ \iota, C')$$

where $\beta_E: E \to E/K(E)$ and C' = K(E/C) (which exists).

Proof.

Proposition. There exists a section t of $X(N,p) \to X_1(N)$ over $Z_1(N)(v)$ if v < p/(p+1). Moreover, in this case, $t(Z_1(N)(v)) = Z(N,p)(v)$.

We will use

Lemma. If $f: X \to Y$ is a morphism of reduced curves over K and $U \subset X$ and $V \subset Y$ are affinoid subdomains such that $f(U) \subseteq V$ and $\bar{f}: \bar{U} \to \bar{V}$ is an isomorphism. Then there exists a strict neighborhood Z of V in Y and a section $Z \to X$ of F.

and

Lemma. If $f: A(p^{-1}, 1) \to B(0, 1)$ is a finite morphism of degree p+1 and $\deg_{A[r]} f = 1$ for r near 1, then there exist a section of f on $A(p^{-\frac{p}{p+1}}, 1)$

Proof of proposition

Our ϕ will be $t \circ \pi_2$ where All we have to show is that $t(A, \alpha) = (A, \alpha, K(A))$

Let V be the family of subgroups of order p of E(N,p)/X(N,p).

Let U be the family of kernels of reduction in $E_1(N)$ and if $r \in p^{\mathbf{Q}} < 1$, U[r] the subfamily of affinoid disks of radius r. If v < p/(p+1), there exists r < r' < 1 such that

$$K_v = \left(E_1[N][p] \cap U[t]\right)_{X_1(N)(v)}$$

with t = r or r' is the family of canonical subgroups over $X_1(N)(v)$. In particular $(K_v)_{\infty} = \mu_p$.

Proposition. $s^*V = K_v$.

Proof. Claim: $K_v|_{Z_1(0)}/Z_1(0)$ is finite.

A (little) higher level

Let $X_1(Np)(v)$ be the inverse image of X(N,p)(v) under the forgetful map f.

Theorem. Suppose N > 4 and v < 1/(p+1). There is a commutative diagram of rigid morphisms;

$$E_{1}(Np)(v) \xrightarrow{\Phi} E_{1}(Np)(pv)$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{1}(Np)(v) \xrightarrow{\phi} X_{1}(Np)(pv)$$

$$\phi(E, \iota, \alpha) = (\beta_{E}(E), \beta_{E} \circ \iota, \alpha')$$

where $\beta_E: E \to \beta_E(E) =: E/K(E)$ and $\alpha'(\zeta) = \beta_E(a)$ where $a \in K_1(E)$ and $pa = \alpha(\zeta)$.

Proof. We have, $\begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,$

Robert F. Coleman

Lecture 20

Frobenius "finished"

Last time we proved,

Proposition. There exists a unique section t of $X(N,p) \to X_1(N)$ over $Z_1(N)(v)$ if v < p/(p+1). Moreover, in this case, $t(Z_1(N)(v)) = Z(N,p)(v)$.

Also,

Lemma. If $\pi_2: X(N,p) \to X_1(N)$ is the map $(E,\iota,C) \to (E/C,\iota \mod C)$ then $\pi_2(Z(N,p)(v)) = Z_1(N)(pv)$.

Proof.

Our ϕ will be $t \circ \pi_2$. All we have to show is that $t(A, \alpha) = (A, \alpha, K(A))$.

Let V be the family of subgroups of order p of E(N,p)/X(N,p) and U the family of kernels of reduction in $E_1(N)$ and if $r \in p^{\mathbf{Q}} < 1$, U[r] the subfamily of affinoid disks of radius r. If v < p/(p+1), there exists r < r' < 1 such that

$$K_v = \left(E_1[N][p] \cap U[t]\right)_{X_1(N)(v)}$$

with t = r or r' is the family of canonical subgroups over $X_1(N)(v)$. In particular $(K_v)_{\infty} = \mu_p$.

Proposition. $t^*V = K_v$.

Proof. Claim: $K_v|_{Z_1(N)}/Z_1(N)$ is finite. Fix a residue class U. Using what Frank showed K_U equals the zero locus of $z^p - t_{can}z$ for a some good family of parameters z at the origin on $E_1(N)_U$ and some invertible function t_{can} on U.

I am leaving the details of Φ/ϕ on $E_1(Np)/X_1(Np)$ as an exercise. One can also deal with $N \leq 4$.

The U operator

For $v \geq 0$, let $M_k(N, v) = \omega^k(X_1(N)[v])$. Now, $M_k(N, v)$ has a natural structure as a Banach space over K and when $0 \leq v < \frac{p}{p+1}$ there is an operator on this space, $U_{(k)}$. Let $F \in M_k(N, v)$, $v < \frac{p}{p+1}$. Suppose $x \in X_1(N)[v]$ corresponds to (E, ι_n, α) . Then, pointwise,

$$U_{(k)}(F)(x) = \frac{1}{p} \sum_{\phi(y)=x} \check{\beta}_y^* F(y).$$

$$\sum a_n q^n \to \frac{1}{p} \sum a_{np} q^n.$$

Why is this analytic?

First, $U_{(0)} = \frac{1}{p} \operatorname{Tr}_{\phi}$. Now recall, we have a weight one Eisenstein series E on $X_1(p)$ which we can consider as an element of $M_1(N,v)$. Considered as a form ν_E on $E_1(N,p)(v)$, on $(\mathbf{G}_m/q^{\mathbf{Z}}, \iota_{Np})$ it is

$$E(q)\frac{\mathrm{d}T}{T}.$$

Now $\Phi^*\nu_E$ has q-expansion $pE(q^p)\frac{\mathrm{d}T}{T}$. Let E^{ϕ} be the section of $M_1(N,v)$, v<1/(p+1), with q-expansion $E(q^p)$. For v close enough to 1, $1/E^{\phi}\in M_{-1}(N,v)$. Then,

$$U_{(k)}F = E^k U_0(F/(E^{\phi})^k).$$

 $U_{(k)}$ is compact.

Proof.

${ m N} \leq 4$

Suppose $A, B \in \mathbf{Z}$, A, B > 4, (AB, p) = 1 and (A, B) = N, we define $M_{N,k}(v)$ with the intersection of the images via the forgetful maps of $M_{A,k}(v)$ and $M_{B,k}(v)$ in $M_{LCM(A,B),k}(v)$. One has to show that these are all canonically isomorphic.

Robert F. Coleman

Lecture 21

"Continuity" explained

Suppose v < p/(p+1). First $W = t^*V$ is finite over $X_1(N)(v)$ as is each connected component. Finally, if r < r' < 1 are such that

$$K_v = \left(E_1[N][p] \cap U[t]\right)_{X_1(N)(v)}$$

with t = r or r', U[r] and $E_1(N) - U[r']$ are disconnected and

$$W = (U[r] \cap W) \cup ((E_1(N) - U[r']) \cap W).$$

The U operator

For $v \geq 0$, let $Z_1(Np)(v) = \pi^{-1}(Z(N,p)(v))$ and let $M_k(N,v) = \omega^k(Z_1(Np))$. Now, $M_k(N,v)$ has a natural structure as a Banach space over K and when $0 \leq v < \frac{p}{p+1}$ there is an operator on this space, $U_{(k)}$. Let $F \in M_k(N,v)$, $v < \frac{p}{p+1}$. Suppose $x \in Z_1(Np)(v)$ corresponds to (E,ι,α) . Then, pointwise,

$$U_{(k)}(F)(x) = \frac{1}{p} \sum_{\phi(y)=x} \check{\beta}_y^* F(y),$$

where $\beta_y: E_y \to E_y/K(E_y) = E$. Also, if $E = \mathbf{G}_m/q^{\mathbf{Z}}$ and α is the natural embeddings and $F(x) = (\sum a_n(\iota)q^n)(\frac{\mathrm{d}T}{T})^k$ then

$$U_{(k)}(F)(x) = \left(\sum a_{np}(\iota^{p^{-1}})q^n\right)\left(\frac{\mathrm{d}T}{T}\right)^k.$$

Why is this analytic?

First, $M_0((N, v)) = A(Z_1(Np)(v))$ and $U_{(0)}$ is

$$\frac{1}{p} \operatorname{Tr}_{\phi} \Big|_{Z_{1}(Np)(v)}^{Z_{1}(Np)(v)} \circ \operatorname{Res}_{Z_{1}(Np)(\frac{v}{p})}^{Z_{1}(Np)(v)}.$$

Now recall, we have a weight one Eisenstein series E on $X_1(p)$,

$$E(q) = 1 + \frac{2}{L_p(0, \mathbf{1})} \sum_{n \ge 1} \left(\sum_{\substack{d \mid n \\ (d, p) = 1}} \tau^{-1}(d) \right) q^n,$$

which we can consider as an element ν_E of $M_1(N,v)$. Now $\Phi^*\nu_E$ has q-expansion $pE(q^p)\frac{\mathrm{d}T}{T}$. Let E^{ϕ} be the section of $M_1(N,v)$, v<1/(p+1), with q-expansion $E(q^p)$. For v close enough to 0, we showed $1/E^{\phi} \in M_{-1}(N,v)$ (in fact, v<1/(p+1) is enough). Then,

$$U_{(k)}F = E^k U_0(F/(E^{\phi})^k).$$

 $U_{(k)}$ is compact.

Proof.

w $M_k(N, v)$ is pretty big and one can show $\det(1 - TU_{(k)})$ has infinitely many zeroes. However,

Theorem. If $F \in M_k(N, v)$ is an eigenvector of $U_{(k)}$ with eigenvaluew α and $v(\alpha) < k-1$ then F is classical.

(The proof is now on the web.)

$N \leq 4$

Suppose $A, B \in \mathbb{Z}$, A, B > 4, (AB, p) = 1 and (A, B) = N, we define $M_k(N, v)$ to be the intersection of the images of $M_{A,k}(v)$ and $M_{B,k}(v)$ in $M_{AB,k}(v)$. One has to show that these are all canonically isomorphic.

Robert F. Coleman

Lecture 22

"Another" definition of U

First,
$$M_0((N, v)) = A(Z_1(Np)(v))$$
 and $U_{(0)}$ is
$$\frac{1}{p} \operatorname{Tr}_{\phi} \Big|_{Z_1(Np)(v)}^{Z_1(Np)(\frac{v}{p})} \circ \operatorname{Res}_{Z_1(Np)(\frac{v}{p})}^{Z_1(Np)(v)}.$$

Recall, we have a weight one Eisenstein series E on $X_1(p)$,

$$E(q) = 1 + \frac{2}{L_p(0, \mathbf{1})} \sum_{n \ge 1} \left(\sum_{\substack{d \mid n \\ (d, p) = 1}} \tau^{-1}(d) \right) q^n,$$

which we can consider as an element ν_E of $M_1(N,v)$. Now $\Phi^*\nu_E$ has q-expansion $pE(q^p)\frac{\mathrm{d}T}{T}$. Let E^{ϕ} be the section of $M_1(N,v)$, v<1/(p+1), with q-expansion $E(q^p)$. For v close enough to 0, we showed $1/E^{\phi} \in M_{-1}(N,v)$ (in fact, v<1/(p+1) is enough). Then, define

$$U_{(k)}F = E^k U_0(F/(E^{\phi})^k).$$

 $U_{(k)}$ is compact.

Proof.

Now $M_k(N, v)$ is pretty big and one can show $\det(1 - TU_{(k)})$ has infinitely many zeroes. However,

Theorem. If $F \in M_k(N, v)$ is an eigenvector of $U_{(k)}$ with eigenvaluew α and $v(\alpha) < k-1$ then F is classical.

(The proof is "Classical and Overconvergent Forms" which is now on the web.)

The U operator in families

We defined $U_{(k)}(F) = E^k U_0(F/(E^{\phi})^k)$. Let $\mathcal{E} = E/E^{\phi}$. This is a function close to 1 on $Z_1(N)(v)$ for v small. In fact, for v < 1/(p+1),

$$|\mathcal{E} - 1| \le p^{(p+1)v - 1}.$$

So if u_k is the operator on $M_{(0)}(N,v)$, $G \mapsto U_{(0)}(G \cdot \mathcal{E}^k)$,

$$E^{-k}U_{(k)}(F) = u_k(F/E^k),$$

but since \mathcal{E} is close to 1, u_k makes sense for any $k \in \mathbb{C}_p$ which is not too big. Suppose $|s| < |\pi/p|$ then $\exists v$ such that

$$|\mathcal{E} - 1| < |\pi/s|$$

on $Z_1(Np)(v)$ this means

$$\mathcal{E}^s = 1 + (\mathcal{E} - 1) + \dots + {s \choose n} (\mathcal{E} - 1)^n + \dots$$

converges on $Z_1(Np)(v)$. Thus, if $r \in p^{\mathbf{Q}} < |\pi/p|$ and $|\mathcal{E} - 1| < |\pi|/r$ on $Z_1(Np)(v)$, we get an operator $\mathcal{U}_{r,v}$ over A(B[0,r]) on $M(r,v) =: A(B[0,r] \times Z_1(Np)(v))$ which is

$$(U_{(0)}\otimes 1)\circ m_{\mathcal{E}^s}.$$

We know this operator is compact. Thus we get characteristic series $P_{r,v}(T)$ for every (r,v), as above. But they are all "the same."

Theorem. There is a unique rigid analytic function $P(s,T) = P_N(s,T)$ on $\mathcal{B}^* \times \mathbf{C}_p$ defined over \mathbf{Q}_p , i.e. P(s,T) is a power series over \mathbf{Q}_p in s and T, which converges for $|s| < |\pi/p|$, such that for $k \in \mathbf{Z}$ and $v \in \mathbf{Q}$ such that 0 < v < p/(p+1),

$$P(k,T) = \det(1 - TU_{(k)}|M_k(v)).$$

$N \le 4$

Suppose $A, B \in \mathbb{Z}$, A, B > 4, (AB, p) = 1 and (A, B) = N, we define $M_k(N, v)$ to be the intersection of the images of $M_{A,k}(v)$ and $M_{B,k}(v)$ in $M_{AB,k}(v)$. One has to show that these are all canonically isomorphic.

Robert F. Coleman

Lecture 23

Classical forms

Suppose $F(q) = \sum_{n\geq 0} a_n q^n$ is the q-expansion of a normalized weight k eigenform on $X_1(N)$ of character χ . Associated to F there are (at most) two eigenforms (oldforms) on X(N,p) whose U_p eigenvalues are the roots of

$$X^2 - a_p X + \chi(p) p^{k-1}$$

The Spectral Curve

Theorem. There is a unique rigid analytic function $P(s,T) = P_N(s,T)$ on $\mathcal{B}^* \times \mathbf{C}_p$ defined over \mathbf{Q}_p , i.e. P(s,T) is a power series over \mathbf{Q}_p in s and T, which converges for $|s| < |\pi/p|$, such that for $k \in \mathbf{Z}$ and $v \in \mathbf{Q}$ such that 0 < v < p/(p+1),

$$P(k,T) = \det(1 - TU_{(k)}|M_k(v)).$$

Proof. Because "If $\phi: A \to B$ is a homomorphism of Banach algebras then $\phi^*E =: E \otimes_A B$ is orthonormizable over B and

$$P_{\phi^*L}(T) = \phi(P_L(T)).''$$

our $P_{r,v}(T)$ is "independent of r." Now because ϕ is finite, if $p/(p+1) > v \ge v' \ge v/p$,

$$T_{v'}^{v'/p} \circ R_{v'/p}^{v'} = R_{v'}^v \circ T_v^{v/p} \circ R_{v/p}^{v'},$$

where T = Tr and R = Res. As

$$(T_v^{v/p} \circ R_{v/p}^{v'} \circ m_{\mathcal{E}^s}) \circ R_{v'}^v = T_v^{v/p} \circ R_{v/p}^v \circ m_{\mathcal{E}^s} = U_{r,v},$$

the "independence" of v follows from: "Suppose E_1 and E_2 are orthonormizable Banach modules over A. Suppose u is a compact homomorphism from E_1 to E_2 and $v: E_2 \to E_1$ is a continuous homomorphism. Then $P_{u \circ v}(T) = P_{v \circ u}(T)$."

Now $D =: (\mathbf{Z}/p\mathbf{Z})^*$ acts on Z(N,p)(v) and

$$M(t, v) = \bigoplus_{\epsilon \in \hat{D}} M(t, v, \epsilon)$$

and

$$P(s,T) = \prod_{\epsilon \in \hat{D}} P_{\epsilon}(s,T)$$

where

$$P_{\epsilon}(s,T)|_{B[0,t]\times\mathbf{C}_{p}} = \det(1 - T\mathcal{U}_{t,v}|M(t,v,\epsilon)).$$

Thus we get an entire function on $W^* \times \mathbf{C}_p$. Its zero locus is the fiber of the **spectral** curve of U over W^* .

A Formula

Theorem. Suppose $N \geq 4$. Then

$$T\frac{d}{dT}P_N(T)/P_N(T) = \sum_{m>1} A_m T^m$$

where A_m is the element of $\mathbf{Z}_p[[\mathbf{Z}_p]] \subset A(\mathcal{W}^*)$, expressed by the finite sum,

$$A_m = \sum_{\gamma \in W_{n,m}} \sum_{\mathcal{O} \in O_{\gamma}} h(\mathcal{O}) B_N(\mathcal{O}, \gamma) \cdot \frac{[\gamma]}{\gamma^2 - p^m}$$

where $B_N(\mathcal{O}, \gamma)$ is the number of elements of $\mathcal{O}/N\mathcal{O}$ of order N fixed under multiplication by $\overline{\gamma}$.

For an order \mathcal{O} in a number field, let $h(\mathcal{O})$ denote the class number of \mathcal{O} . If γ is an algebraic integer, let O_{γ} be the set of orders in $\mathbf{Q}(\gamma)$ containing γ . Finally, for m an integer, let $W_{p,m}$ denote the finite set of $\gamma \in \mathbf{Q}_p$ such that $\mathbf{Q}(\gamma)$ is an imaginary quadratic field, γ is an algebraic integer, $Norm_{\mathbf{Q}}^{\mathbf{Q}(\gamma)}(\gamma) = p^m$ and $v(\gamma) = 0$.

Robert F. Coleman

Lecture 24

"Review"

As always (N,p)=1. W(N) is the rigid analytic space whose \mathbf{C}_p points are continuous characters from $(\mathbf{Z}/N\mathbf{Z})^* \times \mathbf{Z}_p^*$ into \mathbf{C}_p^* . $W^*(N)$ is the open subspace of characters of the form $\chi \cdot \langle \langle \ \rangle \rangle^s$ where χ is a character on $(\mathbf{Z}/Np\mathbf{Z})^*$ and $|s|<|\pi/p|$. We call the corresponding spaces of character on $1+p\mathbf{Z}_p$, \mathcal{B} and \mathcal{B}^* . If $D(M)=Hom((\mathbf{Z}/M\mathbf{Z})^*,\mathbf{C}_p^*)$,

$$\mathcal{W}(N) = D(N) \times \mathcal{B}$$
 and $\mathcal{W}^*(N) = D(N) \times \mathcal{B}^*$.

Also $\mathcal{B} \cong B(1,1)$ and $\mathcal{B}^* \cong B(0,p^{\frac{p-2}{p-1}})$. Now $(\mathbf{Z}/Np\mathbf{Z})^*$ acts on $Z_1(Np)(v)$ (by "diamond operators"). For each v>0, t>0 and $\chi\in D(Np)$ let $M(v,\chi)$ and $M(v,t,\chi)$ be the spaces of rigid analytic functions on $Z_1(Np)(v)$ and $B(0,t)\times Z_1(Np)(v)$ with character χ . These spaces are affinoids if $v\in\mathbf{Q}$ and $t\in p^{\mathbf{Q}}$. We have a compact U-operator on all these spaces $(U_{(0)}\otimes 1)\circ m_{\mathcal{E}^t}$ if v is sufficiently small (< p/(p+1)) and $t< p^{\frac{p-2}{p-1}}$.

Theorem. There are unique rigid analytic functions $P_{\chi}(s,T)$ on $\mathcal{B}^* \times \mathbf{C}_p$ defined over \mathbf{Q}_p , such that for $k \in \mathbf{Z}$ and $v \in \mathbf{Q}$ such that 0 < v < p/(p+1),

$$P_{\chi}(k,T) = \det(1 - TU_{(k)}|M_k(v,\chi)).$$

Let Q be the rigid function on $\mathcal{W}^*(N) \times \mathbf{C}_p$ defined by $Q(\chi, s, z) = P_{\chi}(s, z)$, for $\chi \in D(Np)$, $s \in \mathcal{B}^*$ and $z \in \mathbf{C}_p$.

Theorem. Q extends analytically to a function on $W(N) \times \mathbf{C}_p$.

See "On the coefficients of the characteristic series of the U-operator," which is now on the course webpage.

The key object(s) to consider is the q-expansion $\mathbf{E}(q)$ which at $\kappa \in \mathcal{B}$ is

$$E_{\kappa}(q) = 1 + \frac{2}{\zeta^*(\kappa)} \sum_{n>1} \sigma_{\kappa}^*(n) q^n.$$

Proposition. There is an an analytic function \mathbf{E}_p on a "strict" neighborhood of $Z_{\mathcal{B}} =: \mathcal{B} \times Z_1(p)$ in $\mathcal{B} \times X_1(p)$ with q-expansion at $\kappa E_{\kappa}(q)/E_{\kappa}(q^p)$ bounded by 1 on $Z_{\mathcal{B}}$.

We may now use the operator $U =: (U_{(0)} \otimes 1) \circ m_{\mathbf{E}_p}$ on $M^{\dagger}(N)$, the space of q-expansions F(q) with coefficients in $A(\mathcal{B})$ such that $F(q)/\mathbf{E}(q)$ is the q-expansion of an analytic function which converges on a "strict" neighborhood of $Z_{\mathcal{B}} =: \mathcal{B} \times Z_1(pN)$ in $\mathcal{B} \times X_1(pN)$.

We also get to define: A series $\sum_{n\geq 1} a_n q^n$, $a_n \in K$ is "the q-expansion of an OC form of **type** $\alpha = \chi \cdot \kappa$ " if $F(q)/E_{\kappa}(q)$ is the q-expansion of an OC function on $Z_1(Np)$ with charater χ . When $\kappa(a) = a^k$, $k \in \mathbf{Z}$, F(q) will be the q-expansion of an OC form of weight k and character $\chi \cdot \omega^{-k}$.

Hecke Operators

First, if $l \in (\mathbf{Z}/N\mathbf{Z})^* \times \mathbf{Z}_p^*$, $\kappa \in \mathcal{B}$,

$$(F|\langle l\rangle^*(q))|_{\kappa} = \kappa(\langle\langle l\rangle\rangle)E_{\kappa}(q)(\frac{F|_{\kappa}}{E_{\kappa}}|\langle l\rangle)(q).$$

When $\kappa(a) = a^j, k \in \mathbf{Z}$,

$$(F|\langle l\rangle^*)_k = l^k F|_k \langle l\rangle.$$

For prime ℓ , let ψ_{ℓ} be the operator on $A(\mathcal{B})[[q]]$

$$\psi_{\ell}(\sum_{n} a_{n} q^{n}) = \sum_{n} a_{n\ell} q^{n}.$$

Proposition. For each prime number l there is a unique continuous operator $T(\ell)$ on $M^{\dagger}(N)$ such that, for $F \in M^{\dagger}(N)$, when $\ell = p$,

$$(F|T(p))|_{\kappa} = E_{\kappa} \cdot U(\frac{F_{\kappa}}{E_{\kappa}}), \text{ when } l|N \quad F|T(\ell)(q) = \psi_{\ell}(F(q))$$

and when $l \not\mid Np$

$$(F|T(l))(q) = \psi_{\ell}(F(q)) + \ell^{-1}(F|\langle \ell \rangle^*)(q^{\ell}).$$

Robert F. Coleman

Lecture 25

Hecke opertors

We now have the operator $\mathbf{T}(p)$ on $\boldsymbol{M}^{\dagger}(N)$ which is

$$F(q) \mapsto \mathbf{E}(q)(U_0 \otimes 1)(\frac{F(q)}{\mathbf{E}(q^p)}).$$

If κ is arithmetic, $\kappa = \psi \cdot \langle \langle \rangle \rangle^k$ where ψ is a character on $1 + p\mathbf{Z}_p$ of finite order and $k \in \mathbf{Z}$, $F_{\kappa}(q)$ is the q-expansion of weight k modular form G, of tame level N, and

$$(F(q)|\mathbf{T}(p))_{\kappa} = (G|T(p))(q).$$

If $\ell \in (\mathbf{Z}/N\mathbf{Z})^* \times \mathbf{Z}_p^*$, $\kappa \in \mathcal{B}$,

$$(F|\langle l\rangle^*(q))|_{\kappa} = \kappa(\ell)E_{\kappa}(q)(\frac{F_{\kappa}}{E_{\kappa}}|\langle \ell\rangle)(q).$$

When κ is arithmetic, as above,

$$(F(q)|\langle \ell \rangle^*)_{\kappa} = \ell^k F|_{\kappa} \langle \ell \rangle(q).$$

For prime ℓ , let ψ_{ℓ} be the operator on $A(\mathcal{B})[[q]]$

$$\psi_{\ell}(\sum_{n} a_{n} q^{n}) = \sum_{n} a_{n\ell} q^{n}.$$

Proposition. For each prime number ℓ there is a unique continuous operator $\mathbf{T}(\ell)$ on $M^{\dagger}(N)$ such that, for $F \in M^{\dagger}(N)$, when $\ell|Np$

$$F|T(\ell)(q) = \psi_{\ell}(F(q))$$

and when $\ell \not| Np$

$$(F|T(l))(q) = \psi_{\ell}(F(q)) + \ell^{-1}(F|\langle \ell \rangle^*)(q^{\ell}).$$

Suppose $\ell \neq p$. For any prime ℓ we have a function \mathbf{E}_{ℓ} on a strict neighborhood of $\mathcal{W} \times Z(\ell)$ with q-expansion $\mathbf{E}(q)/\mathbf{E}(q^{\ell})$.

Proof. Let M = Np. We first look at $X(M; \ell)$ the modular xurve which classifies triples (E, α_M, C) where $|C| = \ell$ and Image $(\alpha_M) \cap C = 0$ and define $Z(M; \ell)(v)$. We have

$$g_1, g_2: Z(M;\ell)(v) \to Z_1(M)(v)$$

and

$$\ell^{-1} \operatorname{Tr}_{g_1} \circ g_2^*$$

on $A^{\dagger}(M)$ which on q-expansions if $\ell|N$ is ψ_{ℓ} . Now

$$\psi_{\ell}(F(q)) = \mathbf{E}(q)\psi_{\ell}\left(\frac{F(q)}{\mathbf{E}(q)}\cdot\mathbf{E}_{\ell}(q)\right).$$

We define $\mathbf{T}(n)$, for positive integers n by:

$$\sum_{n\geq 1} \frac{\mathbf{T}(n)}{n^t} = \prod_{\ell \mid Np} (1 - \mathbf{T}(\ell)\ell^{-\ell})^{-1} \prod_{(\ell,Np)=1} (1 - \mathbf{T}(\ell)\ell^{-t} + \langle \ell \rangle^* \ell^{-1-2t})^{-1},$$

where the products are over primes ℓ .

Let **T** be the ring generated by the operators $\mathbf{T}(\ell)$ and $\langle d \rangle^*$, (d, Np) = 1. We will use Q, **T** and Riesz theory to build the eigencurve.

Robert F. Coleman

Lecture 26

Building the Eigencurve

We now have a space $M^{\dagger}(N)$ of "families of q-expansions of overconvergent forms of tame level N." It is a module over $A(\mathcal{B})$ and we have an $A(\mathcal{B})$ algebra $\mathbf{T} =: \mathbf{T}(N)$ generated by operators $\langle d \rangle^*$, $d \in (\mathbf{Z}/N\mathbf{Z})^* \times \mathbf{Z}_p^*$, and $\mathbf{T}(n)$, $n_{>0} \in \mathbf{Z}$. If X is any affinoid in \mathcal{B} , $M_X =: M^{\dagger}(N) \hat{\otimes} A(X)$ is the direct limit of Banach submodules N_n on which $\mathbf{T}(p)$ acts compactly. In fact, for each character $\chi \in D(Np) = ((\mathbf{Z}/Np\mathbf{Z})^*)^{\hat{}}$ there is an power series $P_{\chi}(s,T) \in A(\mathcal{B})[[T]]$ whose restiction to X is $\det(1-\mathbf{T}(p)|N_n(\chi))$.

Let

$$S_{\chi} = \{(b, z) \in \mathcal{B} \times \mathbf{C}_{p} : P_{\chi}(s, z) = 0\}.$$

Fix χ and let $S = S_{\chi}$ and $P = P_{\chi}$.

Lemma. Suppose $X \subset \mathcal{B}$ and $Y \subset S_X$ are affinoid subdomains, Y and S - Y are disconnected and Y is finite over X. Then there exists $R(T) \in A(X)[T]$ and $Q(T) \in A(X)[[T]]$ such that R is monic Q is entire, R(0) is a unit, Q(0) = 1, $(R^*(T), Q(T)) = 1$,

$$P(T) = R^*(T)Q(T)$$

and Y is the zero locus of R. (A(Y) = A(X)[T]/R(T).)

Riesz theory tells us

$$M_X = N(Y) \oplus F(Y),$$

where N(Y) is projective of rank $d_Y =: \deg R$, $R^*(\mathbf{T}(p))$ annihilates N(Y) and is invertible on F(Y). In particular, \mathbf{T} acts on N(Y).

Let $\mathbf{T}_Y =: \mathbf{T}_Y(N)$ denote the image of \mathbf{T} in $\operatorname{End}_{A(X)}(N(Y))$.

Proposition. T_Y is finite of degree d_Y over A(X).

Proof. Define

$$\langle , \rangle : \mathbf{T}_Y \times N(Y) \to A(X)$$
 by $\langle h, F \rangle = a_1(F|h).$

This pairing is perfect. The key point is that

$$\langle \mathbf{T}(n), F \rangle = a_n(F).$$

Thus we get an affinoid $E_Y(N)$ finite over X, $\kappa: E_Y(N) \to X$.

Gouvêa-Mazur

Suppose $\chi \in D(Np)$, $\rho \in \mathcal{B}$, $r_{<1} \in p^{\mathbf{Q}}$ and $\alpha_{\geq 0} \in Q$. First

$$Y =: \{ (\tau, z) \in S : |\tau(1+p) - \rho(1+p)| \le r, v(z) = \alpha \}$$

is an affinoid subdomain of S quasi-finite over $X = B[\rho, r]$. In fact, if r is small enough it is finite and Y is disconnected from S - Y.

Proposition. Suppose, $\rho = \psi \cdot \langle \langle \rangle \rangle^k$ where ψ has finite order, $k \in \mathbf{Z}$ and $\alpha < k-1$. Then the degree of $E_Y(N)$ over X equals the number of classical eigenforms of tame level N and character $\chi \cdot \psi \cdot \omega^{-k}$. Moreover, if $x \in E_Y(N)(L)$, $\kappa(x) = \psi \cdot \langle \langle \rangle \rangle^j \in X$, $j \in \mathbf{Z}$, $\alpha < j-1$.

$$\sum_{n>1} \mathbf{T}(n)(x)q^n$$

is the q-expansion of a classical eigenform (minus its constant term), of tame level N of character $\chi \cdot \psi \cdot \omega^{-j}$.

Conjecture. One can take $r = p^{-\alpha}$.

Robert F. Coleman

Lecture 27

Comments on Last Time

First, inside $M^{\dagger}(N)$ we have $C^{\dagger}(N)$ which are the elements with constant term 0. T acts on C^{\dagger} .

(Recall, we've fixed χ .) Suppose X is an affinoid in \mathcal{B} and Y is a "clopen" affinoid in S_X finite of degree d over X. Then we got a projective module N(Y) of rank d in M_X and we defined \mathbf{T}_Y to be the image of \mathbf{T} in $\operatorname{End}_X(N(Y))$. We started proving,

Proposition. T_Y is finite of degree d over A(X).

Let $N^0(Y) = C_X \cap N(Y)$. Then $N^0(Y)$ is projective of rank $d - \delta$ where $\delta = 1$ or 0. Also let \mathbf{T}_Y^0 the image of \mathbf{T} in $\operatorname{End}_X(N^0(Y))$.

We proved, \mathbf{T}_{Y}^{0} is finite of degree $d - \delta$ over A(X).

$$0 \to I \to \mathbf{T}_Y \to \mathbf{T}_Y^0 \to 0$$
 and $0 \to N^0(Y) \to N(Y) \to J \to 0$

and we have perfect pairing $(i, j) \mapsto a_0(j|i)$.

Also the conjecture stated in the last lecture is true by Hida when $\alpha = 0$.

Glueing

For every $Y \subset S = S_{\chi}$ such that Y is finite over $X \subset \mathcal{B}$ and "clopen" in S_X we found an affiniod $E_Y(N)$ which is finite over X and such that $A(E_Y(N)) = \mathbf{T}_X(N)$. Let \mathcal{C} be the collection of these Y.

Proposition. S is admissibly covered by C.

This means if $A(S) =: A(\mathcal{B})[[T]]^{entire}/P(T)$ and $h: A(S) \to A$ is a continuous homomorphism into an affinoid algebra. There exists a finite collection $Y_i \in \mathcal{C}$ such that if $f \in A(S)$ vanishes on all the Y_i , h(f) = 0.

Proposition. Suppose $Y_1, Y_2 \in \mathcal{C}$. (i) $Y_3 =: Y_1 \cap Y_2 \in \mathcal{C}$. (ii) $E_{Y_3}(N)$ is naturally a subdomain of $E_{Y_1}(N)$ and $E_{Y_2}(N)$.

Proof.

Now we make E_{χ} is $\coprod_{Y \in \mathcal{C}} E_Y(N)$ with the identifications $\beta_1(x) = \beta_2(x)$ if $x \in E_{Y_1 \cap Y_2}(N)$ and

$$\beta_i : E_{Y_1 \cap Y_2}(N) \to E_{Y_i}(N)$$

is the natural morphism. We can also mske $E_{\chi}^{0} \subset E_{\chi}$.

Properties of the Eigencurve

- I. We have a natural surjective morphism $\kappa: E_{\chi} \to \mathcal{B}$. v
- II. There are analytic functions $\langle d \rangle^*$, $d \in (\mathbf{Z}/N\mathbf{Z})^* \times \mathbf{Z}_p^*$, and $\mathbf{T}(n)$, $n_{>0} \in \mathbf{Z}$ and $\mathbf{T}(p)$ is invertible.
- III. If $\sum_{n\geq 0} a_n q^n$ is the q-expansion of an overconvergent eigenform on $X_1(Np^n)$ of weight k and character $\chi \cdot \psi \cdot \omega^{-k}$ such that $a_p \neq 0$ then there exists a point $x \in E_\chi$ such that

$$a_n = \mathbf{T}(n)(x)$$
 for $n > 0$.

IV. If $x \in E_{\chi}$ and $\kappa(x) = \psi \cdot \langle \langle \rangle \rangle^k$,

$$\sum_{n>1} \mathbf{T}(n)(x)q^n$$

is the q-expansion of an OC eigenform (minus its constant term), of tame level N and character $\chi \cdot \psi \cdot \omega^{-k}$.

- V. The morphism $x \to (\kappa(x), \mathbf{T}(p)(x))$ a locally finite from E_{χ} onto S_{χ} .
- VI. There exists a pseudo-representation $\rho = (T, D)$: $G_{\mathbf{Q}} \to \mathbf{T}$ such that, if $(\ell, Np) = 1$,

$$T(\operatorname{Frob}_{\ell}) = \mathbf{T}(\ell)$$
 and $D(\operatorname{Frob}_{\ell}) = \langle \ell \rangle^* / \ell$.

Robert F. Coleman

Lecture 28

Glueing

For every $Y \subset S = S_X$ such that Y is finite over $X \subset \mathcal{B}$ and "clopen" in S_X we found an affiniod $E_Y(N)$ which is finite over X and such that $A(E_Y(N)) = \mathbf{T}_X(N)$. Let \mathcal{C} be the collection of these Y.

Proposition. S is admissibly covered by C.

This means that the image of every morphism of an affinoid into S is a coved by finitely many elements of C.

Proposition. Suppose $Y_1, Y_2 \in \mathcal{C}$. (i) $Y_3 =: Y_1 \cap Y_2 \in \mathcal{C}$. (ii) $E_{Y_3}(N)$ is naturally a subdomain of $E_{Y_1}(N)$ and $E_{Y_2}(N)$.

Proof.

Now we make E_{χ} is $\coprod_{Y \in \mathcal{C}} E_{Y}(N)$ with the identifications $\beta_{1}(x) = \beta_{2}(x)$ if $x \in E_{Y_{1} \cap Y_{2}}(N)$ and

$$\beta_i : E_{Y_1 \cap Y_2}(N) \to E_{Y_i}(N)$$

is the natural morphism. We can also mske $E_\chi^0 \subset E_\chi.$

Properties of the Eigencurve

- I. We have a natural surjective morphism $\kappa: E_{\chi} \to \mathcal{B}$. v
- II. There are analytic functions $\langle d \rangle^*$, $d \in (\mathbf{Z}/N\mathbf{Z})^* \times \mathbf{Z}_p^*$, and $\mathbf{T}(n)$, $n_{>0} \in \mathbf{Z}$ and $\mathbf{T}(p)$ is invertible.
- III. If $\sum_{n\geq 0} a_n q^n$ is the q-expansion of an overconvergent eigenform on $X_1(Np^n)$ of weight k and character $\chi \cdot \psi \cdot \omega^{-k}$ such that $a_p \neq 0$ then there exists a point $x \in E_\chi$ such that

$$a_n = \mathbf{T}(n)(x)$$
 for $n > 0$.

IV. If $x \in E_{\chi}$ and $\kappa(x) = \psi \cdot \langle \langle \rangle \rangle^k$,

$$\sum_{n>1} \mathbf{T}(n)(x)q^n$$

is the q-expansion of an OC eigenform (minus its constant term), of tame level N and character $\chi \cdot \psi \cdot \omega^{-k}$.

V. The morphism $x \to (\kappa(x), \mathbf{T}(p)(x))$ a locally finite from E_{χ} onto S_{χ} .

VI. There exists a pseudo-representation $\rho = (T, D)$: $G_{\mathbf{Q}} \to \mathbf{T}$ such that, if $(\ell, Np) = 1$,

$$T(\operatorname{Frob}_{\ell}) = \mathbf{T}(\ell)$$
 and $D(\operatorname{Frob}_{\ell}) = \langle \ell \rangle^* / \ell$.

This requires,

Theorem (corrected) (Wiles). Suppose R is a topological \mathbf{Z}_p -algebra and $\{\mathfrak{p}_i\}_{i=1}^{\infty}$ are ideals such that $R/\mathfrak{p}_i \in \mathcal{C}$ and

$$R = \lim_{\stackrel{\longleftarrow}{}} R / \bigcap_{i=1}^{n} \mathfrak{p}_i,$$

 Σ is a dense subset of G, t, d are functions $\Sigma \to R$ and p-rs $T_i: G \to R/\mathfrak{p}_i$ such that

$$(T_i(\sigma), D_i(\sigma)) \equiv (t(\sigma), d(\sigma)) \mod \mathfrak{p}_i$$

for $\sigma \in \Sigma$. Then there exists a unique p-r $T: G \to R$ such that $T(\sigma) \equiv T_i(\sigma) \mod \mathfrak{p}_i$ for all $\sigma \in \Sigma$ and all i.

Robert F. Coleman

Lecture 29

Properties of the Eigencurve

I. We have a natural morphism $\kappa: \mathbf{E}_{\chi} \to \mathcal{B}$.

II. There are analytic functions $\langle d \rangle^*$, $d \in (\mathbf{Z}/N\mathbf{Z})^* \times \mathbf{Z}_p^*$, and $\mathbf{T}(n)$, $n_{>0} \in \mathbf{Z}$ and $\mathbf{T}(p)$ is invertible. Let \mathbf{T}_{χ} be $\lim_{\longrightarrow} \mathbf{T}_Y(N)$.

 $Y \in \mathcal{C}$

III. If $\sum_{n\geq 0} a_n q^n$ is the q-expansion of an overconvergent eigenform on $X_1(Np^n)$ of weight k and character $\chi \cdot \psi \cdot \omega^{-k}$ over K such that $a_p \neq 0$ then there exists a point $x \in \mathbf{E}_{\chi}(K)$ such that

$$\kappa(x) = \chi \cdot \psi \cdot \langle \langle \rangle \rangle$$
 and $a_n = \mathbf{T}(n)(x)$ for $n > 0$.

IV. If $x \in \mathbf{E}_{\chi}$ and $\kappa(x) = \psi \cdot \langle \langle \rangle \rangle^k$,

$$F_x(q) =: \sum_{n \ge 1} \mathbf{T}(n)(x) q^n$$

is the q-expansion of an OC eigenform (minus its constant term), of tame level N and character $\chi \cdot \psi \cdot \omega^{-k}$.

V. The morphism $x \to (\kappa(x), \mathbf{T}(p)(x))$ a locally finite from E_{χ} onto S_{χ} .

VI. There exists a pseudo-representation (T,D): $G_{\mathbf{Q}} \to \mathbf{T}_{\chi}$ such that, if $(\ell, Np) = 1$,

$$T(\operatorname{Frob}_{\ell}) = \mathbf{T}(\ell)$$
 and $D(\operatorname{Frob}_{\ell}) = \langle \ell \rangle^* / \ell$.

Theorem (corrected) (Wiles). Suppose R is a topological \mathbf{Z}_p -algebra and $\{\mathfrak{p}_i\}_{i=1}^{\infty}$ are ideals such that R/\mathfrak{p}_i is a local complete \mathbf{Z}_p -algebra and $R = \lim_{\longleftarrow} R/\bigcap_{i=1}^n \mathfrak{p}_i$, Σ is a dense subset of G, t, d are functions $\Sigma \to R$ and p-rs (T_i, D_i) : $G \to R/\mathfrak{p}_i$ such that

$$(T_i(\sigma), D_i(\sigma)) \equiv (t(\sigma), d(\sigma)) \mod \mathfrak{p}_i$$

for $\sigma \in \Sigma$. Then there exists a unique p-r (T, D): $G \to R$ such that $(T(\sigma), D(\sigma)) \equiv (T_i(\sigma), D_i(\sigma))$ mode for all $\sigma \in \Sigma$ and all i.

Lemma. If $F(T) \in 1 + TA(\mathcal{B})[[T]]^{entire}$ and U is a connected component of the zero locus of F in $\mathcal{B} \times \mathbf{C}_p$, the complement of the image of U in \mathcal{B} is finite.

Proof of VI. Let \mathcal{D} be the subset of $Y \in \mathcal{C}$ such that \exists a p-r (T_Y, D_Y) : $\mathbf{G}_{\mathbf{Q}} \to \mathbf{E}_Y$, $\mathbf{E}_Y = \mathbf{E}_Y(N)$, such that

$$T_Y(\operatorname{Frob}_{\ell}) = \mathbf{T}(\ell)|_{\mathbf{E}_Y}$$
 and $D_Y(\operatorname{Frob}_{\ell}) = \langle \ell \rangle^* / \ell|_{\mathbf{E}_Y}$.

Now, $\bigcup_{Y \in \mathcal{D}} Y$ is a union of connected components of S.

Suppose $x \in \mathbf{E}_{\chi}$, $\kappa(x) = \psi \cdot \langle \langle \rangle \rangle^k$, $k_{\geq 2} \in \mathbf{Z}$ and $v(\mathbf{T}(p)(x)) < k - 1$. Then, by Deligne, there exists a rep $\rho_x : \mathbf{G}_{\mathbf{Q}} \to \mathbf{Gl}_2(\mathbf{Q}_p(x))$ such that if $(\ell, Np) = 1$,

$$\operatorname{Tr} \rho_x(\operatorname{Frob}_{\ell}) = \mathbf{T}(\ell)(x)$$
 and $\det \rho_x(\operatorname{Frob}_{\ell}) = \chi(\ell)\psi(\ell)\ell^{k-1}$
$$= \langle \ell \rangle^*(x)/\ell.$$

What about ap?

Suppose E is finite extention of \mathbf{Q}_p and $x \in \mathbf{E}_{\chi}(E)$. We define the **weight** k(x) of x to be $1 + \frac{\log(\kappa(x)(1+p))}{\log(1+p)}$. There is a subring B_{cris}^+ of B_{DR}^+ which contains W(R) and $t = \log[\epsilon]$ on which $G_{\mathbf{Q}_p}$ acts whith a Frobenius endomorphism ϕ which commutes with $G_{\mathbf{Q}_p}$ such that

$$\phi(\alpha b) = \alpha^{\sigma} \phi(b)$$
 and $\phi t = pt$, $\alpha \in W(R)$.

and

Theorem (Kisin). Suppose $a_p =: \mathbf{T}(p)(x)$, and $\rho: G_{\mathbf{Q}} \to Aut_E(V)$ is a representation attached to x, then there exists a non-zero $\mathbf{G}_{\mathbf{Q}_p}$ -equivariant E-linear map

$$V \to (B_{cris}^+ \otimes_{\mathbf{Q}-p} E)^{\phi=a_p}.$$

Robert F. Coleman

Lecture 30

The Faemily of Peudo-reps

Theorem. There exists a pseudo-representation

$$(T,D): G_{\mathbf{Q}} \to \mathbf{T}_{\chi}$$

such that, if $(\ell, Np) = 1$,

$$T(Frob_{\ell}) = \mathbf{T}(\ell)$$
 and $D(Frob_{\ell}) = \langle \ell \rangle^* / \ell$.

Ingrediants of the proof.

Theorem (Wiles). Suppose R is a topological \mathbb{Z}_p -algebra and $\{\mathfrak{p}_i\}_{i=1}^{\infty}$ are ideals such that R/\mathfrak{p}_i is a local complete \mathbb{Z}_p -algebra and $R = \lim_{L} R/\bigcap_{i=1}^n \mathfrak{p}_i$, Σ is a dense subset of G, t, d are functions $\Sigma \to R$ and p-rs (T_i, D_i) : $G \to R/\mathfrak{p}_i$ such that

$$(T_i(\sigma), D_i(\sigma)) \equiv (t(\sigma), d(\sigma)) \mod \mathfrak{p}_i$$

for $\sigma \in \Sigma$. Then there exists a unique p-r (T, D): $G \to R$ such that $(T(\sigma), D(\sigma)) \equiv (T_i(\sigma), D_i(\sigma))$ mode for all $\sigma \in \Sigma$ and all i.

Let \mathbf{T}_{χ}^{0} be the subring of \mathbf{T}_{χ} which is the completion of the ring generated over $A_{\mathbf{Q}_{p}(\chi)}^{0}(\mathcal{B}) \cong R_{\chi}[[T]]$ by $\langle d \rangle^{*}$, $d \in (\mathbf{Z}/N\mathbf{Z})^{*} \times \mathbf{Z}_{p}^{*}$, and $\mathbf{T}(n)$, $n_{>0} \in \mathbf{Z}$.

Proposition. \mathbf{T}_{χ}^{0} is compact.

This comes down to,

Theorem (after Hida). If $k_{\in \mathbb{Z}} \geq 2$ and $h_k(Np^{\nu})$ is the Hecke algebra acting on weight k modular forms of level Np^{ν} over \mathbb{Z}_p .

$$\bigoplus_{\chi} \mathbf{T}_{\chi}^{0} \cong R_{\chi} \otimes_{\mathbf{Z}_{p}} \lim_{\stackrel{\longleftarrow}{\smile}} h_{k}(Np^{\nu})$$

Suppose $x \in \mathbf{E}_{\chi}$, $\kappa(x) = \psi \cdot \langle \langle \rangle \rangle^k$, $k_{\in \mathbf{Z}} \geq 2$, and $v(\mathbf{T}(p)(x)) < k - 1$. Then, by Deligne, there exists a rep $\rho_x : \mathbf{G}_{\mathbf{Q}} \to \mathbf{Gl}_2(\mathbf{Q}_p(x))$ such that if $(\ell, Np) = 1$,

$$\operatorname{Tr} \rho_x(\operatorname{Frob}_{\ell}) = \mathbf{T}(\ell)(x)$$
 and $\det \rho_x(\operatorname{Frob}_{\ell}) = \chi(\ell)\psi(\ell)\ell^{k-1}$
= $\langle \ell \rangle^*(x)/\ell$.

For each x as above we get a prime ideal \mathfrak{p}_x of \mathbf{T}^0_χ

What about a_p?

Suppose E is finite extention of \mathbf{Q}_p and $x \in \mathbf{E}_{\chi}(E)$. We define the **weight** k(x) of x to be $1 + \frac{\log(\kappa(x)(1+p))}{\log(1+p)}$. There is a subring B_{cris}^+ of B_{DR}^+ which contains W(R) and $t = \log[\epsilon]$ on which $G_{\mathbf{Q}_p}$ acts with a Frobenius endomorphism ϕ which commutes with $\mathbf{G}_{\mathbf{Q}_p}$ such that

$$\phi(\alpha b) = \alpha^{\sigma} \phi(b)$$
 and $\phi t = pt$, $\alpha \in W(R)$.

and

Theorem (Kisin). Suppose $a_p =: \mathbf{T}(p)(x)$, and $\rho: G_{\mathbf{Q}} \to Aut_E(V)$ is a representation attached to x, then there exists a non-zero $\mathbf{G}_{\mathbf{Q}_p}$ -equivariant E-linear map

$$V \to (B_{cris}^+ \otimes_{\mathbf{Q}_p} E)^{\phi = a_p}.$$

Preview of B_{cris} and B_{st} .

Let $B_{cris} = B_{cris}^+[1/t]$. This embeds naturally in B_{DR} . Set $\operatorname{Fil}^i B_{cris} = B_{cris} \cap \operatorname{Fil}^i B_{DR}$. Also $((B_{cris})^{G_K} = K_0$.

We need to consider another ring B_{st} which is $B_{st}^{+}[1/t]$ where

$$B_{st}^{+} = B_{cris}^{+}[\{\ell(u): u \in \operatorname{Frac}(R)^*\}],$$

where

$$\ell(wv) = \ell(w) + \ell(v)$$
 and $\ell(u) = \log \frac{[u]}{u^{(0)}} + \log u^{(0)}$,

if $v(u^{(0)}-1)>0$. We extend ϕ to B_{st} by setting $\phi(\ell(u))=p\ell(u)$ and let N be the unique derivation over B_{cris} on B_{st} such that

$$N 1 = 0$$
 and $N \ell(u) = v(u^{(0)})$.

 $N \circ \phi = p\phi \circ N$ and

$$0 \to B_{cris} \to B_{st} \xrightarrow{N} B_{st} \to 0$$

Robert F. Coleman

Lecture 31

Preview of B_{st}

We know $B_{cris} = B_{cris}^{+}[1/t]$ and this embeds naturally in B_{DR} . Set

$$\operatorname{Fil}^{i}B_{cris} = B_{cris} \cap \operatorname{Fil}^{i}B_{DR}$$

$$\operatorname{Gr} B_{cris} = B_{HT}$$
 and $\operatorname{Gr} B_{cris}^+ = B_{HT}^+$.

We need to consider another ring B_{st} which is $B_{st}^{+}[1/t]$ where

$$B_{st}^{+} = B_{cris}^{+}[\{\ell(u): u \in \operatorname{Frac}(R)^*\}],$$

and

$$\ell(wv) = \ell(w) + \ell(v)$$
 and $\ell(u) = \log \frac{[u]}{u^{(0)}} + \log u^{(0)}$,

if $v(u^{(0)}-1)>0$. We extend F to B_{st} by setting $F(\ell(u))=p\ell(u)$ and let N be the unique derivation over B_{cris} on B_{st} such that

$$N 1 = 0$$
 and $N \ell(u) = v(u^{(0)})$.

Then NF = pFN and

$$0 \to B_{cris} \to B_{st} \xrightarrow{N} B_{st} \to 0$$

Periods of Classical Eigenforms

Suppose $x \in E_{\chi}$, $M =: \mathbf{Q}_{p}(x) \subset L$ and $F_{x}(q)$ is classical eigenform of weight k. Let $\rho: G_{\mathbf{Q}} \to \mathbf{Gl}(V)$ be a reepresentation "attached" to x where V is a two dimensional vector space over M. Then

Theorem (Faltings).
$$V \otimes \mathbf{C}_p \cong \mathbf{C}_p \oplus \mathbf{C}_p(k-1)$$
.

Suppose L is a finite extension of \mathbf{Q}_p . The **Weil group**, W_L , is the subgroup of G_L consisting of elements w whose restriction to L^{nr} is an integral power, $\alpha(w)$, of

absolute Frobenius. The Weil-Deligne group of L is a group scheme WD_L over \mathbf{Q} which is the semi-direct product of the constant group sheme W_L and \mathbf{G}_a on which W_L acts by

$$wxw^{-1} = p^{\alpha(w)}x.$$

If M is a field, a representation of WD_L over M is an M vector space V with homomorphism of group schemes $\psi: WD_L(M) \to \mathbf{Gl}(V)$. These are equivalent to representations ρ_0 of W_L on an M-vector space Δ together with an M-linear operator N on Δ satisfying

$$N \circ \rho_0(w) = p^{-\alpha(w)} \rho_0(w) \circ N.$$

Indeed, $\psi(x) = \exp(xN_L)$ for $x \in \mathbf{G}_a$.

Let $V^* = Hom(V, L)$ and set

$$D_{pst}(V) = \bigcup_{L'/L} (B_{st} \otimes V^*)^{G'_M}$$

. Now WD_L operates on $D_{pst}(V)$ while finite dimensional over K^{nr} . First W_L acts and second

$$N_L m = N m$$
.

 N_L acts nilpotently on $D_{pst}(V)$. Let J(V) denote the invriants by inertia in the kernel of N_L . Let σ be the inverse of relative Frobenius.

Therorem (Saito). $(1 - a_p p^{-s})^{-1}$ divides $\det(1 - \sigma p^{-s}|J)^{-1}$.

Frank will prove,

Theorem . There exists a non-zero $\mathbf{G}_{\mathbf{Q}_p}$ -equivariant E-linear map

$$V \to (B_{cris}^+ \otimes_{\mathbf{Q}_p} E)^{\phi = a_p}.$$

After Faltings it is enough to prove, There exists a non-zero $\mathbf{G}_{\mathbf{Q}_p}$ -equivariant E-linear map

$$V \to (B_{cris} \otimes_{\mathbf{Q}_p} E)^{\phi = a_p}.$$

Robert F. Coleman

Lecture 32

Clarification of Weil-Deligne

Suppose ρ_0 of W_L on a finite dimensional M-vector space Δ and N is an M-linear operator on Δ satisfying

$$N \circ \rho_0(w) = p^{-\alpha(w)} \rho_0(w) \circ N.$$

Then N is nilpotent and $\rho(x, w) = \exp(xN)\rho_0(w)$, $(x, w) \in WD_L$ is a representation.

Periods of Classical Eigenforms

Suppose $x \in E_{\chi}(\overline{\mathbf{Q}}_p)$, $M =: \mathbf{Q}_p(x)$. Let $\rho_x : G_{\mathbf{Q}} \to \mathbf{Gl}(V_x)$ be a representation "attached" to x where V_x is a two dimensional vector space over M. We want to prove,

Theorem. Let $a_p = \mathbf{T}(p)(x)$. There exists a non-zero $\mathbf{G}_{\mathbf{Q}_p}$ -equivariant M-linear map

$$V_x \to (B_{cris}^+ \otimes_{\mathbf{Q}_p} M)^{\phi = a_p}.$$

Frank explained why this is true when $F_x(q)$ is classical. I will now explain its conection to Fontaine-Mazur.

Fontaine-Mazur

Let $\theta \sum a_q^n = \sum na_nq^n$ and $\chi: G_{\mathbf{Q}_p} \to \mathbf{Z}_p^*$ be the cyclotomic character.

Proposition. If F(q) is the q-expansion of a weight 2-k OC form where $k \in \mathbb{Z}$, $k \geq 2$, $\theta^{k-1}F(q)$ is the q-expansion of a weight k-1 OC form.

A rep $\rho: G_K \to \mathbf{Gl}(V)$ is called potentially semi-stable (pst) if

$$\dim_{K^{nr}} D_{pst}(V) = \dim_M V.$$

Theorem (Kisin). Suppose V_x when viewed as a $G_{\mathbf{Q}_p}$ -rep is pst. Then,

(i) $k =: k(x) \in \mathbf{Z}$ and $\alpha =: v(\mathbf{T}(p)(x)) \leq \max\{0, k-1\}$. (ii) If $k \geq 2$, either $F_x(q)$ is classical or $\alpha = k-1$ and \exists OC G of weight 2-k such that $F_x = \theta^{k-1}G$ and $V_x \cong \epsilon_1 \oplus \epsilon_2 \chi^{k-1}$.

Corollary. If ρ_x is semi-stable and irreducible, then x is classical.

Proof of Theorem. First PST implies HT

$$\dim_K (V \otimes B_{HT})^{G_K} = \dim_M V.$$

and Hodge-Tate reps have integral weight.

Suppose $V =: V_x$ is ST over a finite Galois extension K of \mathbf{Q}_p and let

$$D =: D_{st}(V^*) = Hom_{G_K}(V_x, B_{st}) = (V_x^* \otimes B_{st})^{G_K}.$$

Claim:

$$D_{dr}(V^*) = (D_{st}(V^*) \otimes_{K_0} K) \operatorname{Gal}(K/\mathbf{Q}_p)$$

This follows from the fact that

$$B_{st} \otimes_{K_0} K \hookrightarrow B_{dr}$$
.

Thus $D_{dr}(V^*)$ is a 2-dimensional M-space and it has an M-linear $\phi^{[K_0:\mathbf{Q}_p]}$ -action. Thus $D = D_{dr}(V^*) \otimes_{\mathbf{Q}_p} K_0$ is a free $M \otimes K_0$ module of rank 2 and its Newton polygon has at most two slopes of the same run $[M, \mathbf{Q}_p]$.

Robert F. Coleman

Lecture 33

Fontaeine-Mazur

Assuming,

Theorem. Let $a_p = \mathbf{T}(p)(x)$. There exists a non-zero $\mathbf{G}_{\mathbf{Q}_p}$ -equivariant M-linear map

$$V_x \to (B_{cris}^+ \otimes_{\mathbf{Q}_p} M)^{\phi = a_p}.$$

we'll prove,

Theorem. Suppose V_x when viewed as a $G_{\mathbf{Q}_p}$ -rep is pst. Then, $k =: k(x) \in \mathbf{Z}$ and $\alpha =: v(\mathbf{T}(p)(x)) \leq \max\{0, k-1\}.$

To simplify notation, I will assume $\mathbf{Q}_p(x) = M = \mathbf{Q}_p$ and that V_x is semistable.

We already checked that $k(x) \in \mathbf{Z}$. One of the facts we used was that B_{st} embeds in B_{dr} . Recall, $B_{st} = B_{st}^+[1/t]$ where

$$B_{st}^+ = B_{cris}^+[\{\ell(u): u \in \operatorname{Frac}(R)^*\}],$$

$$\ell(wv) = \ell(w) + \ell(v)$$
 and $\ell(u) = \log \frac{[u]}{u^{(0)}} + \log u^{(0)}$,

if $v(u^{(0)}-1)>0$. We already know how to embed B_{cris} into B_{dr} . Choose a branch of the logarithm log. Then send $\ell(u)$ to

$$\log \frac{[u]}{u^0} + \log u^{(0)}.$$

This makes sense since $\theta([u]) = u^{(0)}$.

Suppose D is a filtered (F, N)-module over K, i.e. a K_0 -module D with a σ -linear isomorphism F and an endomorphism N such that NF = pFN as well as a decreasing, exhaustive, separated filtration on D_K , D^i , like $D(V^*) =: (V^* \otimes_M B_{st})^{G_{\mathbf{Q}_p}}$. The Hodge numbers of D are

$$h_H(D, i) = \dim D^i / D^{i+1}$$

If $D = D_K(V^*)$, $h_H(D, i) = 1$ if i = 0 or k - 1 and is zero otherwise .For a rational number $\alpha = r/s$ let $D_{[\alpha]}$ be the K_0 -subspace of $\bar{K}_0 \otimes_{K_0} D$ spanned by the elements x such that $(\sigma \otimes F)^s x = p^r x$. The Newton numbers are

$$h_N(D,\alpha) = \dim_{K_0} D_{[\alpha]}.$$

Suppose $\dim_{K_0} D < \infty$. If $D = D(V^*), h_N(D, [v(a_p)]) \ge 1$. We also know $h_N(D, k - 1 - [v(a_p)]) = h_N(D, [v(a_p)])$.

Put,

$$t_H(D) = \sum_{i \in \mathbf{Z}} i h_H(D, i)$$
 and $t_N(D, \alpha) = \sum_{\alpha \in \mathbf{Q}} \alpha h_N(D, \alpha)$.

Then D is **weakly admissible** if $t_H(D') \leq t_N(D')$ for all K^0 -subspaces D' of D stable by F and N with equality when D' = D.

Theorem. If W is PST then $D_{pst}(W)$ is WA.

Suppose $D = D(V^*)$. This is WA. Also the submodule $\sum_{\beta \leq 0} D_{[\beta]}$ is (F, N)-stable and thus

$$0 \le \sum_{\substack{\alpha \in \mathbf{Q} \\ \alpha < 0}} \alpha h_N(D, \alpha)$$

Robert F. Coleman

Lecture 34

Fontaine-Mazur

Theorem. Let $a_p = \mathbf{T}(p)(x)$. There exists a non-zero $\mathbf{G}_{\mathbf{Q}_p}$ -equivariant M-linear map

$$V_x \to (B_{cris}^+ \otimes_{\mathbf{Q}_p} M)^{\phi = a_p}.$$

Assuming this, and "continuity o Hodge-Tate-Sen" weights, we'll prove,

Theorem. Suppose V_x when viewed as a $G_{\mathbf{Q}_p}$ -rep is pst. Then, $k =: k(x) \in \mathbf{Z}$ and $\alpha =: v(\mathbf{T}(p)(x)) \leq \max\{0, k-1\}.$

Suppose D is a finite dimensional filtered (F, N)-module over K, i.e., a K_0 -module D with a σ -linear isomorphism F and an endomorphism N such that NF = pFN as well as a decreasing, exhaustive, separated filtration on D_K , D^i . The Hodge polygon of D is the lower convex hull of the vertices

$$(\sum_{i \leq j} \dim D^i/D^{i+1}, \sum_{i \leq j} i \dim D^i/D^{i+1})$$

For a rational number $\alpha = r/s$ let $D_{[\alpha]}$ be the K_0 -subspace of $\bar{K}_0 \otimes_{K_0} D$ spanned by the elements x such that $(\sigma \otimes F)^s x = p^r x$.

The Newton polygon of D is the lower convex hull of

$$(\sum_{\beta < \alpha} \dim D_{[\beta]}, \sum_{\beta < \alpha} \beta \dim D_{[\beta]})$$

Then D is **weakly admissible** if the Newton polygon of D' lies above the Hodge polygon of D' for all (F, N)-submodules with induced filtration and these polygons have the same endpoints when D = D'.

Theorem. If W is PST then $D_{pst}(W)$ is WA.

Proof of Kisin's Theorem

To simplify notation, I will assume $\mathbf{Q}_p(x) = M = \mathbf{Q}_p$ and that V_x is semistable.

Suppose $D=D(V_x^*)$. This is WA. Using Sen theory (which I'll discus next week), we know when $k \neq 1$, $D_{HT}(V) \cong \mathbf{C}_p(0) \oplus \mathbf{C}_p(k-1)$. Suppose $a \leq b$. Then the Hodge polygon of D is

F and N for Tate Elliptic curves

Suppose $E = \mathbf{C}_p^*/q^{2\mathbf{Z}}$, where $q_{\neq 0} \in p\mathbf{Z}_p$. Then $E = U \cup V$ and $U \cap V = A \cup B$. We have

$$H^0_{DR}(A) \oplus H^0_{DR}(B) \to H^1_{DR}(E) \to H^1_{DR}(U) \oplus H^1_{DR}(V) \to H^1_{DR}(A) \oplus H^1_{DR}(B)$$

Then N is

$$H^1_{DR}(E) \to H^1_{DR}(A) \oplus H^1_{DR}(B) \xrightarrow{Res} H^0_{DR}(A) \oplus H^0_{DR}(B) \to H^1_{DR}(E)$$

To get F all we have to do is "split"

$$H_{DR}^{0}(A) \oplus H_{DR}^{0}(B) \to H_{DR}^{1}(E).$$

Suppose $(\{\omega_U, \omega_V\}, \{f_A, f_B\})$ is a 1-cocycle $(\omega_U - \omega_V = df)$. If we choose a branch of log we can solve

$$dF_U = \omega_U$$
 and $dF_V = \omega_V$

Let

$$c_A = (F_U - F_V)|_A - f_A$$
 and $c_B = (F_U - F_V)|_B - f_B$.

Robert F. Coleman

Lecture 35

Sen-Polynomials

Let $\chi: \mathbf{G}_{\mathbf{Q}_p} \to \mathbf{Z}_p^*$ be the cyclotomic character and $\Gamma = \operatorname{Gal}(\mathbf{Q}_p(\mu_{p^{\infty}})/\mathbf{Q}_p)$. Suppose E a finite extension of \mathbf{Q}_p contained in K. Finally, let $\Gamma(K) = \operatorname{Gal}(K_{\infty}/K)$ where $K_{\infty} = K(\mu_{p^{\infty}})$. Sen's proves in Continuous Cohomology and p-adic Galois representations, (Invent. Math. **62** (1980)),

Theorem. Suppose V is a finite dimensional vector space over E and $\rho: G_K \to GL_E(V)$ is a continuous representation. There exists a finite extension L of K in K_{∞} and an $M \in GL_{\mathbf{C}_p}(\mathbf{C}_p \otimes_E V)$ such that $\sigma \mapsto \tau(\sigma) =: M^{-1}\rho(\sigma)\sigma(M)$ is a representation of G_L into $GL_L(L \otimes_E V)$ which factors through $\Gamma(L)$. Moreover, if $\sigma \in G_L$ and its image in Γ is non-trivial

$$S_{\rho}(T) =: \det \left(T - \frac{\log \tau(\sigma)}{\log \chi(\sigma)} \right)$$

is independent of the choices of L and σ and lies in K[T]. In fact, this polynomial is independent of K or E.

Eg. (i) (CFT) Suppose n=1 and $K=E=\mathbf{Q}_p$. Then if $\gamma\in\Gamma$ sufficiently close to 1,

$$\tau(\gamma) = \rho(\sigma), \quad \text{if } \sigma \mapsto \gamma \text{ and } T - e(\rho) =: S_{\rho}(T).$$

(ii) (Hodge-Tate) Suppose A is an Abelian variety of dimension g over K and $\rho: G_K \to GL_{2g}(\mathbf{Q}_p)$ coming from the p-Tate module of A. Then

$$S_{\rho}(T) = T^g (T-1)^g.$$

(iii) (Faltings) Suppose ρ is the restriction to a decomposition group above p of a represention coming from a weight k modular form. Then,

$$S_{\rho}(T) = T(T - (k-1)).$$

(iv) Suppase $V \otimes_E \mathbf{C}_p \cong \mathbf{C}_p(a_1) \oplus \cdots \mathbf{C}_p(a_n)$. Then,

$$S_o(T) = (T - a_1) \cdots (T - a_n).$$

Variation.

Let C be a topologically finitely generated complete local ring over $R =: \mathcal{O}_E$ whose residue field is a finite extension of $k = R/\pi_E R$, $C = R[[T_1, \ldots, T_n]]/I$. Let $\langle C \rangle$ be the rigid space associated to C.

Suppose $\rho: G_K \to GL_n(C)$ is a continuous representation.

Eg. Suppose k is a finite field of characteristic p and α : $Gal(\mathbf{Q}/\mathbf{Q}) \to GL_2(k)$ is a representation. Then, Mazur has shown there exists a topologically finitely generated complete local ring M_{α} over \mathbf{Z}_p and a versal deformation of α

$$\tilde{\alpha} \colon \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Gl}_2(M_{\alpha})$$

(which is universal when α is absolutely irreducible). When α is odd, $\langle M_{\alpha} \rangle$ is conjectured to have dimension 3.

A slight improvement of Sen's result in The Analytic Variation of p-adic Hodge Structure (Ann. Math. 127 (1988)) is,

Theorem. There is a unique monic polynomial, $f_{\rho}(T)$, whose coefficients are analytic functions on the nilreduction of $\langle C \rangle_K$ and whose specialization to $x \in \langle C \rangle(\overline{E})$ is $S_{\rho_x}(T)$.

Corollary. If α is modular and $x \in \langle M_{\alpha} \rangle$,

$$S_{\tilde{\alpha}_x}(T) = T(T - e(\det \tilde{\alpha}_x)).$$

Let E_{α} be the component of the eigencurve such that for $x \in E_{\alpha}(\overline{\mathbf{Q}}_p)$, ρ_x is a deformation of α .

Corollary. If V_x is pst $k(x) \in \mathbf{Z}$ and $V_x \otimes \mathbf{C}_p \cong \mathbf{C}_p \oplus \mathbf{C}_p(k(x)-1)$.

Robert F. Coleman

Lecture 36

Application of Sen's Theory

For a representation $\rho: G_K \to \mathbf{Gl}(V)$ where V is vector space over a finite extention of \mathbf{Q}_p let $S_\rho(T)$ be the Sen polynomial. We know if ρ is attached to as weight k modular form $S_\rho(T) = T(T - (k-1))$. Also if $V \otimes_E \mathbf{C}_p \cong \mathbf{C}_p(a_1) \oplus \cdots \mathbf{C}_p(a_n)$. Then, $S_\rho(T) = (T - a_1) \cdots (T - a_n)$.

Proposition. If x is a point on an eigencurve and V_x is $pst\ k(x) \in \mathbf{Z}$ and $V_x \otimes \mathbf{C}_p \cong \mathbf{C}_p \oplus \mathbf{C}_p(k(x)-1)$.

Variation.

Suppose $C \cong \mathcal{O}_E[[T_1, \dots, T_n]]/I$. Let $\langle C \rangle$ be the rigid space associated to C. Suppose $\rho: G_K \to GL_n(C)$ is a continuous representation.

Eg. Suppose k is a finite field of characteristic p and α : $Gal(\bar{\mathbf{Q}}/\mathbf{Q}) \to GL_2(k)$ is a representation. Then, Mazur has shown there exists a topologically finitely generated complete local ring M_{α} over \mathbf{Z}_p and a versal deformation of α

$$\tilde{\alpha}$$
: $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Gl}_2(M_{\alpha})$.

Theorem. There is a unique monic polynomial, $f_{\rho}(T)$, whose coefficients are analytic functions on the nilreduction of $\langle C \rangle_K$ and whose specialization to $x \in \langle C \rangle(\overline{E})$ is $S_{\rho_x}(T)$.

Suppose the above α is modular of level N and let E_{α} be the component of the eigencurve E_N such that for $x \in E_{\alpha}(\overline{\mathbf{Q}}_p)$, ρ_x is a deformation of α .

The Galois interpretation of a_p

Theorem. Suppose $\psi \in Hom((\mathbf{Z}/Np\mathbf{Z})^*, \mathbf{C}_p^*)$, $x \in E_{\psi}$. Let $a_p = \mathbf{T}(p)(x)$ and $M = \mathbf{Q}_p(x)$. There exists a non-zero $\mathbf{G}_{\mathbf{Q}_p}$ -equivariant M-linear map

$$V_x \to (B_{cris}^+ \otimes_{\mathbf{Q}_p} M)^{\phi = a_p}.$$

(Also, see forthcoming paper of Stevens and Iovita.)

Suppose $y \in E_{\psi}(K)$, $k(y) \in \mathbf{Z}$. We'll the following simplifying assumption: There exists an affinoid X in E_{ψ} defined over K containing y which is isomorphic via κ to a closed disk in \mathcal{W} , and a free rank 2 module \mathbf{V} over R =: A(X) with an action of Galois whose restriction \mathbf{V}_x , $x \in X$ to $k(x) \in \mathbf{Z}$, k(x) >> 0, is classical and crystaline.

Lemma. After removing the weight one points (if they exist) from X,

$$\mathbf{V}^* \hat{\otimes}_K \mathbf{C}_p \cong (R \hat{\otimes}_K \mathbf{C}_p) \oplus ((R \hat{\otimes}_K \mathbf{C}_p)(\chi/\kappa))$$

as G_K -modules where χ is the cyclotomic character.

Indeed, $W_{\infty} = (\mathbf{V}^* \hat{\otimes}_K \mathbf{C}_p)^{H_K}$ has a basis over a finite extention L of K such that the R_L -module W_L spanned by this basis is Galois stable and if $\gamma_{\neq 1} \in \Gamma(L)$ the linear operator on W_L

$$\Phi = \frac{\log \gamma}{\log \chi(\gamma)}$$

has characterististic polynomial T(T + (k(x) - 1)).

Lemma. Suppose j > 0. After removing a finite set of points S_j from X, $(\mathbf{V}^* \otimes \hat{B}_{dr}^+/B_{dr}^j)^{G_K}$ is a free $R_J =: A(X - S_j)$ -module of rank 1.

Corollary. Suppose j > 0 and $x \in X - S_j$. There exists a non-zero G_K -equivariant map $\alpha_x : V_x \to B_{dr}^+/B_{dr}^j$.

Proof of Lemma. We need Tate's Theorem $C_p(k)^{G_K} = 0$ (p-Divisible Groups, in Proceedings of a Conference on Local Fields, Driebergen 1966, pp 158-183, Springer (1967).)) unless k = 0. Suppose j = 1.