
The Eigen
urve and the Fontaine-Mazur Conje
ture

Robert F. Coleman

Le
ture 1

Let G

Q

= Gal(

�

Q=Q) and p be a prime.

One knows if F (q) =

P

n�1

a

n

q

n

is the q-expansion of a weight k normalized


uspidal eigenform of level N and 
hara
ter �, E = Q

p

(fa

n

g) is a �nite extention of

Q

p

and an odd, irredu
ible repesentation �:G

Q

! Gl

2

(E) unrami�ed outide of Np

su
h that if ` 6 jNp

Tr ( Frob

`

) = a

`

and det( Frob

`

) = �(`)`

k�1

:

One also knows the restri
tion of � to a de
omposition group at p is \potentially

semi-stable."

Example. On X

0

(49) there is a unique normalized weight 2 
usp form F (q), where

a

2

= 1; a

11

= 4; a

23

= 8; a

29

= 2; a

37

= �6;

a

3

= a

5

= a

13

= a

17

= a

19

= a

31

= 0:

X

n�1

a

n

n

�s

=

Y

` 6=7

(1� a

`

`

�s

+ `

�2s

)

�1

(1 + 7

�s

)

�1

:

In 1993, J.M. Fontaine and B. Mazur 
onje
tured [F-M℄,

Conje
ture. Suppose E is a �nite extension of Q

p

and �:G

Q

! Gl

2

(E) is a 
on-

tinuous odd, irredu
ible representation rami�ed at only �nitely many primes whose

restri
tion to a de
omposition group at p is potentially semi-stable. Then � arises

from a modular form.

Mark Kisin has re
ently proven, using the \eigen
urve" this 
on
lusion when �

arises from an \over
onvergent form of �nite slope."
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Topi
s of 
ourse

Serre's theory of p-adi
 Bana
h spa
es [S℄, [C2℄ and [B℄. Over
onveregent forms

and the U-Operator [K℄, [C2℄. The Canoni
al subgroup and the U-operator [K℄, [B2℄.

Pseudo-representations atta
hed to over
onvergent Forms, [H℄. The Eigen
urve, [C-

M℄. Fontaine's theory, [F℄ (see also www.math.berkeley.edu/ 
oleman/fontaine.html).

The Fontaine-Mazur 
onje
ture, [F-M℄. Kisin's Theorem.

p-adi
 Bana
h spa
es

A Bana
h Algebra is a 
ommutative ring A with a unit element, 
omplete and

separated with respe
t to a non-trivial ultrametri
 norm j j. I.e., j1j = 1,

ja+ bj � max jaj; jbj; jabj � jajjbj;

for a and b 2 A, and moreover, jaj = 0 if and only if a = 0. A Bana
h module over

A is an ultrametri
ally normed 
omplete module E over A, su
h that jaej � jajjej if

a 2 A and e 2 E.

An orthonormal basis for a Bana
h module E over A is a set fe

i

: i 2 Ig of

elements of E, for some index set I, su
h that every element m in E 
an be written

uniquely in the form

P

i2I

a

i

e

i

with a

i

2 A su
h that lim

i!1

ja

i

j = 0 and

jmj = Supfja

i

j : i 2 Ig:

We say E is orthonormizable if it has an orthonormal basis.

Examples. Suppose A = Q

p

and M is the ring of analyti
 fun
tions on the unit disk.

An A-homomorphism h:M ! N between two Bana
h A-modules is said to be


ompletely 
ontinuous or 
ompa
t if there exists a sequen
e of A-homomorphisms

h

j

:M ! N of "�nite rank" su
h that

lim

j!1

( sup

jmj�1

j(h� h

j

)(m)j) = 0:

It turns out that if M = N , has an orthonormal basis and A is \ni
e," then h has a


hara
teristi
 series (Fredholm determinant).
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www.math.berkeley.edu/ 
oleman/Courses/Sp02/e
fm.html

Qui
k introdu
tion to rigid analysis

Let K be a 
omplete lo
al �eld with absolute value j j. By KhX

1

; : : : ;X

n

i I mean

the ring

A

n

=:

X

I�0

a

I

X

I

where a

I

2 K; ja

I

j ! 0 as �(I) !1:

This ring is Noetherian and is 
alled the Tate algebra of dimension n over K. One


an think of it as fun
tions on a polydisk of radius 1. A quotient ring of this ring is


alled an aÆnoid algebra.

Example. Consider f(x; y): y

2

= x

3

� 1; jxj � 1; jyj � 1g.

If F (X

1

; : : : ;X

n

) =

P

I�0

a

I

X

I

, put jjF jj = sup

I

ja

I

j. If �:A

n

! A is surje
tive

we de�ne

jjf jj

�

= inffjjgjj: g 2 A

n

; �(g) = fg:

This is a norm on A.One 
an also set

jjf jj

sup

= inf

n2N

jjf

n

jj

1=n

�

:

This is independent of �. The power bounded elements A

0

of A are the elements

f su
h that fjjf

n

jj

�

g is bounded or equivalently jjf jj

sup

� 1 and the topologi-


al nilpotents of A A

+

are the elements f su
h that jjf

n

jj

�

! 0 or equivalently

jjf jj

sup

< 1. If A is redu
ed and A

0

=A

+

is an integral domain jj jj

sup

is a norm

eq3uivalent to jj jj

�

.

Example. Same as above and also 5xy = p.
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Compa
t operator over aÆnoid algebras

An A-homomorphism L:M ! N between two Bana
h A-modules is said to be


ompa
t if there exists a sequen
e of A-homomorphisms of �nite rank h

j

:M ! N

su
h that h

j

! L. In good situations det(1� Th

j

) is de�ned and

lim

j!1

det(1� Th

j

) exists.

Suppose fe

i

g

i�0

is an orthonormal basis for M and fd

j

g

j�0

is an orthonormal

basis for N . Suppose

L(e

i

) =

X

j

n

i;j

d

j

:

Proposition. Suppose K is a �nite extension of Q

p

and A is a redu
ed aÆnoid

algebra over K. The linear map L is 
ompa
t if and only if

lim

j!1

Sup

i�0

jn

i;j

j = 0:

Proof. Let �

n

be the proje
tion onto the submodule E

n

generated by d

j

, j � n and

L

n

= �

n

Æ L.

Now suppose L is 
ompa
t. Then for ea
h � > 0 there exists an A-linear map

L

0

:M ! N whose image is 
ontained in a �nitely generated submodule P and is su
h

that jL� L

0

j < �.

We will show P

0

=: P \ N

0

is �nitely generated over A

0

. Assume this for now.

Claim: There exists an m � 0 su
h that

j�

m

j

P

� id

P

j < �:

It follows that

jL� �

m

Æ L

0

j < �:

This implies jn

i;j

j < � for j 62 T whi
h 
on
ludes the proof.
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If M = N ,

det(1 � TL) = lim

j!1

det(1� T (�

n

Æ Lj

M

n

)):
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J. Tate: Rigid analyti
 spa
es, Inv. Math. 12 (1971) 257-289.

Compa
t Operators

Let L:M ! N be a 
ontinuous linear map between orthonormizable Bana
h modules

overA. Suppose fe

i

g

i�0

is an orthonormal basis forM and fd

j

g

j�0

is an orthonormal

basis for N and

L(e

i

) =

X

j

n

i;j

d

j

:

Proposition. Suppose K is a �nite extension of Q

p

and A is a redu
ed aÆnoid

algebra over K. The linear map L is 
ompa
t if and only if

lim

j!1

Sup

i�0

jn

i;j

j = 0:

Proof. Let �

n

be the proje
tion onto the submodule E

n

generated by d

j

, j � n and

L

n

= �

n

Æ L.

Suppose L is 
ompa
t. Then for ea
h � > 0 there exists an A-linear map

L

0

:M ! N whose image is 
ontained in a �nitely generated submodule P and is

su
h that jL� L

0

j < �.

Claim: P

0

=: fn 2 P : jjnjj � 1g is �nitely generated over A

0

.

Indeed, let n

i

=

P

i

b

ij

d

j

1 � i � k generate P . Let

U = f(a

1

; : : : ; a

k

) 2 A

k

:

k

X

i=1

a

i

n

i

= 0g:

Sin
e A is Noetherian, there exists r � 0 su
h that U = KerF

r

, where

F

t

(a

1

; : : : ; a

k

) = �

t

�

k

X

i=1

a

i

n

i

�

:

1



Thus, if t � r

0! U ! A

k

F

t

�!�

t

N

�

=

A

t

is exa
t. Let B

t

= F

�1

t

�

(A

0

)

t

�

so that in parti
ular (

T

t�0

B

t

)=U

�

=

P

0

.

End of proof. There exists an m � 0 su
h that j�

m

j

P

� id

P

j < �:

It follows that

jL� �

m

Æ L

0

j < �:

This implies jn

i;j

j < � for j 62 T whi
h 
on
ludes the proof.

Chara
teristi
 series

Suppose � is a uniformizing parameter of K and M = N = E.

Theorem. If L is a 
ompa
t operator on E, then

lim

m!infty

det(1� T (�

m

Æ L)j

E

m

)

exists.

We will denote it by P

L

(T ).

Proof. First we 
an assume jLj � 1. Next we know that given k � 0 there exist

m

k

� 0 su
h that

L(e) � �

m

k

Æ L(e) mod�

k

:

Theorem. If L has norm at most jaj where a 2 A then P

L

(T ) is an element of

A

0

[[aT ℄℄ and is entire in T . Also, P

L

(T ) is 
hara
terized by:

(i) If fL

n

g

n�0

is a sequen
e of 
ompletely 
ontinuous operators on E, and L

n

! L

then P

L

n

! P

L


oeÆ
ientwise.

(ii) If the image of L in E is 
ontained in an orthonormizable dire
t fa
tor F of

�nite rank over A of E su
h that the proje
tion from E onto F has norm at most 1

then

P

L

(T ) = det(1� TLjF ):

2
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The Fredholm Deteminant

Theorem. Suppose L is a 
ompa
t operator on a ON Bana
h module E over A. If

L has norm at most jaj where a 2 A, then P

L

(T ) is an element of A

0

[[aT ℄℄ and is

entire in T . Also, P

L

(T ) is 
hara
terized by:

(i) If fL

n

g

n�0

is a sequen
e of 
ompa
t operators on E, and L

n

! L then

P

L

n

! P

L


oeÆ
ientwise.

(ii) If the image of L in E is 
ontained in a dire
t fa
tor F of �nite rank over A of

E su
h that the proje
tion from E onto F is 
ontinuous then

P

L

(T ) = det(1� TLjF ):

In parti
ular, P

L

(T ) depends only on the topology.

Proof. I will prove P

L

(T ) is entire in T and (i). Let (e

i

)

i�0

be an ONB. We 
an

suppose jLj � 1. Suppose L(e

i

) =

P

j

n

i;j

e

j

. For a �nite set S of non-negative

integers and a permutation � of S, set

n

S;�

=

Y

i2S

n

i �(i)

Then

P

L

(T ) = 1 + 


1

T + 


2

T

2

+ � � � ;

where




m

= (�1)

m

X

S;�

jSj=m

�

�

n

S;�

:

Now let R

1

� R

2

� � � � be the numbers r

j

= sup

i�0

jn

ij

j. It follows that

j


m

j � R

1

R

2

� � �R

m

;

1



so

j


m

jM

m

� (R

1

M)(R

2

M) � � � (R

m

M):

Now suppose, jL

0

� Lj < � < 1.

Some other key fa
ts.

Remark. If L:M ! N is 
ompa
t and F :N ! M is 
ontinuous, then L Æ F and

F Æ L are 
ompa
t.

(i) If u and v are 
ompa
t operators on E,

det(1 � Tu) det(1� Tv) = det((1 � Tu)(1 � Tv)):

(ii) Suppose E

1

and E

2

are orthonormizable Bana
h modules over A. Suppose u is

a 
ompa
t homomorphism from E

1

to E

2

and v:E

2

! E

1

is a 
ontinuous homomor-

phism. Then P

uÆv

(T ) = P

vÆu

(T ).

(iii) if �:A ! B is a homomorphism of Bana
h algebras then �

�

E =: E 


A

B is

orthonormizable over B and

P

�

�

L

(T ) = �(P

L

(T )):

Given this one 
an de�ne the 
hara
teristi
 series of a 
ontinuous operator V on

M if one only asssumesM is \lo
ally orthonormizable."

2



Riesz Theory

Suppose u is a 
ompa
t operator on E. Let AffTgg denote the ring of entire series

over A. For a polynomial of degree d whose leadin 
oeÆ
ient is a unit, F (T ), let

F

�

(T ) = T

d

F (T

�1

).

Theorem. Suppose P

u

(T ) = Q(T )S(T ) where S 2 AffTgg and Q is a polynomial

whose leading 
oei
ient is a unit su
h that Q(0) = 1 and whi
h is relatively prime to

S. Then there is a unique dire
t sum de
omposition

E = N

u

(Q) � F

u

(Q)

of E into 
losed submodules stable by u su
h that N

u

(Q) is proje
tive of rank degQ,

Q

�

(u)N

u

(Q) = 0 and Q

�

(u) is invertible on F

u

(Q). Moreover, N

u

(Q) and F

u

(Q) are

lo
ally equivalent to orthonomizablemodules and P

uj

N

u

(Q)

)

(T ) = Q(T ) and P

uj

F

u

(Q)

(T ) = S(T ).

3
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Restants

See Lang's algebra Chapter IV x8. Let e

i

be the i-th elementary symmetri


polynomial of T

1

; : : : ; T

n

.

Lemma. The subring of A[[T

1

; : : : ; T

n

℄℄, Affe

1

; : : : ; e

n

gg, is equal to the subring of

AffT

1

; : : : ; T

n

gg 
onsisting of elements whi
h are left invariant under permutation of

the variables T

i

.

Suppose Q(T ) = T

n

�a

1

T

n�1

+ � � �+(�1)

n

a

n

2 A[T ℄ and P (T ) 2 AffTgg. Then

P (T

1

) � � �P (T

n

) = H(e

1

; : : : e

n

) for some H 2 AffX

1

; : : : ;X

n

gg. The resultant of

Q and P is

Res(Q;P ) = H(a

1

; : : : ; a

n

):

Then,

Res(Q; 1) = 1 Res(Q;T ) = (�1)

n

Q(0)

Res(Q; aP ) = a

n

Res(Q;P )

Res(Q;PR) = Res(Q;P )Res(Q;R)

Res(Q;P +BQ) = Res(Q;P )

and if S is a moni
 polynomial of degree m,

Res(SQ;P ) = Res(S;P )Res(Q;P )

Res(Q;S) = (�1)

mn

Res(S;Q)

Res(Q;S

�

) = Res(S;Q

�

):

1



Re
all Q

�

(T ) = T

n

Q(T

�1

).

Say that an element a 2 A is multipli
ative if jabj = jajjbj for all b 2 A.

Proposition. The resultant of Q and P is a linear 
ombination of Q and P . If

Q and P have a non-
onstant polynomial 
ommon fa
tor G whose leading term is

multipli
ative, then the resultant of Q and P is zero and is a unit if and only if Q

and P are relatively prime in AffTgg.

Lemma. If G(T ) is a polynomial whose leading 
oeÆ
ient is multipli
ative and

H(T ) 2 AffTgg su
h that G(T )H(T ) 2 A then G(T ) 2 A or H(T ) = 0.

Proof. Repla
ing G(T ) by G(p

�M

T ) for some positive integer M we may assume

that the absolute value of the leading 
oeÆ
ient 
 of G is greater than all its other


oeÆ
ients. Suppose degG = n. Suppose H(T ) =

P

k

b

k

T

k

and m � 0 is su
h that

jb

m

j � jb

k

j for all k with stri
t inequality for k > m.

Now suppose B(T ) 2 A[T ℄, B(0) = 0 and F = Q

�

for a moni
 polynomial Q. Let

P (T ) = 1�XB(T ). Let

D(B;F ) = Res(Q;P ) 2 A[X℄:

Now if B;F 2 fTg, B(0) = 0, F (0) = 1 let

D(B;F )(X) = lim

n!1

D(B

n

; F

n

)(X):

Then D(B;F )(X) 2 AffXgg and

Theorem. If u is a 
ompa
t operator on an orthonormizable Bana
h module E over

A and B 2 TAffTgg then B(u) is 
ompa
t and

P

B(u)

(T ) = D(B;P

u

)(T ):

2
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Corre
tion: Lemma. If G(T ) is a polynomial whose leading 
oeÆ
ient is multipli
a-

tive and H(T ) 2 AffTgg su
h that G(T )H(T ) 2 A then G(T ) 2 A or H(T ) = 0.

Riesz Theory

Suppose A is a redu
ed aÆnoid algebra over K, E is an orthonormizable Bana
h

module over A and u is a 
ompa
t operator on E.

We need one more thing about resultants,

Lemma. If P (T ) = R(T )S(T ), R;S 2 AffTgg and R(0) = S(0) = 1, then we have,

D(B;P ) = D(B;R)D(B; S),

and if Q is a moni
 polynomial, D(1 �Q

�

; P )(1) = Res(Q;P ).

The Fredholm resolvant Fr

u

of u is

P

u

(T )

(1� Tu)

= P

u

(T )

X

i�0

u

i

T

i

:

Proposition. The Fredholm resolvant is \entire."

Proof. Fr

u

a
ts on E 


A

A[[T ℄℄. If P

u

(T ) =

P

m�0




m

T

m

, Fr(u)(T ) =

P

v

m

T

m

,

where

v

0

= 0 and v

m

= 


m

+ uv

m�1

:

Let R

1

� R

2

� � � � be the numbers r

j

= sup

i�0

jn

ij

j where (n

ij

) is the matrix for u wrt.

an ONB B = fe

I

g.Claim: jv

m

j � R

1

R

2

� � �R

m

.

First suppose E is free of �nite rank n. Then sin
e Fr(T )P

u

(T ) = det(1 � Tu)

1



Now suppose u(E) � E

n

.

End of proof. �

n

Æ u! u.

Lemma. Suppose Q(T ) 2 A[T ℄ is moni
. Then (Q;P

u

) = 1 in AffTgg if and only

if Q

�

(u) is invertible.

Proof. Let v = 1�Q

�

(u). Suppose (Q;P

u

) = 1.

(1 � vT )Fr

v

(T ) = P

v

(T ) = D(1 �Q

�

; P

v

)(T ):

Last time we saw D(1 �Q

�

; P

v

)(1) = Res(Q;P

u

).

Now suppose Q

�

(u)(1� w) = 1.

2
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Riesz Theory (
ontinued)

For R(T ) =

P

n�0

a

n

T

n

, let

�

k

F (T ) =

X

n�k

�

n

k

�

a

n

T

n�k

and � = �

1

. If F (T ) 2 AffTgg and a 2 A, say a is a zero F of order k if �

i

F (a) = 0

for i < k and �

k

F (a) is a unit.

Lemma. Suppose a 2 A is a zero of P

u

(T ) of order h. Then we have a unique

de
omposition

E = N(a) � F (a)

into 
losed submodules su
h that 1�au is invertible on F (a) and (1�au)

h

N(a) = 0.

Proof. Proof. We have

(1 � uT )�

s

Fr

u

(T )� u�

s�1

Fr

u

(T ) = �

s

P

u

(T ):

So if v

s

= �

s

Fr

u

(a). We get (1� au)

s+1

v

s

= 0 for s � h.

Let 
 = �

h

P

u

(a),

e = 


�1

(1 � au)v

h

and f = 


�1

uv

h�1

:

Then

e + f = 1 and fe

h

= 0:

The endomorphisms e

h

and

P

i�1

�

h

i

�

e

h�1

f

i

are proje
tors.

1



Theorem. Suppose P

u

(T ) = Q(T )S(T ) where S 2 AffTgg and Q is a moni
 poly-

nomial su
h that Q(0) = 1 and whi
h is relatively prime to S. Then there is a unique

dire
t sum de
omposition

E = N

u

(Q) � F

u

(Q)

of E into 
losed submodules stable by u su
h that N

u

(Q) is proje
tive of rank degQ,

Q

�

(u)N

u

(Q ) = 0 and Q

�

(u) is invertible on F

u

(Q). Moreover, N

u

(Q) and F

u

(Q)

are lo
ally equivalent to orthonomizable modules and

P

uj

N

u

(Q)

)

(T ) = Q(T ) and P

uj

F

u

(Q)

(T ) = S(T ):

Proof. Let n = degQ, B(T ) = 1�Q

�

(T ) and v = B(u). Then

P

v

(T ) = D(B;P

u

)(T ) = D(B;Q)(T ) �D(B;S)(T );

but

D(B;Q)(X) = Res(Q

�

; 1�X(1�Q

�

)) = (1 �X)

n

;

and D(B;S)(1) = Res(Q;S).

2
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Riesz Theory (
ontinued)

Last we proved, Suppose P

u

(T ) = Q(T )S(T ) where S 2 AffTgg and Q is a poly-

nomial of degree h whose leading 
oeÆ
ient is a unit su
h that Q(0) = 1 whi
h is

relatively prime to S. Then there is a dire
t sum de
omposition

E = N

u

(Q) � F

u

(Q)

of E into 
losed submodules stable by u su
h that Q

�

(u)

h

N

u

(Q ) = 0 (note the h) and

Q

�

(u) is invertible on F

u

(Q). Moreover, if Q(T ) = (1� bT )

h

then Q

�

(u)N

u

(Q) = 0.

Let F = N

u

(Q) and e.F = F

u

(Q) Claim: Q

�

(u)N = 0 in general.

Now lets prove N

u

(Q) is proje
tive of rank h. Suppose we know this when A is a

�eld.

Let fe

i

g be an ON basis for E. Let m be a maximal ideal. Let

f

i

=

X

j2I

a

i;j

e

j

for 1 � i � h

be elements of N whi
h form a basis of N

m

modulo m. Then 9j

1

; : : : ; j

h

su
h that

g =: det(a

i j

k

) 6= 0

is not zero at m. Let U be an open aÆnoid in MaxA where g is invertible. Claim:

f

1

; : : : ; f

h

is a basis for N

U

.

Now we prove when the leaing 
oeÆk
ikent ofQ is multipli
ative, det(1�TujN

u

(Q) = Q(T ).

1



Proposition. SupposeN is a free. Then, lo
ally, there exists a norm onE equivalent

to jj jj su
h that both N and F with their indu
ed norms are orthonormizable.

Corollary. If u

F

is the indu
ed operator on F , u

F

has a 
hara
teristi
 series and

P

u

(T ) = det(1 � Tuj

N

)P

u

F

(T ):

It follows that There exist H(T ) 2 AffTgg su
h that

H(T )Q(T ) = det(1� Tuj

N

)

We also get P

u

F

(T ) = S(T ).

2
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Serre's Riesz theory

Suppose now A is a �eld. As usual E is an ON Bana
h spa
e over A and u is a


ompa
t operator on E. Let fe

i

g be an ONB of E.

Suppose a is a zero of P

u

(T ) of order h and E = N � F is the de
omposition of

E into u-stable Bana
h subspa
es su
h that (1� au)

h

N = 0 and 1� au is invertible

on E.

Theorem. (Serre) N is free of dimension h.

SupposeW is d-dimensional subspa
e of N stable by u. Claim: E =W �G with

G ONable.

Suppose dimW = 1. Suppose w 2W , jjwjj = 1. Suppose

w =

X

a

i

e

i

and je

k

j = 1. Let G = Spanfe

i

: i 6= kg.

Using this we see that

(1 � Ta)

dimW

jP

u

(T )

and so dimN � h.

We know

det(1 � TujN) � P

ujF

(T ) = P

u

(T ):

Sin
e 1� au is invertible on F , it follows that dimN � h.

1



Pseudo-representations

Suppose you have a group G and fun
tions D;T ! G ! R? What do you need

to know about D and T to know there is ae representation �:G! Gl

2

(R) su
h that

D(�) = det(�(�)) and T (�) = Tr (�(�))? (�)

Let S be a �nite set of primes. Suppose G

S

is the Galois group of the maximal

Abel;ian extension of Q unrami�ed outside of S and 
 2 G

S

a 
omplex 
onjugation.

Theorem. Then if R is an integfral domain whose quotient �eld K is not of 
har-

a
teristi
 6= 2, there exists a � satisfying (�) and �(
) =

�

1 0

0 �1

�

if and only if (for

all g; h; k; ` 2 G

S

):

Æ(g � h) = Æ(g)Æ(h) + �(h; g)

�(gh; k) = �(g)�(h; k) + Æ(h)�(g; k)

�(g; hk) = �(k)�(g; h) + Æ(h)�(g; k)

�(g; h)�(k; `) = �(g; `)�(k; h)

and

�(1) = Æ(1) = 1; �(
) = �1; Æ(
) = 1

where

�(x) =

T (x) + T (
x)

2

; Æ(x) =

T (x) � T (
x)

2

�(x; y) = �(xy) � �(z)�(y):

Moreover. if R 2 ob(C), the 
ategory of 
omplete notherian lo
al Z

p

-algebras, � is


ontinuous if and only if T is.

If there exist r; s 2 G

S

su
h that �(r; s) 6= �0, the representation � is given by

g 7!

�

�(g)

�(g;s)

�(r;s)

�(r; g) Æ(g)

�

:

2
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One formula I left out from the previous theorem is D(g) = �(g)Æ(g) � �(g; g).

Sin
e for a pseudo-representation (T;D), D is determined by T , I will 
all T a pseudo-

representation.

What pseudo-representations are good for

Suppose (N; p) = 1. Then h

1

(N;Z

p

) = lim

(

h

k

(�

1

(Np

n

);Z

p

) is independent of the

weight and is topologi
ally generated by He
ke operators T (n) and hai, (a;Np) = 1.

Theorem. (Hida) Suppose A 2 Ob(C), where C is the 
ategory of 
omplete

lo
al noetherian Z

p

-algebras, be an integral domain with quotient �eld K and

�:h

1

(N;Z

p

) ! A is a 
ontinuous Z

p

-homomorphism. Then there is a unique semi-

simple representation �:G

Q

! Gl

2

(K) su
h that

(i) � is 
ontinuous.

(ii) � is unrami�ed outside Np.

(iii) If ` 6 jNp is a prime and �

`

is a Frobenius above `

det(1� �(�

`

)X) = 1� �(T (`))X + �(h`i)`X

2

:

Ba
k to pseudo-representations

Proposition. Suppose R is a produ
t of �nitely many obje
ts in C, a and b two

ideals of R and T

a

:G

Q

! R=a and T

b

:G

Q

! R=b two 
ontinuous p-rs (pseudo-

representtions). If there exist fun
tions t and d on a dense subseet � of G

Q

with

values in R=(a \ b) su
h that

(T

a

(�));D

a

(�)) � (t(�); d(�)) mod a

(T

b

(�));D

b

(�)) � (t(�); d(�)) mod b;

for � 2 � then there exists a p-r T

a\b

:G

Q

! R=(a \ b) su
h that

(T

a\b

(�);D

a\b

(�)) � (t(�); d(�)) mod a \ b:

1



Proof. Consider

0! R=(a \ b)�!R=a�R=b

�

�!R=(a+ b)! 0:

Theorem (Wiles). SupposeR is a topologi
al Z

p

-algebra and fp

i

g

1

i=1

are ideals su
h

that R=p

i

2 C and

R = lim

(

R=

n

\

i=1

p

i

;

� is a dense subset of G, t; d are fun
tions �! R and p-rs T

i

:G! R=p

i

su
h that

(T

i

(�);D

i

(�)) � (t(�); d(�)) mod p

i

for � 2 �. Then there exists a unique p-r T :G ! R su
h that T (�) � T

i

(�) modp

i

for all � 2 � and all i.

Proof.

Corollary. If �:R ! A is a 
ontinuous Z

p

-algebra homomomorphism into an in-

tegral domain with fra
tion �eld K of 
hara
teristi
 di�erent than 2, there exist a

semisimple representation �:G! Gl

2

(K) su
h that

det(1 � �(�)X) = 1� �(T (�))X + �(D(�))X

2

2
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Let G = G

Q

. Now will prove

Theorem. Suppose (N; p) = 1. Suppose A 2 Ob(C) is an integral domain with

quotient �eld K and �:h

1

(N;Z

p

) ! A is a 
ontinuous Z

p

-homomorphism. Then

there is a unique semi-simple representation �:G!Gl

2

(K) su
h that

(i) � is 
ontinuous.

(ii) � is unrami�ed outside Np.

(iii) If ` 6 jNp is a prime and �

`

is a Frobenius above `

det(1� �(�

`

)X) = 1� �(T (`))X + �(h`i)`X

2

:

Proof. Let � = f�

`

:�

`

is a Frobenius above `g.

Fix k � 2. Let R = h

1

(N;Z

p

) = lim

(

h

k

(�

1

(Np

n

);Z

p

). NowR

n

= h

k

(�

1

(Np

n

);Z

p

)

is a produ
t of �nitely many obje
ts of C andR

n


ontains �nitely many minimal prime

ideals p

ni

and

T

i

p

ni

= 0:

Let p

ni

denote its inverse image in R. It follows that

R = lim

(

n

R=

\

p

ni

:

Now, one knows if �:R

n

,! Q

p

F there exists a weight k eigenform F on �

1

(Np

n

)

su
h that

F (q) =

X

�

n�1

(T (n))q

n

:

and by Deligne there exists an irredu
ible 
ontinuous representation �:G! Gl

2

(Q

p

)

su
h that det(�(
)) = �1 and

det(1 � �(�

`

)X) = 1� �(T (`))X + �(h`i)`X

2

:

1



Thus for ea
h (n; i) we have a p-r with values in R=p

ni

. Now let

t(�

`

) = T (`) and d(�

`

) = `h`i:

Ba
k to Bana
h Modules

LetK be a �nite extension ofQ

p

. LetK

0

= fa 2 K: jaj � 1g and } = fa 2 R: jaj < 1g.

Suppose Y is a redu
ed irredu
ible aÆnoid su
h that

e

Y is also redu
ed and we will

regard A(Y ) as a Bana
h algebra with respe
t to the supremum norm.

For a rigid spa
s X let A(X) denote the ring of rigid analyti
 fun
tions on X, and

j j denote the supremum semi-norm on A(X) and A

0

(X) will denote the subring in

A(X) of power bounded fun
tions on Y . Then }A

0

(Y ) equals the set of topologi
ally

nilpotent elements in A(Y ) and

�

Y = Spe
(A

0

(Y )=}A

0

(Y )). Let B

n

K

will denote the

n-dimensional aÆnoid polydisk over K. Then

A(B

n

K

)

�

=

KhT

1

; : : : ; T

n

i and A

0

(B

n

K

)

�

=

K

0

hT

1

; : : : ; T

n

i:

If a 2 K and r 2 jC

p

j we let B

K

[a; r℄ and B

K

(a; r) denote the aÆnoid and wide open

disks of radius r about a in A

1

K

.

Suppose X ! Y is a morphism of redu
ed aÆnoids over K. Then (A(X); j j) is a

Bana
h module over (A(Y ); j j).

Lemma. Suppose X ! Y is a morphism of redu
ed aÆnoids over K and

A

0

(X)=}A

0

(X) is free over A

0

(Y )=}A

0

(Y ). Then the Bana
h module A(X) over

A(Y ) is orthonormizable.

Proposition. Suppose f :Z ! X is a map of redu
ed aÆnoids over Y ,

~

X is redu
ed

and A(X) is orthonormizable over A(Y ) and the image of Z in X is �nite over Y .

Then the map f

�

fromA(X) to A(Z) is a 
ompa
t homomorphism of Bana
h modules

over A(Y ).

2
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Suppose M is a Bana
h spa
e over C, M

0

is the 
ontinuous dual spa
e. Then

M 
M

0

has a natural norm su
h that

jjh
 ejj = jjejj max

jjdjj�1

jh(d)j;

and we get a new Bana
h spa
e N

M

=:M

^


M

0

. This spa
e has natural ring stru
ture

(e
 h) � (d
 f) = h(d)(f 
 e):

Moreover, there is a natural \tra
e" map

Tr : e
 h! h(e):

We also have a 
ontinuous linear map b:N

M

! B(M) := Hom


ont

(M;M),

b(e 
 h): d! h(d)e

whi
h turns multipli
ation into 
omposition and its image is an ideal. The operators

in the image of b are 
alled nu
lear. (They are 
ompa
t.) One has the Fredholm

determinant, for u 2 N

M

det(1� zu) = exp

�

�

1

X

n=1

Tr (u

n

)

z

n

n

�

:

This series is entire and zeroes, 
ounting multipli
ity, are the inverses of the non-zero

spe
tra of b(u). (This was all extra
ted from Grothendie
k's La Theorie de Fredholm

(1956).)

Let H = L

2

([0; 1℄; dt). Then if k(x; y) 2 L

2

([0; 1℄ � [0; 1℄; dt � dt) we an operator

K on H

Kf(x) =

Z

1

0

k(x; y)f(y)dy:

These are 
alled Hilbert-S
hmidt operators. The produ
t of two of these is nu
lear.

1



What about families?

Suppose one has a \family" of nu
lear operators. How does the spe
trum vary?

Example. Suppose M is a Bana
h spa
e and Z is a 
ompa
t Hausdor� spa
e. Supp-

pose U is a nu
lear operator on M and V 2 C(Z;B(M)). Then U

x

:= U Æ V (x) is a

family of nu
lear operators on M . In fa
t, we get a Fredholm determinant D

U;V

(T )

whose 
oeÆ
ients are in A := C(Z). Call its zero lo
us the spe
tral spa
e of the

family.

Another way to phrase this is: Let M

A

= M

^


A = C(Z;M). Then we have an

operator on M

A

over A

e
 f !

�

x! U(x)e 
 f(x)

�

;

and this operator is \nu
lear" over A. One 
an repla
e C with An everywhere.

Questions. Suppose Z is a 
losed disk and U and V are analyti
. Under what


onditions is the zero lo
us of D

U;V

(T ) a �nite union of 
onne
ted 
omponents and

when do these 
omponents have �nite genus?

The U-operator and modular forms

Let p be a prime. The 
ompa
ti�
ation X

0

(p) of the Riemann surfa
e H=�

0

(p)

(one has to add tvhe 
usps 0 and 1) 
an be des
ribed with equations over Z and

thought about over Q

p

. It has two natural p-adi
 analyti
 pie
es W

1

and W

0

,

Let X

r

be the neighborhood of X

1

of \radius" r. For r small there is a natural

�nite morphism �:X

r

! X

r

1=p

. We 
an think of points on X

0

(p) as pairs (E;C)

where E is an ellipti
 
urve and C is a subgroup of order p. For some ellipti
 
urves

E there is a 
anoni
al subroup of order p, K(E) and

�: (E;K(E))!

�

E=K(E);K(E=K(E))

�

:

2



Now we have \nu
lear" operator on M := A(X

r

)

U =: Res

X

r

1=p

X

r

Æ Tr

X

r

X

r

1=p

(�):

There is a weight p� 1 Eisentein series E

p�1

and therefore a fun
tion E on X

r

(for

small r) whose q-expansion is

E

p�1

(q)=E

p�1

(q

p

):

Sin
e this q-expansion is � 1 mod p, E

s

makes sense for jsj � 1 and is in A(X

r

)

for small r, so we have

V :B[0; 1℄! B(M);

V (s)g = E

s

� g

and so we get a family of nu
lear operators U

s

on M . If k = (p � 1)n one 
alls the

elements of M

k

= E

n

p�1

M weight k over
onvergent modular forms. It 
ontains the


lassi
al weight k forms on �

0

(p) and if F is 
lassi
al

F ! E

n

p�1

U

n

(F=E

n

p�1

)

is the 
lassi
al weight k U-operator. We get a spe
tral 
urve S over B[0; 1℄.

The Eigen
urve

There are other operators T (n) for any integer n prime to p and using the fa
t that

nu
lear operators make up an ideal we 
an use U Æ T (n) to make another spe
tral


urve S

n

. The eigen
urve E is essentially the �ber produ
t of all these spe
tral


urves. A point x on the eigen
urve 
orresponds to a normalized over
onvergent

eigenforms F

x

with non-zero U-eigenvalue. These have q-expansion s.

For ea
h eigenform mod p f there is a 
omponent E

f

of E whose points 
orrespond

to normalized overonvergent eigenforms whose q-expansion s redu
e to that of f .

One 
an atta
h a representation �

f

:G

Q

! Gl

2

(F

p

) unrami�ed away from p su
h

that

Tr �

f

(�

`

) = a

`

3



if ` 6= p and f(q) =

P

n

a

n

q

n

. If �

f

is irredu
ible one 
an atta
h a representation

�

x

:G

Q

! Gl

2

(C

p

) to ea
h point x in E

f

unrami�ed away from p whi
h \lifts" �

f

su
h that

Tr�

x

(�

`

) = A

`

if ` 6= p and F

x

(q) =

P

n

A

n

q

n

.

Fontaine-Mazur and Kisin

Conje
ture. Suppose E is a �nite extension of Q

p

and �:G

Q

! Gl

2

(E) is a 
on-

tinuous odd, irredu
ible representation rami�ed at only �nitely many primes whose

restri
tion to a de
omposition group at p is \semi-stable." Then � arises from a


lassi
al modular form.

Mark Kisin has re
ently proven this 
on
lusion when � arises from an over
onver-

gent eigenform with non-zero U eigenvalue using the eigen
urve (Coleman-Mazur)

and the following

Theorem (C, 94). If F is an over
onergent eigenform of weight k and the valuation

of its U-eigenvalue is < k � 1 then F is 
lassis
al.

4
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Li's Example

Suppose H = fv =

P

i�1

a

i

e

i

: a

i

2 C; jjvjj =:

P

i�1

ja

i

j < 1g. Consider the

operator L: e

i

!

e

i

i

.

L = lim

n!1

b

�

n

X

i=1

e

0

i


 e

i

i

�

Why doesn't L have a tra
e?

A Compa
t Sour
e

Proposition. Suppose f :Z ! X is a map of redu
ed aÆnoids over Y ,

~

X is redu
ed

and A(X) is orthonormizable over A(Y ) and the image of Z in X is �nite over Y .

Then f

�

:A(X) ! A(Z) is a 
ompa
t homomorphism of A(Y )-Bana
h modules.

Proof. Let B = A

0

(Y ), C = A

0

(Z) and D = A

0

(X). Let x

1

; : : : ; x

n

be elements of

D su
h that the map from BhT

1

; : : : ; T

n

i, T

i

7! x

i

is surje
tive onto D. There are

moni
 polynomials g

i

(S) 2 B[S℄, 1 � i � n su
h that f

�

g

i

(x

i

) 2 �C for some � 2 K

0

su
h that j�j < 1. We 
an write any element of D as

X

I;N

a

I;N

x

I

g(x)

N

;

where x = (x

1

; : : : ; x

n

), g = (g

1

; : : : ; g

n

), I;N 2 N

n

(ordered lexographi
ally),

I < deg(g) and a

I;N

2 B. Now let fe

i

g

i2I

be an ON basis for A(X) over A(Y ).

Then e

i

2 D. Let F

i;m

be an element in the B-span of

ff

�

(x

I

g(x)

N

): I < deg g and S(N) < mg

1



su
h that F

i;m

� f

�

e

i

mod�

m

C. De�ne L

m

:A(X) ! A(Z) by L

m

(e

i

) = F

i;m

. Then

L

m

is of �nite rank and 
onverges to f

�

Call su
h a morphism f inner over Y . If Y = Spe
K 
all f inner.

Examples.

Over
onvergn
e

Suppose Z is an aÆnoid. Then an over
onvergent fun
tion f on Z is a rigid

fun
tion su
h that there exists some inner embedding Z ! X and a fun
tion F on

X whi
h extends f .

When Z has good redu
tion one 
an use the same X for any two fun
tions.

Examples.

When f is a se
tion of a sheaf F one does something similar.

Suppose (N; p) = 1. Then X

1

(Np) has a model whose redu
tion has two


omponents, X

0

=: X

0

(N) and X

1

=: X

1

(N), Let W

1

= Red

�1

X

1

and

Z

1

(N) = Red

�1

X

1

�X

0

. De�neW

0

similarly. ThenW

1

\W

0

is a untion of annuli

A

s

where s is a ss point of X

1

(N). There exist w

s

2 N and T

s

: A

s

�

=

A(p

�w

s

; 1)

su
h that jT

s

(x)j ! 1 as x! Z

1

(N). If x 6= 0; 1728 or N > 4, w

s

= 1

LetW

1

(r) =:W

1

(N)(r) be the set of x 2W

1

, x 2 Z

1

(N) or s and v(T

s

(x)) � r.

(In parti
ular,W

1

((Nn)(0) = Z

1

(Nn).)

One has a 
anoni
al sheaf ! on X

1

(Np) (if Np � 5).

An over
onvergent form of weight k is an over
onvergent se
tion of !


k

on Z

1

(N).

It extends to W

1

(r) for some r.

2
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Over
onvergn
e

Suppose Z is an aÆnoid. Then an over
onvergent fun
tion f on Z is a rigid

fun
tion su
h that there exists some inner embedding Z ! X and a fun
tion F on

X whi
h extends f .

Lemma. Over
onvergent fun
tions form a ring.

Lemma. If Z is redu
ed and has good redu
tion, Z ! Y is inner and f is an

ovewr
onvergent fun
tion on Z. There exists an aÆnoid Y , morphisms Z ! X ! Y

su
h that Z ! X is inner and a fun
tion F on X whi
h extends f .

Examples.

Suppose (N; p) = 1. Then X

1

(Np) = X

0

[ X

1

, Let W

1

= Red

�1

X

1

and

Z

1

(N) =: Z

1

(Np) = Red

�1

(X

1

�X

0

). There exist w

s

2 N and T

s

: A

s

�

=

A(p

�w

s

; 1)

su
h that jT

s

(x)j ! 1 as x! Z

1

(N). LetW

1

(r) =:W

1

(N)(r) be the set of x 2W

1

,

x 2 Z

1

(N) or s and v(T

s

(x)) � r. There is a 
anoni
al sheaf ! onX

1

(Np) (if Np � 5).

An over
onvergent form of weight k is an over
onvergent se
tion of !


k

on Z

1

(N).

Eisenstein Series

Suppose p is odd. Let �

p�1

= �p. For a 
hara
ter �:Z

�

p

! C

�

p

, let f

�

denote

its \
ondu
tor". Let W = Hom


ont

(Z

�

p

;C

�

p

) (weight spa
e). Z inje
ts naturally into

W(Q

p

);

k 2 Z!

�

a! a

k

�

:

1



Let � denote the Tei
hmuller 
hara
ter and 1 denote the trivial 
hara
ter.

Suppose � 2 W(C

p

), � 6= 1, and n � 1 2 Z, let

�

�

�

(n) =

X

djn

(d;p)=1

�(d)d

�1

; �

�

(�) =

1

�(
)� 1

Z

Z

�

p

�(a)a

�1

dE

1;


(a)

for any 
 2 Z

�

p

su
h that �(
) is not 1. So that, when �(a) = hhaii

s

�(a) (is

arithmeti
) where s 2 C

p

, jsj < j�=pj, and � is a 
hara
ter of �nite order

�

�

(�) = L

p

(1 � s; �): Let

G

�

�

(q) =

�

�

(�)

2

+

X

n�1

�

�

�

(n)q

n

:

When �(a) = hhaii

k

�(a), where k is an integer and � is a 
hara
ter of �nite order

on Z

�

p

su
h that �(�1) = 1, G

�

�

(q) is the q-expansion of a weight k over
onvergent

modular form G

�

�

on �

1

( LCM(p; f

�

)) and 
hara
ter ��

�k

. It is 
lassi
al if k is at

least 1.

If �

�

(�) 6= 0 and � 6= 1, let E

�

�

(q) = 2G

�

�

(q)=�

�

(�) and also E

�

1

(q) = 1. Suppose

� 2 W(C

p

) and � is trivial on �(Q

p

), then j�

�

(�)j > 1 and jE

�

�

(q) � 1j < 1:

Let B

�

= B(0; j�=pj) and W

�

= B

�

� Z=(p � 1)Z. For s = (t; i) 2 W

�

(C

p

) let

�

s

(a) = a

s

=: hhaii

t

�

i

(a). Let E = E

�

(1;0)

. Note that E(q) � 1 mod p.

For m � 0;N > 0 (N; p) = 1 let Z

1

(Np

m

) denote the 
onne
ted 
omponent of

the ordinary lo
us in X

1

(Np

m

) 
ontaining1.

Lemma. Suppose �(a) = hhaii

k

�(a) is arithmeti
 and � is trivial on �(Q

p

). Then

E

�

�

(whi
h 
onverges on) does not vanish on Z

1

(p

m

) where p

m

= LCM(p; f

�

).

Proof. First E

�

�


onverges on Z

1

(p

m

) be
ause it is over
onvergent. Next, the lemma is

true for E. Now observe that F = E

�

�

=E

k

is a fun
tion on Z

1

(p

m

) whose q-expansion

is 
ongruent to 1.

2



The Eigen
urve and the Fontaine-Mazur Conje
ture

Robert F. Coleman

Le
ture 15

Some remarks on over
onvergn
e

First we 
an de�ne over
onvergent di�erentials of degree d, 


dy

(X), on an aÆnoid

X in the same way we de�ned over
onvergent fun
tions A

y

(X) = 


0y

(X) and this

module is a �nite rank A

y

(X)-module. Next we 
an shea�fy these things.

Some spe
ulation:

If F is a 
oherent sheaf on a rigid spa
e X, an over
onvergent a stru
ture F

y

is a

sheaf onX 
oherent overO

y

X

su
h that F = O

X




O

y

X

F

y

. Then we get over
onvergent

stru
tures on 


d

X

and if (F ;F

y

) and (G;G

y

) are two 
oherent sheaves with OS so is

(F 


O

X

G;F

y




O

y

X

G

y

). Moreover, if f :X ! Y is a proper morphism of rigid spa
es

(R

n

f

�

F ; R

n

f

�

F

y

)) is an over
onvergent stru
ture on the 
oherent sheaf R

n

f

�

F .

Sin
e !

M

= R

f

�




1

E

1

(M)=X

1

(M)

, if M � 5, we get a 
anoni
al over
onvergent

stru
tures on !


n

where ! = !

Np

j

Z

1

(Np)

.

Ba
k to Eisenstein Series

Suppose p is odd, �

p�1

= �p.

For � 2 W(C

p

), � 6= 1, and n � 1 2 Z,

�

�

�

(n) =

X

djn

(d;p)=1

�(d)d

�1

; �

�

(�) =

1

�(
)� 1

Z

Z

�

p

�(a)a

�1

dE

1;


(a)

for any 
 2 Z

�

p

su
h that �(
) is not 1 and

G

�

�

(q) =

�

�

(�)

2

+

X

n�1

�

�

�

(n)q

n

:

1



If �

�

(�) 6= 0 and � 6= 1, let E

�

�

(q) = 2G

�

�

(q)=�

�

(�) and also E

�

1

(q) = 1. Suppose

� 2 W(C

p

) and � is trivial on �(Q

p

), then j�

�

(�)j > 1 and jE

�

�

(q) � 1j < 1:

Let B

�

= B(0; j�=pj) and W

�

= B

�

� Z=(p � 1)Z. For s = (t; i) 2 W

�

(C

p

) let

�

s

(a) = a

s

=: hhaii

t

�

i

(a). If E = E

�

(1;0)

. E(q) � 1 mod p.

For m � 0;N > 0, (N; p) = 1, let Z

1

(Np

m

) denote the 
onne
ted 
omponent of

the ordinary lo
us in X

1

(Np

m

) 
ontaining 1.

q is a parameter at 1 and any se
tion of !


k

has a q-expansion .

Lemma. Suppose �(a) = hhaii

k

�(a) and � is trivial on �(Q

p

). Then E

�

�

(whi
h


onverges on) does not vanish on Z

1

(p

m

) where p

m

= LCM(p; f

�

).

Proof. First E

�

�


onverges on Z

1

(p

m

). Next, the lemma is true for E. Now observe

that F = E

�

�

=E

k

is a fun
tion on Z

1

(p

m

) whose q-expansion is 
ongruent to 1. -

X

1

(Np) = W

0

(N) [W

1

(N). W

1

\W

0

=

S

s

A

s

. Suppose T

s

: A

s

�

=

A(p

�w

s

; 1)

su
h that jT

s

(x)j ! 1 as x! Z

1

(Np). LetW

1

[r℄ =:W

1

(N)[r℄ be the set of x 2W

1

,

x 2 Z

1

(Np) or x 2 A

s

for some s and v(T

s

(x)) � rw

s

.

If d 2 Z

�

p

we have an operator hdi in E

1

(Np)=X

1

(Np) and hen
e on !

Np

and !.

If k is an integer, and s = (k; i) an over
onvergent form F of weight-
hara
ter

�

s

are se
tions of !

k

on Z

1

(Np) whi
h extend to W

1

[r℄ for some r > 1 and satisfy

hdiF = �

i

(d)F:

Frobenius

2
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Weight-Chara
ters

X

1

(Np) = W

0

(N) [W

1

(N). W

1

\W

0

=

S

s

A

s

. Suppose T

s

: A

s

�

=

A(p

�w

s

; 1)

su
h that jT

s

(x)j ! 1 as x! Z

1

(Np). LetW

1

[r℄ =:W

1

(N)[r℄ be the set of x 2W

1

,

x 2 Z

1

(Np) or x 2 A

s

for some s and v(T

s

(x)) � rw

s

.

If d 2 Z

�

p

we have an operator hdi in E

1

(Np)=X

1

(Np) and hen
e on !

Np

and !.

If k is an integer, and s = (k; i) an over
onvergent form F of weight-
hara
ter

�

s

are se
tions of !

k

on Z

1

(Np) whi
h extend to W

1

[r℄ for some r > 1 and satisfy

hdiF = �

i

(d)F:

In parti
ular, E

�

s

has weight-
hara
ter �

s

.

Frobenius

Suppose N > 4 and n � 1 are integers su
h that (N; p) = 1. Let A = E

p�1

.

Let E

1

(N)(v) denote the pullba
k ofE

1

(Np) toX

1

(N)(v). Then, for v < 1=(p+1).

If E is an ellipti
 
urve with a 
anoni
al sdubgroup, denote this subgroup K(E).

Theorem. There is a 
ommutative diagram of rigid morphisms;

E

1

(N)(v)

�

�! E

1

(N)(pv)

# #

X

1

(N)(v)

�

�! X

1

(N)(pv)

�(E; �

N

; �) = (�

E

(E); �

E

Æ �

N

; �

0

)

1



where �

E

:E ! �

E

(E) =: E=K(E) and �

0

(�) = �

E

(a) where pa = �(�) and

�

0

(�

p

) � K(�

E

(E)).

Call the above diagram �=�, a morphism from

E

1

(Nn)(v)=X

1

(N)(v) to E

1

(N)(pv)=X

1

(N)(pv):

Proof. Let U be the family of kernels of redu
tion and if r 2 p

Q

< 1, U [r℄ the

subfamily of aÆnoid disks of radius r. If s < p=(p + 1), Frank has shown that there

exists an r < 1 su
h that

F

s

=

�

E

1

[N ℄[p℄ \ U [r℄

�

X

1

(N)(s)

is the family K

s

of 
anoni
al subgroups over X

1

(N)(s).

Lemma. F

s

is �nite over X

1

(N)(s).

Proof. Frank showed that K(E) equals the zero lo
us of z

p

� t


an

(E)z. Using

Weierstr�ass preparartion (Theorem 5.2..2/1) one sees that t


an

is a lo
ally analyti


fun
tion on X

1

(N)(s).

Now use Stein fa
torization (Theorem 9.6.2/5 of [BGR℄).

From this we get a morphism

�=
:E

1

(N)(v)=X

1

(N)(v) ! E

0

(N)(pv)=X

0

(N)(pv):

We have a se
tion of order p, �:X

1

! E

1

. De�ne � :X

1

(pv) ! E

1

(pv) by

� (X

1

(pv)) = �

�

p

�1

�(X

1

) \ �

�1

(K

0

(pv))

�

[BGR℄ Bosh, S., U. G�untzer and R. Remmert, Non-Ar
himedian Analysis, Springer-

Verlag, (1984).
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Frobenius

If n � 0 and v < p=p

n

(p+1) and E 
orresponds to a point in X

1

(N)(v), there exists

a unique 
y
li
 subgroup of E, K

n

(E), of order p

n+1

su
h that

K

0

(E) = K(E); pK

n

(E) = K

n�1

(E) and K

n

(E)=K(E) = K

n�1

�

E=K(E)

�

:

Theorem. Suppose N > 4 and v < 1=(p + 1). There is a 
ommutative diagram of

rigid morphisms;

E

1

(N)(v)

�

�! E

1

(N)(pv)

# #

X

1

(N)(v)

�

�! X

1

(N)(pv)

�(E; �

N

; �) = (�

E

(E); �

E

Æ �

N

; �

0

)

where �

E

:E ! �

E

(E) =: E=K(E) and �

0

(�) = �

E

(a) where a 2 K

1

(E) and

pa = �(�).

Proof. Let U be the family of kernels of redu
tion and if r 2 p

Q

< 1, U [r℄ the

subfamily of aÆnoid disks of radius r. If s < p=(p + 1), there exists an r < 1 su
h

that

K

s

=

�

E

1

[N ℄[p℄ \ U [r℄

�

X

1

(N)(s)

is the family of 
anoni
al subgroups over X

1

(N)(s).

Is K

s

�nite over X

1

(N)(s)?

Proof. Frank showed that, after 
hoosing a good parameter, z, on E, K(E) equals

the zero lo
us of z

p

� t


an

(E)z. For x a supersingular point, T

s

our parameter on

A

x

and r 2 Q, 0 < r < 1, let C

x

(N)(r) be the 
ir
le in A

x

of points y su
h that

v(T

x

(y)) = rw

x

. Using

1



Weierstrass Preparation ([BGR℄ Theorem 5.2.2/1). Suppose

F (X;Y ) =

P

n�0

a

n

(X)Y

n

2 KhX;Y i, a

d

(X) is a unit and ja

d

j � ja

n

j for

all n with stri
t inequality for n > d. Then there exists a unique moni
 poly-

nomial of degree d, P (X;Y ), in RhXi[Y ℄ and U(X;Y ) 2 KhX;Y i

�

su
h that

F (X;Y ) = P (X;Y )U(X;Y ).

one sees that t


an

is analyti
 on every residue disk in X

1

(N)(0) or C

x

(N)(r) if

0 < r < p=(p+ 1).

Theorem (Proposition 6.3.2/1 of [BGR℄). If f :X ! Y is a morphism of redu
ed

aÆnoids and

~

f is �nite, then f is �nite.

We get a (homo)morphism

�=
:E

1

(N)(v)=X

1

(N)(v) ! E(N; p)(v)=X(N; p)(v):

Pi
k a p-th root of unity. Then we have a se
tion of order p, �:X

1

! E

1

. De�ne

� :X

1

(pv) ! E

1

(pv) by

� (X

1

(pv)) = �

�

p

�1

�(X

1

) \ �

�1

(K

0

(pv))

�

:

[BGR℄ Bosh, S., U. G�untzer and R. Remmert, Non-Ar
himedian Analysis, Springer-

Verlag, (1984).
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Review and improvements

Let X(n; p) be the modular 
urve whose points 
orrespond to triples (E:�;C)

where �:�

N

! E is an embedding and C is a subgroup of order p. Then

X(N; p) = W

0

(N) [W

1

(N). W

1

\W

0

=

S

s

A

s

. Suppose T

s

: A

s

�

=

A(p

�w

s

; 1)

su
h that jT

s

(x)j ! 1 as x ! Z(N; p) =: Z(n; p)(0) =: W

1

(N) � W

0

(N). For

1 > v > 0 let Z(N; p)(v) be the set of x 2 W

1

, x 2 Z(N; p) or x 2 A

s

for some s

and v(T

s

(x)) � rw

s

. We 
an also well de�ne Z

1

(N)(v) for 0 � v < 1,

If n � 0 and v < p=p

n

(p + 1) and E 
orresponds to a point in X(N; p)(v),

there exists a unique 
y
li
 subgroup of E, K

n

(E), of order p

n+1

su
h that

K

0

(E) = K(E); pK

n

(E) = K

n�1

(E) andK

n

(E)=K(E) = K

n�1

�

E=K(E)

�

.

Moduli problems See Katz{Mazur

Let E be the 
ategory of ellipti
 
urves over rigid spa
es. A moduli problem P on E is

a fun
tor from E to sets. P is said to be representible if there is an obje
t E(P)=M(P)

in P su
h that for every E=S 2 E

P(E=S) = Hom

E

(E=S;E(P)=M(P)):

If N > 4 anid (N; p) = 1, the moduli problem E=S goes to pairs (�; C) where

�:S � �

N

! E=S is an embedding C is a subgroup of E=S 
at over S of rank p is

representble by a pair E(N; p)=X(N; p).

1



Frobenius

Theorem. Suppose N > 4 and v < 1=(p + 1). There is a 
ommutative diagram of

rigid morphisms;

E(N; p)(v)

�

�! E(N; p)(pv)

# #

X(N; p)(v)

�

�! X(N; p)(pv)

�(E; �;C) = (E=C; �

E

Æ �; C

0

)

where �

E

:E ! E=K(E) and C

0

= K(E=C) (whi
h exists).

Lemma. If v < p=(p+1) there exists a unique se
tion of X(N; p) ! X

1

(N). More-

over, s(X

1

(N))(v) = X(N; p)(v).

Proof.

Let V be the family of subgroups o order p of E(N; p)=X(N; p).

Let U be the family of kernels of redu
tion in E

1

(N) and if r 2 p

Q

< 1, U [r℄ the

subfamily of aÆnoid disks of radius r. If v < p=(p + 1), there exists an r < r

0

< 1

su
h that

K

v

=

�

E

1

[N ℄[p℄ \ U [t℄

�

X

1

(N)(v)

with t = r or r

0

is the family of 
anoni
al subgroups over X

1

(N)(v). In parti
ular

(K

v

)

1

= �

p

.

Proposition. s

�

V = K

v

.

Proof. Claim: K

v

j

Z

1

(0)

=Z

1

(0) is �nite.

Let �

2

:X(N; p) ! X

1

(N) be (E; �;C) 7! (E=C; � modC). Now we 
an de�ne �

as s Æ �

2

Æ s.

2



The Eigen
urve and the Fontaine-Mazur Conje
ture

Robert F. Coleman

Le
ture 19

Notation

In X(n; p) for 0 � v < 1, we have subspa
es Z(N; p)(v) de�ned as follows:

Z(N; p) =: Z(n; p)(0) =: W

1

(N) � W

0

(N). Suppose T

s

: A

s

�

=

A(p

�w

s

; 1) su
h

that jT

s

(x)j ! 1 as x !. Then if 1 > v > 0, Z(N; p)(v) be the set of x 2 W

1

,

x 2 Z(N; p) or x 2 A

s

for some s and v(T

s

(x)) � rw

s

. We 
an also well de�ne

Z

1

(N)(v) for 0 � v < 1,

Frobenius

Theorem. Suppose N > 4 and v < 1=(p + 1). There is a 
ommutative diagram of

rigid morphisms;

E(N; p)(v)

�

�! E(N; p)(pv)

# #

X(N; p)(v)

�

�! X(N; p)(pv)

�(E; �;C) = (E=C; �

E

Æ �; C

0

)

where �

E

:E ! E=K(E) and C

0

= K(E=C) (whi
h exists).

Proof.

Proposition. There exists a se
tion t of X(N; p) ! X

1

(N) over Z

1

(N)(v) if

v < p=(p + 1). Moreover, in this 
ase, t(Z

1

(N)(v)) = Z(N; p)(v).

We will use

Lemma. If f :X ! Y is a morphismof redu
ed 
urves overK and U � X and V � Y

are aÆnoid subdomains su
h that f(U) � V and

�

f :

�

U !

�

V is an isomorphism. Then

there exists a stri
t neighborhood Z of V in Y and a se
tion Z ! X of F .

and

1



Lemma. If f :A(p

�1

; 1) ! B(0; 1) is a �nite morphism of degree p + 1 and

deg

A[r℄

f = 1 for r near 1, then there exist a se
tion of f on A(p

�

p

p+1

; 1)

Proof of proposition

Our � will be t Æ �

2

where All we have to show is that t(A;�) = (A;�;K(A))

Let V be the family of subgroups of order p of E(N; p)=X(N; p).

Let U be the family of kernels of redu
tion in E

1

(N) and if r 2 p

Q

< 1, U [r℄ the

subfamily of aÆnoid disks of radius r. If v < p=(p + 1), there exists r < r

0

< 1 su
h

that

K

v

=

�

E

1

[N ℄[p℄ \ U [t℄

�

X

1

(N)(v)

with t = r or r

0

is the family of 
anoni
al subgroups over X

1

(N)(v). In parti
ular

(K

v

)

1

= �

p

.

Proposition. s

�

V = K

v

.

Proof. Claim: K

v

j

Z

1

(0)

=Z

1

(0) is �nite.

A (little) higher level

Let X

1

(Np)(v) be the inverse image of X(N; p)(v) under the forgetful map f .

Theorem. Suppose N > 4 and v < 1=(p + 1). There is a 
ommutative diagram of

rigid morphisms;

E

1

(Np)(v)

�

�! E

1

(Np)(pv)

# #

X

1

(Np)(v)

�

�! X

1

(Np)(pv)

�(E; �; �) = (�

E

(E); �

E

Æ �; �

0

)

where �

E

:E ! �

E

(E) =: E=K(E) and �

0

(�) = �

E

(a) where a 2 K

1

(E) and

pa = �(�).

2



Proof. We have,

E

1

(Np)(v)

�ÆF

�! E(N; p)(pv)

# #

X

1

(Np)(v)

�Æf

�! X(N; p)(pv)

so all we need is a rigid map

�:X

1

(Np)(pv) ! K

pv


ompatible with tihe other maps, of order p.

3
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Frobenius \�nished"

Last time we proved,

Proposition. There exists a unique se
tion t of X(N; p) ! X

1

(N) over Z

1

(N)(v) if

v < p=(p + 1). Moreover, in this 
ase, t(Z

1

(N)(v)) = Z(N; p)(v).

Also,

Lemma. If �

2

:X(N; p) ! X

1

(N) is the map (E; �;C) ! (E=C; � modC) then

�

2

(Z(N; p)(v)) = Z

1

(N)(pv).

Proof.

Our � will be t Æ �

2

. All we have to show is that t(A;�) = (A;�;K(A)).

Let V be the family of subgroups of order p of E(N; p)=X(N; p) and U the family

of kernels of redu
tion in E

1

(N) and if r 2 p

Q

< 1, U [r℄ the subfamily of aÆnoid

disks of radius r. If v < p=(p + 1), there exists r < r

0

< 1 su
h that

K

v

=

�

E

1

[N ℄[p℄ \ U [t℄

�

X

1

(N)(v)

with t = r or r

0

is the family of 
anoni
al subgroups over X

1

(N)(v). In parti
ular

(K

v

)

1

= �

p

.

Proposition. t

�

V = K

v

.

Proof. Claim: K

v

j

Z

1

(N)

=Z

1

(N) is �nite. Fix a residue 
lass U . Using what Frank

showed K

U

equals the zero lo
us of z

p

� t


an

z for a some good family of parameters

z at the origin on E

1

(N)

U

and some invertible fun
tion t


an

on U .

1



I am leaving the details of �=� on E

1

(Np)=X

1

(Np) as an exer
ise. One 
an also

deal with N � 4.

The U operator

For v � 0, let M

k

(N; v) = !

k

(X

1

(N)[v℄). Now, M

k

(N; v) has a natural stru
ture as

a Bana
h spa
e over K and when 0 � v <

p

p+1

there is an operator on this spa
e,

U

(k)

. Let F 2 M

k

(N; v), v <

p

p+1

. Suppose x 2 X

1

(N)[v℄ 
orresponds to (E; �

n

; �).

Then, pointwise,

U

(k)

(F )(x) =

1

p

X

�(y)=x

�

�

�

y

F (y):

X

a

n

q

n

!

1

p

X

a

np

q

n

:

Why is this analyti
?

First, U

(0)

=

1

p

Tr

�

. Now re
all, we have a weight one Eisenstein series E on

X

1

(p) whi
h we 
an 
onsider as an element of M

1

(N; v). Considered as a form �

E

on

E

1

(N; p)(v), on (G

m

=q

Z

; �

Np

) it is

E(q)

dT

T

:

Now �

�

�

E

has q-expansion pE(q

p

)

dT

T

. Let E

�

be the se
tion of M

1

(N; v),

v < 1=(p + 1), with q-expansion E(q

p

). For v 
lose enough to 1, 1=E

�

2 M

�1

(N; v).

Then,

U

(k)

F = E

k

U

0

(F=(E

�

)

k

):

U

(k)

is 
ompa
t.

Proof.

N � 4

Suppose A;B 2 Z, A;B > 4, (AB; p) = 1 and (A;B) = N , we de�ne M

N;k

(v)

with the interse
tion of the images via the forgetful maps of M

A;k

(v) andM

B;k

(v) in

M

LCM(A;B);k

(v). One has to show that these are all 
anoni
ally isomorphi
.

2
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\Continuity" explained

Suppose v < p=(p+1). FirstW = t

�

V is �nite overX

1

(N)(v) as is ea
h 
onne
ted


omponent. Finally, if r < r

0

< 1 are su
h that

K

v

=

�

E

1

[N ℄[p℄ \ U [t℄

�

X

1

(N)(v)

with t = r or r

0

, U [r℄ and E

1

(N) � U [r

0

℄ are dis
onne
ted and

W =

�

U [r℄ \W

�

[

�

(E

1

(N) � U [r

0

℄) \W

�

:

The U operator

For v � 0, let Z

1

(Np)(v) = �

�1

(Z(N; p)(v)) and let M

k

(N; v) = !

k

(Z

1

(Np)). Now,

M

k

(N; v) has a natural stru
ture as a Bana
h spa
e over K and when 0 � v <

p

p+1

there is an operator on this spa
e, U

(k)

. Let F 2 M

k

(N; v), v <

p

p+1

. Suppose

x 2 Z

1

(Np)(v) 
orresponds to (E; �; �). Then, pointwise,

U

(k)

(F )(x) =

1

p

X

�(y)=x

�

�

�

y

F (y);

where �

y

:E

y

! E

y

=K(E

y

) = E. Also, if E = G

m

=q

Z

and � is the natural embed-

dings and F (x) = (

P

a

n

(�)q

n

)(

dT

T

)

k

then

U

(k)

(F )(x) =

�

X

a

np

(�

p

�1

)q

n

��

dT

T

�

k

:

Why is this analyti
?

1



First, M

0

((N; v)) = A(Z

1

(Np)(v)) and U

(0)

is

1

p

Tr

�

j

Z

1

(Np)(

v

p

)

Z

1

(Np)(v)

Æ Res

Z

1

(Np)(v)

Z

1

(Np)(

v

p

)

:

Now re
all, we have a weight one Eisenstein series E on X

1

(p),

E(q) = 1 +

2

L

p

(0;1)

X

n�1

�

X

djn

(d;p)=1

�

�1

(d)

�

q

n

;

whi
h we 
an 
onsider as an element �

E

of M

1

(N; v). Now �

�

�

E

has q-expansion

pE(q

p

)

dT

T

. Let E

�

be the se
tion of M

1

(N; v), v < 1=(p + 1), with q-expansion

E(q

p

). For v 
lose enough to 0, we showed 1=E

�

2M

�1

(N; v) (in fa
t, v < 1=(p+1)

is enough). Then,

U

(k)

F = E

k

U

0

(F=(E

�

)

k

):

U

(k)

is 
ompa
t.

Proof.

w M

k

(N; v) is pretty big and one 
an show det(1 � TU

(k)

) has in�nitely many

zeroes. However,

Theorem. If F 2 M

k

(N; v) is an eigenve
tor of U

(k)

with eigenvaluew � and

v(�) < k � 1 then F is 
lassi
al.

(The proof is now on the web.)

N � 4

Suppose A;B 2 Z, A;B > 4, (AB; p) = 1 and (A;B) = N , we de�ne M

k

(N; v) to

be the interse
tion of the images of M

A;k

(v) and M

B;k

(v) in M

AB;k

(v). One has to

show that these are all 
anoni
ally isomorphi
.

2
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\Another" de�nition of U

First, M

0

((N; v)) = A(Z

1

(Np)(v)) and U

(0)

is

1

p

Tr

�

j

Z

1

(Np)(

v

p

)

Z

1

(Np)(v)

Æ Res

Z

1

(Np)(v)

Z

1

(Np)(

v

p

)

:

Re
all, we have a weight one Eisenstein series E on X

1

(p),

E(q) = 1 +

2

L

p

(0;1)

X

n�1

�

X

djn

(d;p)=1

�

�1

(d)

�

q

n

;

whi
h we 
an 
onsider as an element �

E

of M

1

(N; v). Now �

�

�

E

has q-expansion

pE(q

p

)

dT

T

. Let E

�

be the se
tion of M

1

(N; v), v < 1=(p + 1), with q-expansion

E(q

p

). For v 
lose enough to 0, we showed 1=E

�

2M

�1

(N; v) (in fa
t, v < 1=(p+1)

is enough). Then, de�ne

U

(k)

F = E

k

U

0

(F=(E

�

)

k

):

U

(k)

is 
ompa
t.

Proof.

Now M

k

(N; v) is pretty big and one 
an show det(1� TU

(k)

) has in�nitely many

zeroes. However,

Theorem. If F 2 M

k

(N; v) is an eigenve
tor of U

(k)

with eigenvaluew � and

v(�) < k � 1 then F is 
lassi
al.

(The proof is \Classi
al and Over
onvergent Forms" whi
h is now on the web.)

1



The U operator in families

We de�ned U

(k)

(F ) = E

k

U

0

(F=(E

�

)

k

). Let E = E=E

�

. This is a fun
tion 
lose to 1

on Z

1

(N)(v) for v small. In fa
t, for v < 1=(p + 1),

jE � 1j � p

(p+1)v�1

:

So if u

k

is the operator on M

(0)

(N; v), G 7! U

(0)

(G � E

k

),

E

�k

U

(k)

(F ) = u

k

(F=E

k

);

but sin
e E is 
lose to 1, u

k

makes sense for any k 2 C

p

whi
h is not too big. Suppose

jsj < j�=pj then 9v su
h that

jE � 1j < j�=sj

on Z

1

(Np)(v) this means

E

s

= 1 + (E � 1) + � � � +

�

s

n

�

(E � 1)

n

+ � � �


onverges on Z

1

(Np)(v).Thus, if r 2 p

Q

< j�=pj and jE � 1j < j�j=r on Z

1

(Np)(v),

we get an operator U

r;v

over A(B[0; r℄) on M(r; v) =: A(B[0; r℄ � Z

1

(Np)(v)) whi
h

is

(U

(0)


 1) Æm

E

s

:

We know this operator is 
ompa
t. Thus we get 
hara
teristi
 series P

r;v

(T ) for every

(r; v), as above. But they are all \the same."

Theorem. There is a unique rigid analyti
 fun
tion P (s; T ) = P

N

(s; T ) on B

�

�C

p

de�ned over Q

p

, i.e. P (s; T ) is a power series over Q

p

in s and T , whi
h 
onverges

for jsj < j�=pj, su
h that for k 2 Z and v 2 Q su
h that 0 < v < p=(p+ 1),

P (k; T ) = det(1� TU

(k)

jM

k

(v)):

N � 4

Suppose A;B 2 Z, A;B > 4, (AB; p) = 1 and (A;B) = N , we de�ne M

k

(N; v) to

be the interse
tion of the images of M

A;k

(v) and M

B;k

(v) in M

AB;k

(v). One has to

show that these are all 
anoni
ally isomorphi
.

2
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Classi
al forms

Suppose F (q) =

P

n�0

a

n

q

n

is the q-expansion of a normalized weight k eigen-

form on X

1

(N) of 
hara
ter �. Asso
iated to F there are (at most) two eigenforms

(oldforms) on X(N; p) whose U

p

eigenvalues are the roots of

X

2

� a

p

X + �(p)p

k�1

The Spe
tral Curve

Theorem. There is a unique rigid analyti
 fun
tion P (s; T ) = P

N

(s; T ) on B

�

�C

p

de�ned over Q

p

, i.e. P (s; T ) is a power series over Q

p

in s and T , whi
h 
onverges

for jsj < j�=pj, su
h that for k 2 Z and v 2 Q su
h that 0 < v < p=(p+ 1),

P (k; T ) = det(1� TU

(k)

jM

k

(v)):

Proof. Be
ause \If �:A ! B is a homomorphism of Bana
h algebras then

�

�

E =: E 


A

B is orthonormizable over B and

P

�

�

L

(T ) = �(P

L

(T )):

00

our P

r;v

(T ) is \independent of r." Now be
ause � is �nite, if p=(p+1) > v � v

0

� v=p,

T

v

0

=p

v

0

ÆR

v

0

v

0

=p

= R

v

v

0

Æ T

v=p

v

ÆR

v

0

v=p

;

where T = Tr and R = Res: As

(T

v=p

v

ÆR

v

0

v=p

Æm

E

s

) ÆR

v

v

0

= T

v=p

v

ÆR

v

v=p

Æm

E

s

= U

r;v

;

1



the \independen
e" of v follows from: \Suppose E

1

and E

2

are orthonormizable

Bana
h modules over A. Suppose u is a 
ompa
t homomorphism from E

1

to E

2

and

v:E

2

! E

1

is a 
ontinuous homomorphism. Then P

uÆv

(T ) = P

vÆu

(T )."

Now D =: (Z=pZ)

�

a
ts on Z(N; p)(v) and

M(t; v) =

M

�2

^

D

M(t; v; �)

and

P (s; T ) =

Y

�2

^

D

P

�

(s; T )

where

P

�

(s; T )j

B[0;t℄�C

p

= det(1� TU

t;v

jM(t; v; �)):

Thus we get an entire fun
tion onW

�

�C

p

. Its zero lo
us is the �ber of the spe
tral


urve of U over W

�

.

A Formula

Theorem. Suppose N � 4. Then

T

d

dT

P

N

(T )=P

N

(T ) =

X

m�1

A

m

T

m

where A

m

is the element of Z

p

[[Z

p

℄℄ � A(W

�

), expressed by the �nite sum,

A

m

=

X


2W

p;m

X

O2O




h(O)B

N

(O; 
) �

[
℄




2

� p

m

where B

N

(O; 
) is the number of elements of O=NO of order N �xed under multi-

pli
ation by 
.

For an order O in a number �eld, let h(O) denote the 
lass number of O. If 
 is

an algebrai
 integer, let O




be the set of orders in Q(
) 
ontaining 
. Finally, for m

an integer, let W

p;m

denote the �nite set of 
 2 Q

p

su
h that Q(
) is an imaginary

quadrati
 �eld, 
 is an algebrai
 integer, Norm

Q(
)

Q

(
) = p

m

and v(
) = 0:
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\Review"

As always (N; p) = 1. W(N) is the rigid analyti
 spa
e whose C

p

points are


ontinuous 
hara
ters from (Z=NZ)

�

� Z

�

p

into C

�

p

. W

�

(N) is the open subspa
e

of 
hara
ters of the form � � hh ii

s

where � is a 
hara
ter on (Z=NpZ)

�

and

jsj < j�=pj. We 
all the 
orresponding spa
es of 
hara
ter on 1 + pZ

p

, B and B

�

. If

D(M) = Hom((Z=MZ)

�

;C

�

p

),

W(N) = D(N) � B and W

�

(N) = D(N) � B

�

:

Also B

�

=

B(1; 1) and B

�

�

=

B(0; p

p�2

p�1

). Now (Z=NpZ)

�

a
ts on Z

1

(Np)(v) (by \dia-

mond operators"). For ea
h v > 0, t > 0 and � 2 D(Np) let M(v; �) and M(v; t; �)

be the spa
es of rigid analyti
 fun
tions on Z

1

(Np)(v) and B(0; t)�Z

1

(Np)(v) with


hara
ter �. These spa
es are aÆnoids if v 2 Q and t 2 p

Q

. We have a 
ompa
t

U-operator on all these spa
es (U

(0)


 1) Æm

E

t
if v is suÆ
iently small (< p=(p+1))

and t < p

p�2

p�1

.

Theorem. There are unique rigid analyti
 fun
tions P

�

(s; T ) on B

�

� C

p

de�ned

over Q

p

, su
h that for k 2 Z and v 2 Q su
h that 0 < v < p=(p+ 1),

P

�

(k; T ) = det(1 � TU

(k)

jM

k

(v; �)):

Let Q be the rigid fun
tion on W

�

(N) �C

p

de�ned by Q(�; s; z) = P

�

(s; z); for

� 2 D(Np), s 2 B

�

and z 2 C

p

.

Theorem. Q extends analyti
ally to a fun
tion on W(N) �C

p

.

See \On the 
oeÆ
ients of the 
hara
teristi
 series of the U-operator," whi
h is

now on the 
ourse webpage.

1



The key obje
t(s) to 
onsider is the q-expansion E(q) whi
h at � 2 B is

E

�

(q) = 1 +

2

�

�

(�)

X

n�1

�

�

�

(n)q

n

:

Proposition. There is an an analyti
 fun
tion E

p

on a \stri
t" neighborhood of

Z

B

=: B�Z

1

(p) in B�X

1

(p) with q-expansion at � E

�

(q)=E

�

(q

p

) bounded by 1 on

Z

B

.

We may now use the operator U =: (U

(0)


 1) Æ m

E

p

on M

y

(N), the spa
e of

q-expansions F (q) with 
oe�
ients in A(B) su
h that F (q)=E(q) is the q-expansion of

an analyti
 fun
tion whi
h 
onverges on a \stri
t" neighborhood of Z

B

=: B�Z

1

(pN)

in B �X

1

(pN).

We also get to de�ne: A series

P

n�1

a

n

q

n

, a

n

2 K is \the q-expansion of an

OC form of type � = � � �" if F (q)=E

�

(q) is the q-expansion of an OC fun
tion on

Z

1

(Np) with 
harater �. When �(a) = a

k

, k 2 Z, F (q) will be the q-expansion of an

OC form of weight k and 
hara
ter � � !

�k

.

He
ke Operators

First, if l 2 (Z=NZ)

�

� Z

�

p

, � 2 B,

�

F jhli

�

(q)

�

j

�

= �(hhlii)E

�

(q)

�

F j

�

E

�

�

�

hli

�

(q):

When �(a) = a

j

, k 2 Z,

(F jhli

�

)

k

= l

k

F j

k

hli:

For prime `, let  

`

be the operator on A(B)[[q℄℄

 

`

(

X

n

a

n

q

n

) =

X

n

a

n`

q

n

:

Proposition. For ea
h prime number l there is a unique 
ontinuous operator T (`)

on M

y

(N) su
h that, for F 2M

y

(N), when ` = p,

(F jT (p))j

�

= E

�

� U

�

F

�

E

�

�

; when ljN F jT (`)(q) =  

`

(F (q))

and when l 6 jNp

(F jT (l))(q) =  

`

(F (q)) + `

�1

(F jh`i

�

)(q

`

):

2
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He
ke opertors

We now have the operator T(p) on M

y

(N) whi
h is

F (q) 7! E(q)(U

0


 1)(

F (q)

E(q

p

)

):

If � is arithmeti
, � =  � hh ii

k

where  is a 
hara
ter on 1+ pZ

p

of �nite order and

k 2 Z, F

�

(q) is the q-expansion of weight k modular form G, of tame level N , and

(F (q)jT(p))

�

= (GjT (p))(q):

If ` 2 (Z=NZ)

�

� Z

�

p

, � 2 B,

�

F jhli

�

(q)

�

j

�

= �(`)E

�

(q)

�

F

�

E

�

�

�

h`i

�

(q):

When � is arithmeti
, as above,

(F (q)jh`i

�

)

�

= `

k

F j

�

h`i(q):

For prime `, let  

`

be the operator on A(B)[[q℄℄

 

`

(

X

n

a

n

q

n

) =

X

n

a

n`

q

n

:

Proposition. For ea
h prime number ` there is a unique 
ontinuous operator T(`)

on M

y

(N) su
h that, for F 2 M

y

(N), when `jNp

F jT (`)(q) =  

`

(F (q))

and when ` 6 jNp

(F jT (l))(q) =  

`

(F (q)) + `

�1

(F jh`i

�

)(q

`

):

1



Suppose ` 6= p. For any prime ` we have a fun
tion E

`

on a stri
t neighborhood

of W � Z(`) with q-expansion E(q)=E(q

`

).

Proof. Let M = Np. We �rst look at X(M ; `) the modular xurve whi
h 
lassi�es

triples (E;�

M

; C) where jCj = ` and Image (�

M

) \ C = 0 and de�ne Z(M ; `)(v).

We have

g

1

; g

2

:Z(M ; `)(v) ! Z

1

(M)(v)

and

`

�1

Tr

g

1

Æ g

�

2

on A

y

(M) whi
h on q-expansions if `jN is  

`

. Now

 

`

(F (q)) = E(q) 

`

�

F (q)

E(q)

�E

`

(q)

�

:

We de�ne T(n), for positive integers n by:

X

n�1

T(n)

n

t

=

Y

ljNp

(1�T(`)`

�t

)

�1

Y

(`;Np)=1

(1�T(`)`

�t

+ h`i

�

`

�1�2t

)

�1

;

where the produ
ts are over primes `.

Let T be the ring generated by the operators T(`) and hdi

�

, (d;Np) = 1.

We will use Q, T and Riesz theory to build the eigen
urve.

2
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Building the Eigen
urve

We now have a spa
e M

y

(N) of \families of q-expansions of over
onvergent forms of

tame levelN ." It is a module overA(B) and we have anA(B) algebraT =: T(N) gen-

erated by operators hdi

�

, d 2 (Z=NZ)

�

�Z

�

p

, and T(n), n

>0

2 Z. If X is any aÆnoid

in B, M

X

=: M

y

(N)

^


A(X) is the dire
t limit of Bana
h submodules N

n

on whi
h

T(p) a
ts 
ompa
tly. In fa
t, for ea
h 
hara
ter � 2 D(Np) =

�

(Z=NpZ)

�

�

^there is

an power series P

�

(s; T ) 2 A(B)[[T ℄℄ whose resti
tion to X is det(1�T(p)jN

n

(�)).

Let

S

�

= f(b; z) 2 B �C

p

:P

�

(s; z) = 0g:

Fix � and let S = S

�

and P = P

�

.

Lemma. Suppose X � B and Y � S

X

are aÆnoid subdomains, Y and S � Y

are dis
onne
ted and Y is �nite over X. Then there exists R(T ) 2 A(X)[T ℄ and

Q(T ) 2 A(X)[[T ℄℄ su
h that R is moni
 Q is entire, R(0) is a unit, Q(0) = 1,

(R

�

(T ); Q(T )) = 1,

P (T ) = R

�

(T )Q(T )

and Y is the zero lo
us of R. (A(Y ) = A(X)[T ℄=R(T ).)

Riesz theory tells us

M

X

= N(Y )� F (Y );

where N(Y ) is proje
tive of rank d

Y

=: degR, R

�

(T(p)) annihilates N(Y ) and is

invertible on F (Y ). In parti
ular, T a
ts on N(Y ).

Let T

Y

=: T

Y

(N) denote the image of T in End

A(X)

(N(Y )).

1



Proposition. T

Y

is �nite of degree d

Y

over A(X).

Proof. De�ne

h ; i:T

Y

�N(Y ) ! A(X) by

hh;F i = a

1

(F jh):

This pairing is perfe
t. The key point is that

hT(n); F i = a

n

(F ):

Thus we get an aÆnoid E

Y

(N) �nite over X, �:E

Y

(N) ! X.

Gouvêa-Mazur

Suppose � 2 D(Np), � 2 B, r

<1

2 p

Q

and �

�0

2 Q. First

Y =: f(�; z) 2 S: j� (1 + p)� �(1 + p)j � r; v(z) = �g

is an aÆnoid subdomain of S quasi-�nite over X = B[�; r℄. In fa
t, if r is small

enough it is �nite and Y is dis
onne
ted from S � Y .

Proposition. Suppose, � =  � hh ii

k

where  has �nite order, k 2 Z and � < k� 1.

Then the degree of E

Y

(N) over X equals the number of 
lassi
al eigenforms of tame

level N and 
hara
ter � �  � !

�k

. Moreover, if x 2 E

Y

(N)(L), �(x) =  � hh ii

j

2 X,

j 2 Z, � < j � 1.

X

n�1

T(n)(x)q

n

is the q-expansion of a 
lassi
al eigenform (minus its 
onstant term), of tame level N

of 
hara
ter � �  � !

�j

.

Conje
ture. One 
an take r = p

��

.

2
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Comments on Last Time

First, inside M

y

(N) we have C

y

(N) whi
h are the elements with 
onstant term 0. T

a
ts on C

y

.

(Re
all, we've �xed �.) Suppose X is an aÆnoid in B and Y is a \
lopen" aÆnoid

in S

X

�nite of degree d over X. Then we got a proje
tive module N(Y ) of rank d in

M

X

and we de�ned T

Y

to be the image of T in End

X

(N(Y )).We started proving,

Proposition. T

Y

is �nite of degree d over A(X).

Let N

0

(Y ) = C

X

\N(Y ). Then N

0

(Y ) is proje
tive of rank d� Æ where Æ = 1 or

0. Also let T

0

Y

the image of T in End

X

(N

0

(Y )) .

We proved, T

0

Y

is �nite of degree d� Æ over A(X).

0! I ! T

Y

! T

0

Y

! 0 and 0! N

0

(Y )! N(Y )! J ! 0

and we have perfe
t pairing (i; j) 7! a

0

(jji).

Also the 
onje
ture stated in the last le
ture is true by Hida when � = 0.

Glueing

For every Y � S = S

�

su
h that Y is �nite over X � B and \
lopen" in S

X

we

found an aÆniod E

Y

(N) whi
h is �nite over X and su
h that A(E

Y

(N)) = T

X

(N).

Let C be the 
olle
tion of these Y .

Proposition. S is admissibly 
overed by C.

This means if A(S) =: A(B)[[T ℄℄

entire

=P (T ) and h:A(S) ! A is a 
ontinuous

homomorphism into an aÆnoid algebra. There exists a �nite 
olle
tion Y

i

2 C su
h

that if f 2 A(S) vanishes on all the Y

i

, h(f) = 0.

1



Proposition. Suppose Y

1

; Y

2

2 C. (i) Y

3

=: Y

1

\ Y

2

2 C. (ii) E

Y

3

(N) is naturally a

subdomain of E

Y

1

(N) and E

Y

2

(N).

Proof.

Now we make E

�

is

`

Y 2C

E

Y

(N) with the identi�
ations �

1

(x) = �

2

(x) if

x 2 E

Y

1

\Y

2

(N) and

�

i

:E

Y

1

\Y

2

(N) ! E

Y

i

(N)

is the natural morphism. We 
an also mske E

0

�

� E

�

.

Properties of the Eigen
urve

I. We have a natural surje
tive morphism �:E

�

! B. v

II. There are analyti
 fun
tions hdi

�

, d 2 (Z=NZ)

�

� Z

�

p

, and T(n), n

>0

2 Z and

T(p) is invertible.

III. If

P

n�0

a

n

q

n

is the q-expansion of an over
onvergent eigenform on X

1

(Np

n

) of

weight k and 
hara
ter � �  � !

�k

su
h that a

p

6= 0 then there exists a point x 2 E

�

su
h that

a

n

= T(n)(x) for n > 0:

IV. If x 2 E

�

and �(x) =  � hh ii

k

,

X

n�1

T(n)(x)q

n

is the q-expansion of an OC eigenform (minus its 
onstant term), of tame level N

and 
hara
ter � �  � !

�k

.

V. The morphism x! (�(x);T(p)(x)) a lo
ally �nite from E

�

onto S

�

.

VI. There exists a pseudo-repreentation � = (T;D):G

Q

! T su
h that, if (`;Np) = 1,

T (Frob

`

) = T(`) and D(Frob

`

) = h`i

�

=`:

2
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Glueing

For every Y � S = S

�

su
h that Y is �nite over X � B and \
lopen" in S

X

we

found an aÆniod E

Y

(N) whi
h is �nite over X and su
h that A(E

Y

(N)) = T

X

(N).

Let C be the 
olle
tion of these Y .

Proposition. S is admissibly 
overed by C.

This means that thw image of every morphism of an aÆnoid into S isa 
oved9 by

�nitely many elements of C.

Proposition. Suppose Y

1

; Y

2

2 C. (i) Y

3

=: Y

1

\ Y

2

2 C. (ii) E

Y

3

(N) is naturally a

subdomain of E

Y

1

(N) and E

Y

2

(N).

Proof.

Now we make E

�

is

`

Y 2C

E

Y

(N) with the identi�
ations �

1

(x) = �

2

(x) if

x 2 E

Y

1

\Y

2

(N) and

�

i

:E

Y

1

\Y

2

(N) ! E

Y

i

(N)

is the natural morphism. We 
an also mske E

0

�

� E

�

.

1



Properties of the Eigen
urve

I. We have a natural surje
tive morphism �:E

�

! B. v

II. There are analyti
 fun
tions hdi

�

, d 2 (Z=NZ)

�

� Z

�

p

, and T(n), n

>0

2 Z and

T(p) is invertible.

III. If

P

n�0

a

n

q

n

is the q-expansion of an over
onvergent eigenform on X

1

(Np

n

) of

weight k and 
hara
ter � �  � !

�k

su
h that a

p

6= 0 then there exists a point x 2 E

�

su
h that

a

n

= T(n)(x) for n > 0:

IV. If x 2 E

�

and �(x) =  � hh ii

k

,

X

n�1

T(n)(x)q

n

is the q-expansion of an OC eigenform (minus its 
onstant term), of tame level N

and 
hara
ter � �  � !

�k

.

V. The morphism x! (�(x);T(p)(x)) a lo
ally �nite from E

�

onto S

�

.

VI. There exists a pseudo-representation � = (T;D):G

Q

! T su
h that, if

(`;Np) = 1,

T (Frob

`

) = T(`) and D(Frob

`

) = h`i

�

=`:

This requires,

Theorem (
orre
ted) (Wiles). Suppose R is a topologi
al Z

p

-algebra and fp

i

g

1

i=1

are

ideals su
h that R=p

i

2 C and

R = lim

(

R=

n

\

i=1

p

i

;

� is a dense subset of G, t; d are fun
tions � ! R and p-rs T

i

:G! R=p

i

su
h that

(T

i

(�);D

i

(�)) � (t(�); d(�)) mod p

i

for � 2 �. Then there exists a unique p-r T :G ! R su
h that T (�) � T

i

(�) modp

i

for all � 2 � and all i.

2
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Properties of the Eigen
urve

I. We have a natural morphism �:E

�

! B.

II. There are analyti
 fun
tions hdi

�

, d 2 (Z=NZ)

�

� Z

�

p

, and T(n), n

>0

2 Z and

T(p) is invertible. Let T

�

be lim

(

Y 2C

T

Y

(N).

III. If

P

n�0

a

n

q

n

is the q-expansion of an over
onvergent eigenform on X

1

(Np

n

) of

weight k and 
hara
ter � �  � !

�k

over K su
h that a

p

6= 0 then there exists a point

x 2 E

�

(K) su
h that

�(x) = � �  � hh ii and a

n

= T(n)(x) for n > 0:

IV. If x 2 E

�

and �(x) =  � hh ii

k

,

F

x

(q) =:

X

n�1

T(n)(x)q

n

is the q-expansion of an OC eigenform (minus its 
onstant term), of tame level N

and 
hara
ter � �  � !

�k

.

V. The morphism x! (�(x);T(p)(x)) a lo
ally �nite from E

�

onto S

�

.

VI. There exists a pseudo-representation (T;D):G

Q

! T

�

su
h that, if (`;Np) = 1,

T (Frob

`

) = T(`) and D(Frob

`

) = h`i

�

=`:

Theorem (
orre
ted) (Wiles). Suppose R is a topologi
al Z

p

-algebra and fp

i

g

1

i=1

are

ideals su
h that R=p

i

is a lo
al 
omplete Z

p

-algebra and R = lim

(

R=

T

n

i=1

p

i

, � is a

dense subset of G, t; d are fun
tions �! R and p-rs (T

i

;D

i

):G! R=p

i

su
h that

(T

i

(�);D

i

(�)) � (t(�); d(�)) mod p

i

1



for � 2 �. Then there exists a unique p-r (T;D):G ! R su
h that (T (�);D(�)) � (T

i

(�);D

i

(�))mod p

i

for all � 2 � and all i.

Lemma. If F (T ) 2 1+TA(B)[[T ℄℄

entire

and U is a 
onne
ted 
omponent of the zero

lo
us of F in B �C

p

, the 
omplement of the image of U in B is �nite.

Proof of VI. Let D be the subset of Y 2 C su
h that 9 a p-r (T

Y

;D

Y

):G

Q

! E

Y

,

E

Y

= E

Y

(N), su
h that

T

Y

(Frob

`

) = T(`)j

E

Y

and D

Y

(Frob

`

) = h`i

�

=`j

E

Y

:

Now,

S

Y 2D

Y is a union of 
onne
ted 
omponents of S.

Suppose x 2 E

�

, �(x) =  � hh ii

k

, k

�2

2 Z and v(T(p)(x)) < k � 1. Then, by

Deligne, there exists a rep �

x

:G

Q

!Gl

2

(Q

p

(x)) su
h that if (`;Np) = 1,

Tr�

x

(Frob

`

) = T(`)(x) and

det �

x

(Frob

`

) = �(`) (`)`

k�1

= h`i

�

(x)=`:

What about a

p

?

Suppose E is �nite extention of Q

p

and x 2 E

�

(E). We de�ne the weight k(x) of x

to be 1 +

log(�(x)(1+p))

log(1+p)

. There is a subring B

+


ris

of B

+

DR

whi
h 
ontains W (R) and

t = log[�℄ on whi
h G

Q

p

a
ts whith a Frobenius endomorphism � whi
h 
ommutes

with G

Q

p

su
h that

�(�b) = �

�

�(b) and �t = pt; � 2W (R):

and

Theorem (Kisin). Suppose a

p

=: T(p)(x), and �:G

Q

! Aut

E

(V ) is a representa-

tion atta
hed to x, then there exists a non-zero G

Q

p

-equivariant E-linear map

V ! (B

+


ris




Q�p

E)

�=a

p

:

2
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The Faemily of Peudo-reps

Theorem. There exists a pseudo-representation

(T;D):G

Q

! T

�

su
h that, if (`;Np) = 1,

T (Frob

`

) = T(`) and D(Frob

`

) = h`i

�

=`:

Ingrediants of the proof.

Theorem (Wiles). SupposeR is a topologi
al Z

p

-algebra and fp

i

g

1

i=1

are ideals su
h

that R=p

i

is a lo
al 
omplete Z

p

-algebra and R = lim

(

R=

T

n

i=1

p

i

, � is a dense subset

of G, t; d are fun
tions �! R and p-rs (T

i

;D

i

):G ! R=p

i

su
h that

(T

i

(�);D

i

(�)) � (t(�); d(�)) mod p

i

for � 2 �. Then there exists a unique p-r (T;D):G ! R su
h that (T (�);D(�)) � (T

i

(�);D

i

(�))mod p

i

for all � 2 � and all i.

Let T

0

�

be the subring of T

�

whi
h is the 
ompletion of the ring generated over

A

0

Q

p

(�)

(B)

�

=

R

�

[[T ℄℄ by hdi

�

, d 2 (Z=NZ)

�

� Z

�

p

, and T(n), n

>0

2 Z.

Proposition. T

0

�

is 
ompa
t.

This 
omes down to,

Theorem (after Hida). If k

2Z

� 2 and h

k

(Np

�

) is the He
ke algebra a
ting on

weight k modular forms of level Np

�

over Z

p

.

M

�

T

0

�

�

=

R

�




Z

p

lim

(

�

h

k

(Np

�

)

1



Suppose x 2 E

�

, �(x) =  � hh ii

k

, k

2Z

� 2, and v(T(p)(x)) < k � 1. Then, by

Deligne, there exists a rep �

x

:G

Q

!Gl

2

(Q

p

(x)) su
h that if (`;Np) = 1,

Tr�

x

(Frob

`

) = T(`)(x) and det �

x

(Frob

`

) = �(`) (`)`

k�1

= h`i

�

(x)=`:

For ea
h x ae above we get a prime ideal p

x

of T

0

�

What about a

p

?

Suppose E is �nite extention of Q

p

and x 2 E

�

(E). We de�ne the weight k(x)

of x to be 1 +

log(�(x)(1+p))

log(1+p)

. There is a subring B

+


ris

of B

+

DR

whi
h 
ontains W (R)

and t = log[�℄ on whi
h G

Q

p

a
ts with a Frobenius endomorphism � whi
h 
ommutes

with G

Q

p

su
h that

�(�b) = �

�

�(b) and �t = pt; � 2W (R):

and

Theorem (Kisin). Suppose a

p

=: T(p)(x), and �:G

Q

! Aut

E

(V ) is a representa-

tion atta
hed to x, then there exists a non-zero G

Q

p

-equivariant E-linear map

V ! (B

+


ris




Q

p

E)

�=a

p

:

2



Preview of B


ris

and B

st

.

Let B


ris

= B

+


ris

[1=t℄. This embeds naturally inB

DR

. Set Fil

i

B


ris

= B


ris

\ Fil

i

B

DR

.

Also ((B


ris

)

G

K

= K

0

.

We need to 
onsider another ring B

st

whi
h is B

+

st

[1=t℄ where

B

+

st

= B

+


ris

[f`(u):u 2 Fra
(R)

�

g℄;

where

`(wv) = `(w) + `(v) and `(u) = log

[u℄

u

(0)

+ logu

(0)

;

if v(u

(0)

� 1) > 0. We extend � to B

st

by setting �(`(u)) = p`(u) and let N be the

unique derivation over B


ris

on B

st

su
h that

N 1 = 0 and N `(u) = v(u

(0)

):

N Æ � = p� ÆN and

0! B


ris

! B

st

N

�!B

st

! 0

3
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Preview of B

st

We know B


ris

= B

+


ris

[1=t℄ and this embeds naturally in B

DR

. Set

Fil

i

B


ris

= B


ris

\ Fil

i

B

DR

:

GrB


ris

= B

HT

and GrB

+


ris

= B

+

HT

:

We need to 
onsider another ring B

st

whi
h is B

+

st

[1=t℄ where

B

+

st

= B

+


ris

[f`(u):u 2 Fra
(R)

�

g℄;

and

`(wv) = `(w) + `(v) and `(u) = log

[u℄

u

(0)

+ logu

(0)

;

if v(u

(0)

� 1) > 0. We extend F to B

st

by setting F (`(u)) = p`(u) and let N be the

unique derivation over B


ris

on B

st

su
h that

N 1 = 0 and N `(u) = v(u

(0)

):

Then NF = pFN and

0! B


ris

! B

st

N

�!B

st

! 0

Periods of Classi
al Eigenforms

Suppose x 2 E

�

, M =: Q

p

(x) � L and F

x

(q) is 
lassi
al eigenform of weight

k. Let �:G

Q

! Gl(V ) be a reepreesentation \atta
hed" to x where V is a two

dimensional ve
tor spa
e over M . Then

Theorem (Faltings). V 
C

p

�

=

C

p

�C

p

(k � 1).

Suppose L is a �nite extension of Q

p

. The Weil group, W

L

, is the subgroup of

G

L


onsisting of elements w whose restri
tion to L

nr

is an integral power, �(w), of

1



absolute Frobenius. The Weil-Deligne group of L is a group s
hemeWD

L

over Q

whi
h is the semi-dire
t produ
t of the 
onstant group sheme W

L

and G

a

on whi
h

W

L

a
ts by

wxw

�1

= p

�(w)

x:

If M is a �eld, a representation of WD

L

over M is an M ve
tor spa
e V with

homomorphism of group s
hemes  :WD

L

(M) ! Gl(V ). These are equivalent to

representations �

0

ofW

L

on anM-ve
tor spa
e � together with anM-linear operator

N on � satisfying

N Æ �

0

(w) = p

��(w)

�

0

(w) ÆN:

Indeed,  (x) = exp(xN

L

) for x 2 G

a

.

Let V

�

= Hom(V;L) and set

D

pst

(V ) =

[

L

0

=L

(B

st


 V

�

)

G

0

M

. Now WD

L

operates on D

pst

(V ) whih �nite dimensional over K

nr

. First W

L

a
ts

and se
ond

N

L

m = Nm:

N

L

a
ts nilpotently on D

pst

(V ). Let J(V ) denote the the invriants by inertia in the

kernel of N

L

. Let � be the inverse of relative Frobenius.

Therorem (Saito). (1� a

p

p

�s

)

�1

divides det(1 � �p

�s

jJ)

�1

.

Frank will prove,

Theorem . There exists a non-zero G

Q

p

-equivariant E-linear map

V ! (B

+


ris




Q

p

E)

�=a

p

:

After Faltings it is enough to prove, There exists a non-zero G

Q

p

-equivariant

E-linear map

V ! (B


ris




Q

p

E)

�=a

p

:

2
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Clari�
ation of Weil-Deligne

Suppose �

0

ofW

L

on a �nite dimensionalM-ve
tor spa
e � andN is aanM-linear

operator on � satisfying

N Æ �

0

(w) = p

��(w)

�

0

(w) ÆN:

Then N is nilpotent and �(x;w) = exp(xN)�

0

(w), (x;w) 2WD

L

is a representation.

Periods of Classi
al Eigenforms

Suppose x 2 E

�

(Q

p

), M =: Q

p

(x). Let �

x

:G

Q

! Gl(V

x

) be a repreesentation

\atta
hed" to x where V

x

is a two dimensional ve
tor spa
e over M . We want to

prove,

Theorem. Let a

p

= T(p)(x). There exists a non-zero G

Q

p

-equivariant M-linear

map

V

x

! (B

+


ris




Q

p

M)

�=a

p

:

Frank explained why this is true when F

x

(q) is 
lassi
al. I will now explain its


one
tion to Fontaine-Mazur.

1



Fontaine-Mazur

Let �

P

a

n

q

=

P

na

n

q

n

and �:G

Q

p

! Z

�

p

be the 
y
lotomi
 
hara
ter.

Proposition. If F (q) is the q-expansion of a weight 2 � k OC form where k 2 Z,

k � 2, �

k�1

F (q) is the q-expansion of a weight k � 1 OC form.

A rep �:G

K

! Gl(V ) is 
alled potentially semi-stable (pst) if

dim

K

nr

D

pst

(V ) = dim

M

V:

Theorem (Kisin). Suppose V

x

when viewed as a G

Q

p

-rep is pst. Then,

(i) k =: k(x) 2 Z and � =: v(T(p)(x)) � max f0; k � 1g. (ii) If k � 2, either F

x

(q)

is 
lassi
al or � = k � 1 and 9 OC G of weight 2 � k su
h that F

x

= �

k�1

G and

V

x

�

=

�

1

� �

2

�

k�1

.

Corollary. If �

x

is semi-stable and irredu
ible, then x is 
lassi
al.

Proof of Theorem. First PST implies HT

dim

K

(V 
B

HT

)

G

K

= dim

M

V:

and Hodge-Tate reps have integral weight.

Suppose V =: V

x

is ST over a �nite Galois extension K of Q

p

and let

D =: D

st

(V

�

) = Hom

G

K

(V

x

; B

st

) = (V

�

x


B

st

)

G

K

:

Claim:

D

dr

(V

�

) = (D

st

(V

�

)


K

0

K)

Gal(K=Q

p

)

This follows from the fa
t that

B

st




K

0

K ,! B

dr

:

Thus D

dr

(V

�

) is a 2 dimensional M-spa
e and it has an M-linear �

[K

0

:Q

p

℄

-a
tion.

ThusD = D

dr

(V

�

)


Q

p

K

0

is a freeM
K

0

module of rank 2 and its Newton polygon

has at most two slopes of the same run [M;Q

p

℄.

2
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Assuming,

Theorem. Let a

p

= T(p)(x). There exists a non-zero G

Q

p

-equivariant M-linear

map

V

x

! (B

+


ris




Q

p

M)

�=a

p

:

we'll prove,

Theorem. Suppose V

x

when viewed as a G

Q

p

-rep is pst. Then, k =: k(x) 2 Z and

� =: v(T(p)(x)) � max f0; k � 1g.

To simplify notation, I will assume Q

p

(x) =M = Q

p

and that V

x

is semistable.

We already 
he
ked that k(x) 2 Z. One of the fa
ts we used was that B

st

embeds

in B

dr

. Re
all, B

st

= B

+

st

[1=t℄ where

B

+

st

= B

+


ris

[f`(u):u 2 Fra
(R)

�

g℄;

`(wv) = `(w) + `(v) and `(u) = log

[u℄

u

(0)

+ logu

(0)

;

if v(u

(0)

� 1) > 0. We already know how to embed B


ris

into B

dr

. Choose a bran
h

of the logarithm log. Then send `(u) to

log

[u℄

u

0

+ logu

(0)

:

This makes sense sin
e �([u℄) = u

(0)

.

SupposeD is a �ltered (F;N)-module over K, i.e. a K

0

-moduleD with a �-linear

isomorhism F and an endomorphismN su
h that NF = pFN as well as a de
reasing,

exhaustive, separated �ltration on D

K

, D

i

, like D(V

�

) =: (V

�




M

B

st

)

G

Q

p

. The

Hodge numbers of D are

h

H

(D; i) = dimD

i

=D

i+1

1



If D = D

K

(V

�

), h

H

(D; i) = 1 if i = 0 or k � 1 and is zero otherwise .For a rational

number � = r=s let D

[�℄

be the K

0

-subspa
e of

�

K

0




K

0

D spanned by the elements

x su
h that (� 
 F )

s

x = p

r

x: The Newton numbers are

h

N

(D;�) = dim

K

0

D

[�℄

:

Suppose dim

K

0

D < 1. If D = D(V

�

), h

N

(D; [v(a

p

)℄) � 1. We also know

h

N

(D;k � 1� [v(a

p

)℄) = h

N

(D; [v(a

p

)℄).

Put,

t

H

(D) =

X

i2Z

ih

H

(D; i) and t

N

(D;�) =

X

�2Q

�h

N

(D;�):

Then D is weakly admissible if t

H

(D

0

) � t

N

(D

0

) for all K

0

-subspa
es D

0

of D

stable by F and N with equality when D

0

= D.

Theorem. If W is PST then D

pst

(W ) is WA.

SupposeD = D(V

�

). This is WA. Also the submodule

P

��0

D

[�℄

is (F;N)-stable

and thus

0 �

X

�2Q

��0

�h

N

(D;�)

2
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Theorem. Let a

p

= T(p)(x). There exists a non-zero G

Q

p

-equivariant M-linear

map

V

x

! (B

+


ris




Q

p

M)

�=a

p

:

Assuming this, and \
ontinuity o Hodge-Tate-Sen" weights, we'll prove,

Theorem. Suppose V

x

when viewed as a G

Q

p

-rep is pst. Then, k =: k(x) 2 Z and

� =: v(T(p)(x)) � max f0; k � 1g.

SupposeD is a �nite dimensional �ltered (F;N)-module overK, i.e., a K

0

-module

D with a �-linear isomorhism F and an endomorphism N su
h that NF = pFN as

well as a de
reasing, exhaustive, separated �ltration on D

K

, D

i

. The Hodge polygon

of D is the lower 
onvex hull of the verti
es

(

X

i�j

dimD

i

=D

i+1

;

X

i�j

idimD

i

=D

i+1

)

For a rational number � = r=s let D

[�℄

be the K

0

-subspa
e of

�

K

0




K

0

D spanned

by the elements x su
h that (� 
 F )

s

x = p

r

x.

The Newton polygon of D is the lower 
onvex hull of

(

X

���

dimD

[�℄

;

X

���

� dimD

[�℄

)

Then D is weakly admissible if the Newton polygon of D

0

lies above the Hodge

polygon of D

0

for all (F;N)-submodules with indu
ed �ltration and these polygons

have the same endpoints when D = D

0

.

1



Theorem. If W is PST then D

pst

(W ) is WA.

Proof of Kisin's Theorem

To simplify notation, I will assume Q

p

(x) =M = Q

p

and that V

x

is semistable.

Suppose D = D(V

�

x

). This is WA. Using Sen theory (whi
h I'll dis
us next week),

we know when k 6= 1, D

HT

(V )

�

=

C

p

(0)�C

p

(k�1). Suppose a � b. Then the Hodge

polygon of D is

F and N for Tate Ellipti
 
urves

Suppose E = C

�

p

=q

2Z

, where q

6=0

2 pZ

p

. Then E = U [ V and U \ V = A [ B. We

have

H

0

DR

(A) �H

0

DR

(B) ! H

1

DR

(E)! H

1

DR

(U) �H

1

DR

(V )! H

1

DR

(A) �H

1

DR

(B)

Then N is

H

1

DR

(E)! H

1

DR

(A) �H

1

DR

(B)

Res

�!H

0

DR

(A) �H

0

DR

(B)! H

1

DR

(E)

To get F all we have to do is \split"

H

0

DR

(A) �H

0

DR

(B) ! H

1

DR

(E):

Suppose (f!

U

; !

V

g; ff

A

; f

B

g) is a 1-
o
y
le (!

U

� !

V

= df). If we 
hoose a bran
h

of log we 
an solve

dF

U

= !

U

and dF

V

= !

V

Let




A

= (F

U

� F

V

)j

A

� f

A

and 


B

= (F

U

� F

V

)j

B

� f

B

:

2
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Sen-Polynomials

Let �:G

Q

p

! Z

�

p

be the 
y
lotomi
 
hara
ter and � = Gal(Q

p

(�

p

1

)=Q

p

). Sup-

pose E a �nite extension of Q

p


ontained in K. Finally, let �(K) = Gal(K

1

=K)

where K

1

= K(�

p

1

). Sen's proves in Contiuous Cohomology and p-adi
 Galois

representaions, (Invent. Math. 62 (1980)),

Theorem. Suppose V is a �nite dimensional ve
tor spa
e overE and �:G

K

! GL

E

(V )

is a 
ontinuous representation. There exists a �nite extension L of K in K

1

and an

M 2 GL

C

p

(C

p




E

V ) su
h that � 7! � (�) =: M

�1

�(�)�(M) is a representation of

G

L

into GL

L

(L 


E

V ) whi
h fa
tors through �(L). Moreover, if � 2 G

L

and its

image in � is non-trivial

S

�

(T ) =: det

�

T �

log � (�)

log�(�)

�

is independent of the 
hoi
es of L and � and lies in K[T ℄. In fa
t, this polynomial is

independent of K or E.

Eg. (i) (CFT) Suppose n = 1 and K = E = Q

p

. Then if 
 2 � suÆ
iently 
lose to 1,

� (
) = �(�); if � 7! 
 and T � e(�) =: S

�

(T ):

(ii) (Hodge-Tate) Suppose A is an Abelian variety of dimension g over K and

�:G

K

! GL

2g

(Q

p

) 
oming from the p-Tate module of A. Then

S

�

(T ) = T

g

(T � 1)

g

:

(iii) (Faltings) Suppose � is the restri
tion to a de
omposition group above p of a

represention 
oming from a weight k modular form. Then,

S

�

(T ) = T (T � (k � 1)):

1



(iv) Suppase V 


E

C

p

�

=

C

p

(a

1

) � � � �C

p

(a

n

). Then,

S

�

(T ) = (T � a

1

) � � � (T � a

n

):

Variation.

Let C be a topologi
ally �nitely generated 
omplete lo
al ring over R =: O

E

whose residue �eld is a �nite extension of k = R=�

E

R, C = R[[T

1

; : : : ; T

n

℄℄=I. Let

hCi be the rigid spa
e asso
iated to C.

Suppose �:G

K

! GL

n

(C) is a 
ontinuous representation.

Eg. Suppose k is a �nite �eld of 
hara
teristi
 p and �: Gal(

�

Q=Q) ! GL

2

(k) is a

representation. Then, Mazur has shown there exists a topologi
ally �nitely generated


omplete lo
al ring M

�

over Z

p

and a versal deformation of �

~�: Gal(

�

Q=Q) ! Gl

2

(M

�

)

(whi
h is universal when � is absolutely irredu
ible). When � is odd, hM

�

i is 
on-

je
tured to have dimension 3.

A slight improvemewnt of Sen's result in The Analyti
 Variation of p-adi
 Hodge

Stru
ture (Ann. Math. 127 (1988)) is,

Theorem. There is a unique moni
 polynomial, f

�

(T ), whose 
oeÆ
ients are ana-

lyti
 fun
tions on the nilredu
tion of hCi

K

and whose spe
ialization to x 2 hCi(E)

is S

�

x

(T ).

Corollary. If � is modular and x 2 hM

�

i,

S

~�

x

(T ) = T (T � e(det ~�

x

)):

Let E

�

be the 
omponent of the eigen
urve su
h that for x 2 E

�

(Q

p

), �

x

is a

deformation of �.

Corollary. If V

x

is pst k(x) 2 Z and V

x


C

p

�

=

C

p

�C

p

(k(x) � 1).

2
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Appli
ation of Sen's Theory

For a representation �:G

K

! Gl(V ) where V is ve
tor spa
e over a �nite extention

of Q

p

let S

�

(T ) be the Sen polynomial. We know if � is atta
hed to ae weight k

modular form S

�

(T ) = T (T � (k�1)). Also if V 


E

C

p

�

=

C

p

(a

1

)�� � �C

p

(a

n

). Then,

S

�

(T ) = (T � a

1

) � � � (T � a

n

).

Proposition. If x is a point on an eigen
urve and V

x

is pst k(x) 2 Z and

V

x


C

p

�

=

C

p

�C

p

(k(x) � 1).

Variation.

Suppose C

�

=

O

E

[[T

1

; : : : ; T

n

℄℄=I. Let hCi be the rigid spa
e asso
iated to C.

Suppose �:G

K

! GL

n

(C) is a 
ontinuous representation.

Eg. Suppose k is a �nite �eld of 
hara
teristi
 p and �: Gal(

�

Q=Q) ! GL

2

(k) is a

representation. Then, Mazur has shown there exists a topologi
ally �nitely generated


omplete lo
al ring M

�

over Z

p

and a versal deformation of �

~�: Gal(

�

Q=Q)! Gl

2

(M

�

):

Theorem. There is a unique moni
 polynomial, f

�

(T ), whose 
oeÆ
ients are ana-

lyti
 fun
tions on the nilredu
tion of hCi

K

and whose spe
ialization to x 2 hCi(E)

is S

�

x

(T ).

Suppose the above � is modular of level N and let E

�

be the 
omponent of the

eigen
urve E

N

su
h that for x 2 E

�

(Q

p

), �

x

is a deformation of �.

The Galois interpretation of a

p

1



Theorem. Suppose  2 Hom((Z=NpZ)

�

;C

�

p

), x 2 E

 

. Let a

p

= T(p)(x) and

M = Q

p

(x). There exists a non-zero G

Q

p

-equivariant M-linear map

V

x

! (B

+


ris




Q

p

M)

�=a

p

:

(Also, see forth
oming paper of Stevens and Iovita.)

Suppose y 2 E

 

(K), k(y) 2 Z. We'll the following simplifying assumption: There

exists an aÆnoid X in E

 

de�ned over K 
ontaining y whi
h is isomorphi
 via �

to a 
losed disk in W, and a free rank 2 module V over R =: A(X) with an a
tion

of Galois whose restri
tion V

x

, x 2 X to k(x) 2 Z, k(x) >> 0, is 
lassi
al and


rystaline.

Lemma. After removing the weight one points (if they exist) from X,

V

�

^




K

C

p

�

=

(R

^




K

C

p

) � ((R

^




K

C

p

)(�=�)

as G

K

-modules where � is the 
y
lotomi
 
hara
ter.

Indeed,W

1

= (V

�

^




K

C

p

)

H

K

has a basis over a �nite extention L of K su
h that

the R

L

-moduleW

L

spanned by this basis is Galois stable and if 


6=1

2 �(L) the linear

operator on W

L

� =

log 


log�(
)

has 
hara
terististi
 polynomial T (T + (k(x) � 1)).

Lemma. Suppose j > 0. After removing a �nite set of points S

j

from X,

(V

�




^

B

+

dr

=B

j

dr

)

G

K

is a free R

J

=: A(X � S

j

)-module of rank 1.

Corollary. Suppose j > 0 and x 2 X � S

j

. There exists a non-zero G

K

-equivariant

map �

x

:V

x

! B

+

dr

=B

j

dr

.

Proof of Lemma. We need Tate's Theorem C

p

(k)

G

K

= 0 (p-Divisible Groups, in

Pro
eedings of a Conferen
e on Lo
al Fields, Driebergen 1966, pp 158-183, Springer

(1967).)) unless k = 0. Suppose j = 1.
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