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1. Introduction

My research interests are in the area of dynamical systems, specifically group actions on topological
spaces. I focus on classification questions about these systems.

Classical dynamics is the study of iterating a single function f on a topological space X, and of
the behavior of the orbits {fn(x)}n ∈ I for points x ∈ X, where I is N or Z. If I is Z, f is a
homeomorphism, i.e. a function that is continuous and has a continuous inverse, but may not be
smooth or have a derivative. We can expand this idea by considering actions on a topological space
X by a more general but still finitely generated group Γ. A group action of Γ on X is a map
φ : Γ→ Homeo(X), taking γ → φγ , in a way that respects the Γ group operation. Thus, this map
is no longer generated by a single homeomorphism iterated in a single direction, but instead may be
generated by several homeomorphisms iterated in a way that can be viewed as multi-dimensional or
multidirectional.

Classification problems deal with finding invariants to classify dynamical systems up to various levels
of equivalence. There are several different types of equivalence that may result in stronger or weaker
classification theorems. The strongest equivalence relation between systems is topological conjugacy;
(X,Γ, φ) and (Y,∆, ψ) are topologically conjugate if there is a homeomorphism h that conjugates the
two actions. We consider a weaker notion of equivalence known as orbit equivalence. The systems
(X,Γ, φ) and (Y,∆, ψ) are orbit equivalent if there is a homeomorphism which maps orbits of φ into
orbits of ψ, without necessarily preserving the time parametrization of orbits. Giordano, Putnam,
Matui, and Skau have classified Z2 ([8]) and Zn ([9]) actions on Cantor sets up to orbit equivalence.
My work deals with classifying, up to orbit-equivalence, dynamical systems that come from minimal
equicontinuous group actions by non-Abelian groups on Cantor sets.

There are many natural examples of dynamical systems given by non-Abelian group actions on
Cantor sets. One of the basic examples, which is also studied in my work, is a weak solenoid. A
weak solenoid is the inverse limit of compact manifolds which are finite-to-one covering spaces of
each other. The projection onto the first manifold (also called the base space) in the sequence is a
fiber bundle, and the fiber over a point is a Cantor set, naturally acted upon by the fundamental
group of the base space. This gives a rich type of dynamical system that fits our above criteria, a
finitely generated group acting topologically on a Cantor set.

One classic example of a weak solenoid is the Schori solenoid, given by 3-1 coverings of a genus 2
surface. There are also examples coming from the discrete Heisenberg group, and other non-Abelian
groups. My work aims to classify these examples up to orbit equivalence.

In my thesis, I approach the classification problem based on expressing Cantor dynamical systems
as group chains or AF presentations, and develop algebraic invariants of the AF presentations.
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2. Background

We now introduce some needed definitions. Let X be a topological space with metric d. Let Γ be a
group that acts on X by homeomorphisms, that is, there is a homomorphism φ : Γ → Homeo(X).
For each x ∈ X, denote by Γ(x) = {φγ(x)|γ ∈ Γ} the orbit of x under the action of Γ. Two actions
on X, φ : Γ→ Homeo(X) and ψ : Γ→ Homeo(X), are orbit equivalent if there is a homeomorphism
h mapping orbits of φ continuously onto orbits of ψ. The action of Γ on X is called minimal if
the closure Γ(x) = X for all x ∈ X. The action of Γ on X is called equicontinuous if for all ε > 0
there exists δ = δε > 0 such that for all g ∈ Γ and any x, y ∈ X, if d(x, y) < δε for y ∈ X, then
d (φ(g)(x), φ(g)(y)) < ε. A set X is called a Cantor set if it is perfect, metrizable, compact, and
totally disconnected (or, equivalently, if it is homeomorphic to the standard middle thirds Cantor
set).

From now on, we assume X is a Cantor set, Γ a finitely generated group, and Γ acts on X minimally
and equicontinuously.

DEFINITION 2.1. A Bratteli diagram (P,E) is an infinite directed (connected) graph with vertex
set P and edge set E satisfying the following conditions:

(1) The vertex set P = P0 ∪ P1 ∪ ... consists of disjoint levels P0, P1, ... such that P0 is a single
point and each Pn is a finite, non-empty set. We refer to Pn as the vertex set at level n.

(2) The edge set E = E1 ∪E2 ∪ ... consists of disjoint levels E1, E2, ... such that En is the set of
edges with source in Pn−1 and range in Pn.

(3) Let r be the range map and s the source map on this directed graph. Then s−1(p) 6= ∅ for
all p ∈ P , and r−1(p) 6= ∅ for all p ∈ P \ P0.

We draw this diagram so that P0 is a single point at the top. Then the definition implies that all
edges are directed downwards from one level to the subsequent level. If Pn = {pn,1, ..., pn,k}, we
draw our diagram with the vertices ordered from left to right in numerical order. It follows from
the definition that the space of infinite paths in a Bratteli diagram is a Cantor set.

An order can also be added to a Bratteli diagram to carry information about the dynamics of the
system. An ordered Bratteli diagram is a Bratteli diagram equipped with an order on each set of
edges sharing a range vertex. This then induces a (reverse) lexicographic partial order on the infinite
path space. The Vershik map is a map on the infinite path space of a Bratteli diagram, mapping
each path to its successor based on this order. The Vershik map makes an ordered Bratteli diagram
into a dynamical system.

The work of Durand, Host, Skau ([1]), Giordano, Putnam, and Skau ([7]), and Herman, Putnam,
Skau ([10]) shows how to build a Bratteli diagram for a Z action using a refining nested sequence
of Kakutani-Rokhlin partitions. The work of Forrest ([6]) and Giordano, Matui, Putnam, and Skau
([9]) extends this idea to Z2 and Zd actions, which are multidimensional but still abelian. Our work
consists of further extending a Bratteli-type model to the case of non-abelian finitely generated
group actions; for example, the discrete Heisenberg group, or the fundamental group of a (genus
≥ 2) compact manifold.

3. Main Results

In my thesis, I aim to classify equicontinuous group actions on Cantor sets up to orbit equivalence.
For that, I use group chains and almost finite presentations to represent a dynamical system.

Based on work by Thomas ([13]), Clark and Hurder ([2]), and others, we build an model for a finitely
generated discrete group that acts minimally and equicontinuously on a Cantor set, which we call
an Almost Finite (AF) Presentation for the system. Under certain conditions, we use this model to
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associate to the action an unordered Bratteli diagram. We are in the process of building an order
into the model, analogous to an ordered Bratteli diagram.

DEFINITION 3.1. An AF presentation of (X,Γ, φ) is an infinite nested sequence of finite clopen
partitions V i of X with the following properties:

(1) The first partition V 0 = X, and each V i refines V i−1.
(2) For each partition V i there is an alphabet Ai and a map φi : X → Ai that numbers the

pieces of the ith partition.
(3) The diameters of the clopen sets in the partitions decrease to 0. There are inclusion maps

ki : Ai → Ai−1 which are compatible with φi, and a homomoprhism ψi : Γ → Perm(Ai)
which factors through the representation φ : Γ→ Homeo(X).

Then we say {V i, φi, Ai, ki, ψi} is an AF Presentation for the system (X,Γ, φ).

We have shown constructively how to build such an AF Presentation for any minimal equicontinuous
action of a finitely generated group on a Cantor set:

THEOREM 3.2. Let Γ be a finitely generated group, and suppose Γ acts on a Cantor set X
minimally and equicontinuously. Then there exists an almost finite presentation of Γ as in Definition
3.1.

This presentation is constructed using a process of partitions and coding functions, roughly analogous
to the Kakutani-Rokhlin partitions used in the Z-action case. We have the following properties:

(1) There is a homeomorphism f : X → A∞, where A∞ = lim←{Ai, ki},
(2) Γ acts on A∞,
(3) f gives a conjugacy between the Γ-action on X with the Γ-action on A∞.

Thus, A∞ is a Bratteli-type representation of the system, and A∞ and X are orbit equivalent.

We can also look at these systems algebraically instead of topologically, to build an algebraic model
for the action of Γ on A∞, by means of group chains.

A group chain is an infinite nested sequence of finite index proper subgroups Γ = Γ0 > Γ1 > Γ2 > ....
Let Xi = Γ/Γi, which is a finite non-trivial set, and let X = lim←Xi be the inverse limit, which is
a Cantor set. Then Γ acts on X on the left.

Given an AF presentation {V i, φi, Ai, ki, ψi} for a system, we obtain a group chain by setting Γi as
the isotropy subgroup of Vi. We can also start with a group chain and then Ai = Γ/Γi yields an AF
Presentation of the action.

Let Ni = NΓ(Γi), the normalizer of Γi. Then Ni/Γi acts on Xi on the right, and the action commutes
with the left Γ-action. A group chain is called normal if each of the subgroups is normal in Γ0. We
have defined a slight weakening of this condition. Let N∗ = ∩Ni.

DEFINITION 3.3. A group chain is called subnormal if the chain of normalizers stabilizes after
some point, i.e. ∃k ∀i > k,Ni = Ni+1, and if N∗ is nontrivial.

We assume N∗ is nontrivial. Then the inverse limit lim←N∗/Γi acts on each Xi on the right, and
thus on X. So the left Γ action commutes with the right N∗/Γi-action.

In my thesis, I produce examples of actions represented by normal, subnormal and non-normal group
chains. One important class of examples are weak solenoids.

Let X0 be a compact connected manifold, and choose a basepoint x0. Inductively, for i ≥ 1 let
pii−1 : Xi → Xi−1 be a finite-to-one covering map of Xi−1 by another compact connected manifold
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of degree at least 2, and choose xi ∈ Xi such that pii−1(xi) = xi−1. The inverse limit

X∞ = lim
←−
{pii−1 : Xi → Xi−1}(1)

is a compact connected metrizable space called a weak solenoid ( [12, 5, 16]).

A weak solenoid can be represented by a group chain in the following way.

Denote by pi0 = pii−1 ◦ · · · ◦ p1
0 : Xi → X0 the composition of covering maps. Let Γ0 = π1(X0, x0) be

the fundamental group of X0, and for any i ≥ 1 denote by

Γi = (pi0)∗π1(Xi, xi)

the image of the fundamental group of Xi onto G0 under the injective homomorphism (pi0)∗ induced
by the projection pi0. Then subgroups Γ0 > Γ1 > Γ2 > . . . form a group chain.

Denote by p0 : X∞ → Xi : (xk)k∈N0
7→ x0 the projection onto the first factor in the inverse sequence.

The fiber F = p−1
0 (x0) is a Cantor set ([12]), and is homeomorphic to the inverse limit

F ∼= lim
←−
{ı : Γ0/Γi → Γ0/Γi−1}

of maps of cosets spaces of groups Γi given by inclusion. The action of Γi on F is given by lifting of
paths, and is well known to be minimal and equicontinuous.

A weak solenoid is called normal or respectively subnormal if its associated group chain is normal
or respectively subnormal. We study weak solenoids which are not normal, examples of which are
given by Schori ([16]) and Rogers and Tollefson ([15]). The Schori solenoid is given by 3-1 coverings
of a genus 2 surface.

THEOREM 3.4. (1) The Schori solenoid is neither normal nor subnormal.
(2) The Rogers and Tollefson solenoid is neither normal nor subnormal.

We can also consider examples of group chains that come from the algebraic structure of a group.
For example, let H be the discrete Heisenberg group, i.e. H ∼= Z3 with the group operation ∗ given
by (x, y, z) ∗ (x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′). Note that this is standard addition in the
first two coordinates, but addition with a twist in the last coordinate. Hence, we think about H as
Z2×Z, where the group operation is commutative in the first two coordinates, and not commutative
(given by a specified twist) in the third coordinate.

Lightwood, Şahin, and Ugarcovici studied the structure of subgroups of the Heisenberg group ([11]).
They showed that subgroups of H can be written in the form Γ = MZ2 ×mZ where M ∈ GL2(Z),
m ∈ Z, and m divides both entries of one row of M . They presented examples of normal group
chains in the Heisenberg group. We can also use subgroups of this form to generate group chains
that are subnormal.

THEOREM 3.5. The following examples of group chains in the Heisenberg group are classified as
normal or subnormal:

(1) Mn =

(
pn 0
0 pn

)
, m = p, is a normal chain.

(2) For distinct primes p, q, Mn =

(
pn pqn

pn+1 qn+1

)
, m = p. Then we have N(Γn) = pZ×Z×Z

for all n, so the chain is subnormal.

(3) For distinct primes p, q, r, Mn =

(
rpn rpqn

pn+1 rqn+1

)
, m = p.

Then we have pZ×Z×Z contained in N(Γn), but the normalizer is larger and not the whole
group. This chain is subnormal.
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We then use our above work to associate a Bratteli-type model to these examples.

The main theorem of my thesis is the following:

THEOREM 3.6. If a dynamical system has an AF presentation that is normal or subnormal, then
we can associate a Bratteli diagram to the system.

4. Future Work

The classification invariants for my thesis apply mainly to equicontinuous actions. In the next stage
of my research, I plan to extend these ideas to non-equicontinuous actions, for example, to Toeplitz
actions, which are almost 1-1 extensions of equicontinuous actions. This will be carried out in the
continuation of our seminar on Cantor actions, in collaboration with Professors Hurder and Lukina.

I also plan to explore the connection between the methods of this work, and the dynamics of substitu-
tion systems and tilings, which are not equicontinuous, but do admit special algebraic presentations.
Since tilings are very visual, undergraduates could be involved in projects based on this work.
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