The Algebra Symposium: Race Track Comments

From Math Olympics - Rome, March 21, 1997:

1. Two cars traveling at constant speed on a track are side by side every 56 minutes. If, with the same speeds, one of the cars were traveling in the opposite direction, the two cars would meet every 8 minutes. How long does it take the faster car to complete one lap on the track?

A Solution

Several variables come to mind:

 v_f = speed of fast car (units?), v_s = speed of slow car (units?), T_l = time taken to lap (given), T_m = time taken to meet (given), T_f = lap time for the faster car, T_s = lap time for the slower car, L = length of one lap.

Using that $L = (\text{speed}) \times (\text{lap time})$, we have the two equations

$$(v_f - v_s) \cdot 56 = L,$$

$$(v_f + v_s) \cdot 8 = L.$$

The problem asks to find $T_f = \frac{L}{v_f}$.

I'm worried – I have two equations for three unknowns. Adding and subtracting 8 times the first and 56 times the second,

$$2 \cdot 56 \cdot 8 \cdot v_f = (56 + 8) L,$$

 $2 \cdot 56 \cdot 8 \cdot v_s = (56 - 8) L.$

Success!

$$T_f = \frac{L}{v_f}$$
$$= \frac{2 \cdot 56 \cdot 8}{56 + 8}.$$

Notes

- 1. It seems we could determine the lap time of the slower car, T_s .
- 2. With the given data, we cannot determine the actual speeds of the two cars. What additional data would enable us to determine the actual speeds?
- 3. If we knew the actual speed of the faster car, e.g., 200 km/hr, could we determine the speed of the slower car?
- 4. The reason I did not simplify the numbers in my solution was that I wanted develop an algebraic method to solve the problem for general data, T_l , and T_m .

Algebraic Method

Using that $L = (\text{speed}) \times (\text{lap time})$, we have the two equations

$$(v_f - v_s) \cdot T_l = L,$$

$$(v_f + v_s) \cdot T_m = L.$$

The problem asks to find $T_f = \frac{L}{v_f}$.

I'm worried – I have two equations for three unknowns. Adding and subtracting T_m times the first and T_l times the second,

$$2 \cdot T_l \cdot T_m \cdot v_f = (T_l + T_m) L,$$

$$2 \cdot T_l \cdot T_m \cdot v_s = (T_l - T_m) L.$$

Success!

$$T_f = \frac{L}{v_f}$$
$$= \frac{2 \cdot T_l \cdot T_m}{T_l + T_m}.$$