
Argument Principle

Zeroes and Poles
For the moment, we shall consider a function f(z) analytic in the punctured disk

Ḋz0,R = {z |0 < |z − z0| ≤ R} .

Then

f(z) =

∞∑
n=−∞

an (z − z0)
n
,

an =
1

2πi

∮
Cz0,r

f(ζ) (ζ − z0)
−n−1

dζ.

• If f(z) =
∑∞

n=0 an (z − z0)
n
, f(z) may be extended by defining f(z0) = a0, and the

resulting function is analytic in |z − z0| ≤ R.

• If f(z) =
∑∞

n=N an (z − z0)
n
, N ≥ 0, aN 6= 0, f(z) is said to have a zero of order N at

z = z0. Near z = z0,
f(z) = (z − z0)

N · g(z),

where g(z) is analytic in |z − z0| ≤ R, g(z0) 6= 0.

• If f(z) =
∑∞

n=−M an (z − z0)
n
, M ≥ 0, a−M 6= 0, f(z) is said to have a pole of order M

at z = z0. Near z = z0,
f(z) = (z − z0)

−M · g(z),

where g(z) is analytic in |z − z0| ≤ R, g(z0) 6= 0.

• If f(z) =
∑∞

n=−∞ an (z − z0)
n
, an 6= 0 for infinitely many negative n, then f(z) is said

to have an essential singularity at z = z0.

• The coefficient of (z − z0)
−1

is called the residue of f(z) at z = z0, and is written

Res(f, z = z0) = Resf(z)|z=z0
=

1

2πi

∮
Cz0,r

f(ζ) dζ.

• Let f(z) be analytic in the punctured disk

Ḋz0,R = {z |0 < |z − z0| ≤ R} .

Then for r small and positive,∮
Cz0,r

f(ζ) dζ = 2πi Resf(z)|z=z0
.

• Let f(z) be analytic in the punctured disk

Ḋz0,R = {z |0 < |z − z0| ≤ R} .
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Suppose that f(z) has a zero of order N > 0, at z = z0.

For z near z0, f(z) = (z − z0)
N
g(z), g(z) analytic, and g(z0) 6= 0. It follows that

f ′(z)

f(z)
=
N (z − z0)

N−1
g(z) + (z − z0)

N
g′(z)

(z − z0)
N
g(z)

= N (z − z0)
−1

+ analytic,

so that

Res

(
f ′

f
, z = z0

)
= N

= order of zero at z = z0

Then for r small and positive,

1

2πi

∮
Cz0,r

f ′(ζ)

f(ζ)
dζ = N.

There is another interpretation of the number N . For the moment let fN (z) = (z − z0)
N

.
Follow the arg fN (z) as Cz0,r is traversed in the counterclockwise direction. The change

in argument of (z − z0)
N

, denoted by ∆Cz0,r
arg fN (z) is exactly 2πN . This is the first

statement of the Argument Principle:

1

2π
∆Cz0,r

arg fN (z) = N

= order of zero.

In the case f(z) has a zero of order N at z = z0, we expect that an antiderivative of

the function
f ′(z)

f(z)
is log (f(z)). This is the case locally, at least if we are near enough

to a point z1 on Cz0,r. As the path Cz0,r is traversed counterclockwise, the logarithm of
f(z) may be defined locally in a continuous manner, but when we make one full revolution
around the circle returning to z1, the argument of f(z) may have changed by a multiple
of 2π. We have that ∮

Cz0,r

f ′(ζ)

f(ζ)
dζ = i ·∆Cz0,r

arg f(z)

= 2πi ·N.
= 2πi · order of zero at z = z0.

Thus for the small circle Cz0,r,

N =
1

2π
∆Cz0,r arg f(z)

=
1

2πi

∮
Cz0,r

f ′(ζ)

f(ζ)
dζ
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• Let f(z) be analytic in the punctured disk

Ḋz0,R = {z |0 < |z − z0| ≤ R} .

Suppose that f(z) has a pole of order M > 0, at z = z0.
Then for r small and positive,

1

2πi

∮
Cz0,r

f ′(ζ)

f(ζ)
dζ = −M.

Mimicking the discussion above for zeroes, we obtain for the small circle Cz0,r

−M =
1

2π
∆Cz0,r arg f(z)

=
1

2πi

∮
Cz0,r

f ′(ζ)

f(ζ)
dζ

We are now ready to state the Argument Principle.

Theorem. Let C be a simple closed path. Suppose that f(z) is analytic and nonzero on
C and meromorphic inside C.
• List the zeroes of f inside C as z1, . . . , zk with multiplicities N1, . . . , Nk, and let

ZC = N1 + . . .+Nk.

• List the poles of f inside C as w1, . . . , wj with orders N1, . . . , Nk, an let

PC = M1 + . . .+Mj .

Then

ZC − PC =
1

2π
∆C arg f(z)

=
1

2πi

∮
C

f ′(ζ)

f(ζ)
dζ.

Proof. calculate the integral two ways. First take a local antiderivative log (f(z)) to
obtain

1

2πi

∮
C

f ′(ζ)

f(ζ)
dζ =

1

2π
∆C arg f(z).

Second take small circles around each zi and wi and the usual cuts from C to to the circles.
In this way, obtain

1

2πi

∮
C

f ′(ζ)

f(ζ)
dζ =

j∑
i=1

1

2πi

∮
Czi,r

f ′(ζ)

f(ζ)
dζ +

k∑
i=1

1

2πi

∮
Cwi,r

f ′(ζ)

f(ζ)
dζ

=

j∑
i=1

Ni −
k∑

i=1

Mi

= ZC − PC .
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Corollary. Let C be a simple closed path. Suppose that f(z) is analytic and nonzero on
C and analytic inside C.
• List the zeroes of f inside C as z1, . . . , zk with multiplicities N1, . . . , Nk, an let

ZC = N1 + . . .+Nk.

Then

ZC =
1

2π
∆C arg f(z)

=
1

2πi

∮
C

f ′(ζ)

f(ζ)
dζ.

Briefly stated: Let C be a simple closed path. Suppose that f(z) is analytic and nonzero
on C and analytic inside C. Then

1

2π
∆C arg f(z) = number of zeroes inside C – counting multiplicities.

Indices and Winding Numbers

Let C be a simple closed path. Suppose that f(z) is analytic and nonzero on C and
meromorphic inside C. Then w = f(z) = f(z(t)) is a closed path (not necessarily simple).
Call this path f(C). As w traverses f(c), the number of times the argument of w changes by
a multiple of 2π is called the index or winding number of the path f(C). The Argument
Principle says that the winding number of f(C) is ZC − PC .
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