Argument Principle

Zeroes and Poles

For the moment, we shall consider a function $f(z)$ analytic in the punctured disk

$$
\dot{D}_{z_{0}, R}=\left\{z\left|0<\left|z-z_{0}\right| \leq R\right\} .\right.
$$

Then

$$
\begin{aligned}
f(z) & =\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \\
a_{n} & =\frac{1}{2 \pi i} \oint_{C_{z_{0}, r}} f(\zeta)\left(\zeta-z_{0}\right)^{-n-1} d \zeta
\end{aligned}
$$

- If $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, f(z)$ may be extended by defining $f\left(z_{0}\right)=a_{0}$, and the resulting function is analytic in $\left|z-z_{0}\right| \leq R$.
- If $f(z)=\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, N \geq 0, a_{N} \neq 0, f(z)$ is said to have a zero of order N at $z=z_{0}$. Near $z=z_{0}$,

$$
f(z)=\left(z-z_{0}\right)^{N} \cdot g(z)
$$

where $g(z)$ is analytic in $\left|z-z_{0}\right| \leq R, g\left(z_{0}\right) \neq 0$.

- If $f(z)=\sum_{n=-M}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, M \geq 0, a_{-M} \neq 0, f(z)$ is said to have a pole of order M at $z=z_{0}$. Near $z=z_{0}$,

$$
f(z)=\left(z-z_{0}\right)^{-M} \cdot g(z)
$$

where $g(z)$ is analytic in $\left|z-z_{0}\right| \leq R, g\left(z_{0}\right) \neq 0$.

- If $f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, a_{n} \neq 0$ for infinitely many negative n, then $f(z)$ is said to have an essential singularity at $z=z_{0}$.
- The coefficient of $\left(z-z_{0}\right)^{-1}$ is called the residue of $f(z)$ at $z=z_{0}$, and is written

$$
\operatorname{Res}\left(f, z=z_{0}\right)=\left.\operatorname{Res} f(z)\right|_{z=z_{0}}=\frac{1}{2 \pi i} \oint_{C_{z_{0}, r}} f(\zeta) d \zeta
$$

- Let $f(z)$ be analytic in the punctured disk

$$
\dot{D}_{z_{0}, R}=\left\{z\left|0<\left|z-z_{0}\right| \leq R\right\}\right.
$$

Then for r small and positive,

$$
\oint_{C_{z_{0}, r}} f(\zeta) d \zeta=\left.2 \pi i \operatorname{Res} f(z)\right|_{z=z_{0}}
$$

- Let $f(z)$ be analytic in the punctured disk

$$
\dot{D}_{z_{0}, R}=\left\{z\left|0<\left|z-z_{0}\right| \leq R\right\} .\right.
$$

Suppose that $f(z)$ has a zero of order $N>0$, at $z=z_{0}$.
For z near $z_{0}, f(z)=\left(z-z_{0}\right)^{N} g(z), g(z)$ analytic, and $g\left(z_{0}\right) \neq 0$. It follows that

$$
\begin{aligned}
\frac{f^{\prime}(z)}{f(z)} & =\frac{N\left(z-z_{0}\right)^{N-1} g(z)+\left(z-z_{0}\right)^{N} g^{\prime}(z)}{\left(z-z_{0}\right)^{N} g(z)} \\
& =N\left(z-z_{0}\right)^{-1}+\text { analytic }
\end{aligned}
$$

so that

$$
\begin{aligned}
\operatorname{Res}\left(\frac{f^{\prime}}{f}, z=z_{0}\right) & =N \\
& =\text { order of zero at } z=z_{0}
\end{aligned}
$$

Then for r small and positive,

$$
\frac{1}{2 \pi i} \oint_{C_{z_{0}, r}} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta=N
$$

There is another interpretation of the number N. For the moment let $f_{N}(z)=\left(z-z_{0}\right)^{N}$. Follow the $\arg f_{N}(z)$ as $C_{z_{0}, r}$ is traversed in the counterclockwise direction. The change in argument of $\left(z-z_{0}\right)^{N}$, denoted by $\Delta_{C_{z_{0}, r}} \arg f_{N}(z)$ is exactly $2 \pi N$. This is the first statement of the Argument Principle:

$$
\begin{aligned}
\frac{1}{2 \pi} \Delta_{C_{z_{0}, r}} \arg f_{N}(z) & =N \\
& =\text { order of zero. }
\end{aligned}
$$

In the case $f(z)$ has a zero of order N at $z=z_{0}$, we expect that an antiderivative of the function $\frac{f^{\prime}(z)}{f(z)}$ is $\log (f(z))$. This is the case locally, at least if we are near enough to a point z_{1} on $C_{z_{0}, r}$. As the path $C_{z_{0}, r}$ is traversed counterclockwise, the logarithm of $f(z)$ may be defined locally in a continuous manner, but when we make one full revolution around the circle returning to z_{1}, the argument of $f(z)$ may have changed by a multiple of 2π. We have that

$$
\begin{aligned}
\oint_{C_{z_{0}, r}} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta & =i \cdot \Delta_{C_{z_{0}, r}} \arg f(z) \\
& =2 \pi i \cdot N . \\
& =2 \pi i \cdot \text { order of zero at } z=z_{0}
\end{aligned}
$$

Thus for the small circle $C_{z_{0}, r}$,

$$
\begin{aligned}
N & =\frac{1}{2 \pi} \Delta_{C_{z_{0}, r}} \arg f(z) \\
& =\frac{1}{2 \pi i} \oint_{C_{z_{0}, r}} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta
\end{aligned}
$$

- Let $f(z)$ be analytic in the punctured disk

$$
\dot{D}_{z_{0}, R}=\left\{z\left|0<\left|z-z_{0}\right| \leq R\right\} .\right.
$$

Suppose that $f(z)$ has a pole of order $M>0$, at $z=z_{0}$.
Then for r small and positive,

$$
\frac{1}{2 \pi i} \oint_{C_{z_{0}, r}} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta=-M
$$

Mimicking the discussion above for zeroes, we obtain for the small circle $C_{z_{0}, r}$

$$
\begin{aligned}
-M & =\frac{1}{2 \pi} \Delta_{C_{z_{0}, r}} \arg f(z) \\
& =\frac{1}{2 \pi i} \oint_{C_{z_{0}, r}} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta
\end{aligned}
$$

We are now ready to state the Argument Principle.
Theorem. Let C be a simple closed path. Suppose that $f(z)$ is analytic and nonzero on C and meromorphic inside C.

- List the zeroes of f inside C as z_{1}, \ldots, z_{k} with multiplicities N_{1}, \ldots, N_{k}, and let

$$
Z_{C}=N_{1}+\ldots+N_{k}
$$

- List the poles of f inside C as w_{1}, \ldots, w_{j} with orders N_{1}, \ldots, N_{k}, an let

$$
P_{C}=M_{1}+\ldots+M_{j}
$$

Then

$$
\begin{aligned}
Z_{C}-P_{C} & =\frac{1}{2 \pi} \Delta_{C} \arg f(z) \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta
\end{aligned}
$$

Proof. calculate the integral two ways. First take a local antiderivative $\log (f(z))$ to obtain

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta=\frac{1}{2 \pi} \Delta_{C} \arg f(z)
$$

Second take small circles around each z_{i} and w_{i} and the usual cuts from C to to the circles. In this way, obtain

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta & =\sum_{i=1}^{j} \frac{1}{2 \pi i} \oint_{C_{z_{i}, r}} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta+\sum_{i=1}^{k} \frac{1}{2 \pi i} \oint_{C_{w_{i}, r}} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta \\
& =\sum_{i=1}^{j} N_{i}-\sum_{i=1}^{k} M_{i} \\
& =Z_{C}-P_{C}
\end{aligned}
$$

Corollary. Let C be a simple closed path. Suppose that $f(z)$ is analytic and nonzero on C and analytic inside C.

- List the zeroes of f inside C as z_{1}, \ldots, z_{k} with multiplicities N_{1}, \ldots, N_{k}, an let

$$
Z_{C}=N_{1}+\ldots+N_{k}
$$

Then

$$
\begin{aligned}
Z_{C} & =\frac{1}{2 \pi} \Delta_{C} \arg f(z) \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta
\end{aligned}
$$

Briefly stated: Let C be a simple closed path. Suppose that $f(z)$ is analytic and nonzero on C and analytic inside C. Then

$$
\frac{1}{2 \pi} \Delta_{C} \arg f(z)=\text { number of zeroes inside } C-\text { counting multiplicities. }
$$

Indices and Winding Numbers

Let C be a simple closed path. Suppose that $f(z)$ is analytic and nonzero on C and meromorphic inside C. Then $w=f(z)=f(z(t))$ is a closed path (not necessarily simple). Call this path $f(C)$. As w traverses $f(c)$, the number of times the argument of w changes by a multiple of 2π is called the index or winding number of the path $f(C)$. The Argument Principle says that the winding number of $f(C)$ is $Z_{C}-P_{C}$.

