Basics of Complex Numbers

A complex number is a formal expression x + iy, where x and y are real numbers, i is a formal object which satisfies $i \cdot i = -1 = -1 + i0$. The real part of z = x + iy, denoted $\Re z$, is x; the *imaginary* part of z = x + iy, denoted $\Im z$, is y.

• Addition:

If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, the sum is $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$. Thus

$$\Re(z_1 + z_2) = \Re z_1 + \Re z_2,$$

$$\Im(z_1 + z_2) = \Im z_1 + \Im z_2.$$

• Multiplication:

If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, the product z_1z_2 is

$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2)$$

= $(x_1x_2 - y_1y_2) + i(y_1x_2 + x_1y_2)$

Here we use the relation $i \cdot i = i^2 = -1$. We also write $i = \sqrt{-1}$.

• Complex Numbers, Points, and Vectors

The complex number z = x + iy can be identified with a point in the x-y coordinate plane P with coordinates (x, y). another useful view is to identify the point P(x, y) [complex number x + iy] with the vector or arrow \overrightarrow{OP} from the origin to P[z].

Addition of complex numbers is best understood in terms of addition of vectors: The point [vector] corresponding to z_2 added to z_1 is the *point* z_1 shifted by the vector z_2 .

• Modulus and Conjugate

The modulus or absolute value of a complex number z = x + iy is defined as

$$|z| = \sqrt{x^2 + y^2}$$

The conjugate of a complex number z = x + iy is defined as

$$\bar{z} = \overline{x + iy} = x - iy.$$

Note that

$$z\bar{z} = |z|^2 = x^2 + y^2$$

and

$$\Re z = \frac{1}{2} \left(z + \overline{z} \right),$$
$$\Im z = \frac{1}{2i} \left(z - \overline{z} \right).$$

• Polar Coordinates

In the plane, a point (x, y) [complex number z = x + iy] (not O) is completely determined by its distance from the origin $r = |z| = \sqrt{x^2 + y^2}$ and the angle θ from the positive x-axis to the ray Oz from the origin to z.

The pair (r, θ) are polar coordinates of the point P(x, y) or the complex number z = x + iy. We have:

$$\begin{aligned} x &= r \cos \theta, \\ y &= r \sin \theta, \\ z &= r \left(\cos \theta + i \sin \theta \right), \\ z &= |z| \left(\cos \theta + i \sin \theta \right) \end{aligned}$$

Note that r is the *modulus* of z. The angle θ is called an *argument* of z, written arg (z). For convenience we introduce the notation

$$\operatorname{cis}\theta = \cos\theta + i\sin\theta$$

so that for $z \neq 0$,

$$z = |z| \operatorname{cis}(\arg(z)).$$

It is important that $\arg(z)$ is not uniquely determined. If θ is an argument of z, then θ + any integer multiple of 2π is also an argument of z.¹

Note that

$$\arg(\bar{z}) = -\arg(z).$$

• Multiplication and Polar Coordinates

Geometrically, multiplication by a nonzero \boldsymbol{z} is best understood in terms of polar coordinates.

¹ A particular choice for $\arg(z)$, for example, the unique $\arg(z)$ that satisfies $0 \le \arg(z) < 2\pi$ is written $\operatorname{Arg}(z)$.

If $z_1 = |z_1| \operatorname{cis}(\theta_1)$, $z_2 = |z_2| \operatorname{cis}\theta_2$, verify that

 $z_1 \cdot z_2 = |z_1| |z_2| \operatorname{cis} (\theta_1 + \theta_2).$

Thus:

• The modulus of the product = the product of the moduli.

$$|z_1 z_2| = |z_1| |z_2|$$

• An argument of the product = the sum of the arguments.²

$$\arg\left(z_{1}z_{2}\right) = \arg\left(z_{1}\right) + \arg\left(z_{2}\right).$$

• Reciprocal

If $z \neq 0$, the reciprocal of z, $\frac{1}{z}$, can be calculated as

$$\begin{split} \frac{1}{z} &= \frac{\bar{z}}{z\bar{z}} \\ &= \frac{\bar{z}}{\left|z\right|^2} \\ &= \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2} \\ &= \frac{1}{\left|z\right|} \operatorname{cis}(-\arg{(z)}). \end{split}$$

 $\operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) - 2\pi.$

² Give an example of complex numbers z_1 and z_2 such that