Basics of Complex Numbers

A complex number is a formal expression $x+i y$, where x and y are real numbers, i is a formal object which satisfies $i \cdot i=-1=-1+i 0$. The real part of $z=x+i y$, denoted $\Re z$, is x; the imaginary part of $z=x+i y$, denoted $\Im z$, is y.

- Addition:

If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, the sum is $z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$. Thus

$$
\begin{aligned}
& \Re\left(z_{1}+z_{2}\right)=\Re z_{1}+\Re z_{2} \\
& \Im\left(z_{1}+z_{2}\right)=\Im z_{1}+\Im z_{2}
\end{aligned}
$$

- Multiplication:

If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, the product $z_{1} z_{2}$ is

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right) \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(y_{1} x_{2}+x_{1} y_{2}\right) .
\end{aligned}
$$

Here we use the relation $i \cdot i=i^{2}=-1$. We also write $i=\sqrt{-1}$.

- Complex Numbers, Points, and Vectors

The complex number $z=x+i y$ can be identified with a point in the $x-y$ coordinate plane P with coordinates (x, y). another useful view is to identify the point $P(x, y)$ [complex number $x+i y]$ with the vector or arrow $\overrightarrow{O P}$ from the origin to $P[z]$.
Addition of complex numbers is best understood in terms of addition of vectors: The point [vector] corresponding to z_{2} added to z_{1} is the point z_{1} shifted by the vector z_{2}.

- Modulus and Conjugate

The modulus or absolute value of a complex number $z=x+i y$ is defined as

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

The conjugate of a complex number $z=x+i y$ is defined as

$$
\bar{z}=\overline{x+i y}=x-i y .
$$

Note that

$$
z \bar{z}=|z|^{2}=x^{2}+y^{2}
$$

and

$$
\begin{aligned}
& \Re z=\frac{1}{2}(z+\bar{z}) \\
& \Im z=\frac{1}{2 i}(z-\bar{z}) .
\end{aligned}
$$

- Polar Coordinates

In the plane, a point (x, y) [complex number $z=x+i y]$ (not O) is completely determined by its distance from the origin $r=|z|=\sqrt{x^{2}+y^{2}}$ and the angle θ from the positive x-axis to the ray $O z$ from the origin to z.

The pair (r, θ) are polar coordinates of the point $P(x, y)$ or the complex number $z=x+i y$. We have:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=r(\cos \theta+i \sin \theta) \\
& z=|z|(\cos \theta+i \sin \theta) .
\end{aligned}
$$

Note that r is the modulus of z. The angle θ is called an argument of z, written $\arg (z)$. For convenience we introduce the notation

$$
\operatorname{cis} \theta=\cos \theta+i \sin \theta
$$

so that for $z \neq 0$,

$$
z=|z| \operatorname{cis}(\arg (z))
$$

It is important that $\arg (z)$ is not uniquely determined. If θ is an argument of z, then θ + any integer multiple of 2π is also an argument of $z .{ }^{1}$
Note that

$$
\arg (\bar{z})=-\arg (z) .
$$

- Multiplication and Polar Coordinates

Geometrically, multiplication by a nonzero z is best understood in terms of polar coordinates.
${ }^{1}$ A particular choice for $\arg (z)$, for example, the unique $\arg (z)$ that satisfies $0 \leq \arg (z)<$ 2π is written $\operatorname{Arg}(z)$.

If $z_{1}=\left|z_{1}\right| \operatorname{cis}\left(\theta_{1}\right), z_{2}=\left|z_{2}\right| \operatorname{cis} \theta_{2}$, verify that

$$
z_{1} \cdot z_{2}=\left|z_{1}\right|\left|z_{2}\right| \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
$$

Thus:

- The modulus of the product $=$ the product of the moduli.

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|
$$

- An argument of the product $=$ the sum of the arguments. ${ }^{2}$

$$
\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)
$$

- Reciprocal

If $z \neq 0$, the reciprocal of $z, \frac{1}{z}$, can be calculated as

$$
\begin{aligned}
\frac{1}{z} & =\frac{\bar{z}}{z \bar{z}} \\
& =\frac{\bar{z}}{|z|^{2}} \\
& =\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} \\
& =\frac{1}{|z|} \operatorname{cis}(-\arg (z))
\end{aligned}
$$

${ }^{2}$ Give an example of complex numbers z_{1} and z_{2} such that

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-2 \pi
$$

