cauchyint.htm Cauchy Integral Formula
Cauchy Integral Formula

Theorem. Let f(z) be analytic in the closed region
DR = {|z| ≤ R }.
Then for |z| < R,
f(z) = 1

2πi

(⎜)



CR 
f(ζ)

ζ− z
 dζ.
Proof: Fix z. For ϵ small, let Cz,ϵ = {ζ| |ζ− z| = ϵ}. Define gz(ζ) = [(f(ζ))/(ζ− z)]. Then gz(ζ) is an analytic function of ζ in the region between the two circles Cz,ϵ and CR.

caupic1.gif

By the Two Circles Theorem

(⎜)



CR 
gz(ζ)   dζ
=
(⎜)



Cz,ϵ 
gz(ζ)  dζ,

(⎜)



CR 
f(ζ)

ζ− z
 dζ
=
(⎜)



Cz,ϵ 
f(ζ)

ζ− z
 dζ.
Since f is analytic at z, for ζ near z,
f(ζ) = f(z) + f(z) (ζ− z) + o(ζ− z).
Thus

(⎜)



Cz,ϵ 
f(ζ)

ζ− z
 dζ
=
(⎜)



Cz,ϵ 
f(z) + f(z) (ζ− z) + o(ζ− z)

ζ− z
dζ.
= f(z)
(⎜)



Cz,ϵ 
1

ζ− z
 dζ + f(z)
(⎜)



Cz,ϵ 
1  dζ +
(⎜)



Cz,ϵ 
o(1)  dζ
= 2 πi f(z) + 0 + o(ϵ).
Now let ϵ→ 0 to obtain

(⎜)



CR 
f(ζ)

ζ− z
 dζ = 2 πi f(z).




Power Series Representation of Analytic Functions


We will show that the analytic function has a power series representation with a radius of convergence at least R.
Fix ζ, |ζ| = R, and fix z, |z| < R. Let θ = |z/(ζ)|. Then
1

ζ− z
= 1

ζ
1 − z

ζ

= 1

ζ


n = 0 

z

ζ

n

 
= 1

ζ
N

n = 0 

z

ζ

n

 
+ 1

ζ

z

ζ

N+1

 

1 − z

ζ
.
It follows that
f(z)
= 1

2πi

(⎜)



CR 
f(ζ)

ζ− z
 dζ.
= 1

2πi

(⎜)



CR 
f(ζ) 1

ζ


n = 0 

z

ζ

n

 
 dζ
= 1

2πi

(⎜)



CR 
f(ζ) 1

ζ
N

n = 0 

z

ζ

n

 
  dζ
+ 1

2πi

(⎜)



CR 
f(ζ) 1

ζ

z

ζ

N+1

 

1 − z

ζ
 dζ
= N

n = 0 
an zn + RN(z),
where
an
= 1

2πi

(⎜)



CR 
f(ζ) 1

ζn+1
  dζ,
RN(z)
= 1

2πi

(⎜)



CR 
f(ζ) 1

ζ

z

ζ

N+1

 

1 − z

ζ
 dζ,
|RN(z)|

max
|ζ| = R 
|f(ζ)| |θ|N+1

1 − |θ|
.



Theorem. Let f(z) be analytic in the closed region
DR = {|z| ≤ R }.
Then for |z| < R:

f(z) = 1

2πi

(⎜)



CR 
f(ζ)

ζ− z
 dζ.

f(z)
=

n = 0 
an zn,
an
= 1

2πi

(⎜)



CR 
f(ζ) 1

ζn+1
  dζ,
For n = 0,1,2, …, f(n)(z) exists and
f(n)(z)
= n!

2 πi

(⎜)



CR 
f(ζ) 1

(ζ− z)n+1
  dζ,
= 1

2πi

(⎜)



CR 
f(ζ) dn

d zn


1

ζ− z


 dζ.



File translated from TEX by TTH, version 4.03.
On 16 Nov 2013, 21:03.