Differentiability and Derivatives

A real valued function of a real variable x is differentiable at x with derivative $f^{\prime}(x)$ if

$$
f(x+\Delta x)=f(x)+f^{\prime}(x) \Delta x+o(\Delta x) .
$$

We consider several types of functions:
Curves: Let $z(t)=x(t)+i y(t)$ be a path (a complex valued function of a real variable $t)$. Then $z(t)$ is differentiable at t with derivative $z^{\prime}(t)$ if

$$
z(t+\Delta t)=z(t)+z^{\prime}(t) \Delta t+o(\Delta t) .
$$

In this case $z^{\prime}(t)=\frac{d z}{d t}=\frac{d x}{d t}+i \frac{d y}{d t}$. Moreover, the derivative can be calculated as the limit of difference quotients:

$$
\frac{d z}{d t}=\lim _{\Delta t \rightarrow 0} \frac{z(t+\Delta t)-z(t)}{\Delta t}
$$

Complex functions of a complex variable z : Let $f(z)$ be defined in an open set. Then f is differentiable at z with derivative $f^{\prime}(z)$ if

$$
f(z+\Delta z)=f(x)+f^{\prime}(z) \Delta z+o(\Delta z) .
$$

The derivative can be calculated as the limit of difference quotients:

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

While the formal definitions are the same, the requirements are quite different. If the variable, e.g., x, is real, there are only two ways that $\Delta x \rightarrow 0$ - from the right $(\Delta x>0)$ or from the left $(\Delta x>0)$. In the complex variable case, $|\Delta z| \rightarrow 0$, but Δz is allowed to have random directions as $\Delta z \rightarrow 0$. The existence of a limit $\lim _{\text {complex }} z \rightarrow$. is stronger than the concept $\lim _{\text {real }}^{x \rightarrow \cdot}$.

If f is a differentiable function of the complex variable z in an open set or region, $f(z)$ is also called an analytic or holomorphic function ${ }^{1}$.

Real [Complex] Functions of Two Variables (x, y) : There is another concept of differentiability of functions of two (or more) variables (x, y). For simplicity write $P=$ (x, y) and $\Delta P=(\Delta x, \Delta y)$. Then a real (or complex) valued function G is differentiable at P if

$$
G(P+\Delta P)=G(P)+\text { linear function of } \Delta P+o(\Delta P) .
$$

${ }^{1}$ See Knopp, Elements of the Theory of Functions, p. 101, and Knopp, Theory of Functions, Part I, p. 27. Thus if $f(z)$ is analytic at a point $z_{0}, f(z)$ is actually analytic in a neighborhood of z_{0}.

All linear functions of $\Delta P=(\Delta x, \Delta y)$ are of the form $a \cdot \Delta x+b \cdot \Delta y$. The numbers a and b can be calculated as the partial derivatives of G :

$$
\begin{aligned}
& a=\frac{\partial G}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{G(x+\Delta x, y)-G(x, y)}{\Delta x} \\
& b=\frac{\partial G}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{G(x, y+\Delta y)-G(x, y)}{\Delta y}
\end{aligned}
$$

The derivative of G at P is then the (complex) pair $<\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}>$ so that

$$
G(P+\Delta P)=G(P)+\frac{\partial G}{\partial x} \cdot \Delta x+\frac{\partial G}{\partial y} \cdot \Delta y+o(|\Delta P|)
$$

The [complex] pair $<\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}>$ is called the [complex] gradient of G and is written $\operatorname{grad} G$ or ∇G.
The formal expression $\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y$ is also called the differential $d G$ of the function $G(x, y)$. We write

$$
d G=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y
$$

Back to Analytic (Holomorphic ${ }^{2}$) Functions: That a differentiable function G of two real variables $P=(x, y)$ is a differentiable function of the complex variable z or analytic (holomorphic) reduces to the statement:
If $P=(x, y), z=x+i y$, there is a complex number $G^{\prime}(z)$ such that

$$
G^{\prime}(z) \cdot(\Delta x+i \Delta y)=\frac{\partial G}{\partial x} \cdot \Delta x+\frac{\partial G}{\partial y} \cdot \Delta y
$$

The complex number $G^{\prime}(z)$ can be calculated several ways:

- Let $\Delta y=0$ and $\Delta x \neq 0$:

$$
G^{\prime}(z)=\frac{\partial G}{\partial x}
$$

- Let $\Delta y \neq 0$ and $\Delta x=0$:

$$
\begin{aligned}
& i G^{\prime}(z)=\frac{\partial G}{\partial y}, \text { or } G^{\prime}(z)=-i \frac{\partial G}{\partial y} \\
& G^{\prime}(z)=\frac{\partial G}{\partial z} \stackrel{\text { def }}{\equiv} \frac{1}{2}\left(\frac{\partial G}{\partial x}-i \frac{\partial G}{\partial y}\right)
\end{aligned}
$$

The formal expression $\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y$ is also called the differential $d G$ of the function $G(x, y)$. If G is a differentiable function of the complex variable z, we can write formally:

$$
d G=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y=\frac{d G}{d z} d z=\frac{d G}{d z} d z
$$

2 The words holomorphic and analytic are used interchangably.

The precise meaning of the statement $d G=\frac{d G}{d z} d z$ is that

$$
G(z+\Delta z)-G(z)=\frac{d G}{d z} \cdot \Delta z+o(\Delta z)
$$

Remarks on Analyticity and Partial Differential Equations (PDE)

 If $G(x, y)$ is real differentiable,$$
\begin{aligned}
d G & =\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y \\
d x & =\frac{1}{2}(d z+d \bar{z}) \\
d y & =\frac{1}{2 i}(d z-d \bar{z})
\end{aligned}
$$

so that

$$
\begin{aligned}
d G & =\frac{1}{2}\left(\frac{\partial G}{\partial x}-i \frac{\partial G}{\partial y}\right) d z+\frac{1}{2}\left(\frac{\partial G}{\partial x}+i \frac{\partial G}{\partial y}\right) d \bar{z} \\
& =\frac{\partial G}{\partial z} d z+\frac{\partial G}{\partial \bar{z}} d \bar{z}
\end{aligned}
$$

Thus the analytic functions are the real differentiable functions $G(x, y)$ which satisfy the partial differential equation

$$
\frac{\partial G}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial G}{\partial x}+i \frac{\partial G}{\partial y}\right)=0
$$

