Logarithms and Powers

arguments and Arguments

If $z \neq 0$, z has the polar coordinate representation

$$
\begin{aligned}
z & =r e^{i \theta} \\
r & =|z|>0 \\
\theta & =\arg (z)
\end{aligned}
$$

The angle $\theta=\arg (z)$ is determined only modulo 2π.
If for every $z \neq 0$ we make a particular choice $\operatorname{Arg}(z)$, then $\operatorname{Arg}(z)$ is called a Principle Argument function. For such a Principal Argument function, $\operatorname{Arg}(z)$ is continuous at $z=z_{0}$ iff for all z near z_{0},

$$
\left|\operatorname{Arg}(z)-\operatorname{Arg}\left(z_{0}\right)\right|<\pi
$$

Common choices for $\operatorname{Arg}(z)$ are

$$
\begin{aligned}
\operatorname{Arg}(z) & =\operatorname{Arg}_{[0,2 \pi)}(z) \\
& =\arg (z), 0 \leq \arg (z)<2 \pi \\
\operatorname{Arg}(z) & =\operatorname{Arg}_{(-\pi, p i]}(z) \\
& =\arg (z),-\pi<\arg (z) \leq \pi
\end{aligned}
$$

The first choice gives a Principal Argument Function which is continuous everywhere except along the positive x-axis. The second choice gives a Principal Argument Function which is continuous everywhere except along the negative x-axis.

logarithms and Logarithms

Definition. If z is a nonzero complex number then a logarithm of z is any complex number w such that

$$
\exp (w)=z
$$

Any logarithm is of the form

$$
\log (z)=\ln |z|+i \arg (z)
$$

If $\operatorname{Arg}(z)$ is a Principal Argument Function, the function

$$
\log (z)=\ln |z|+i \operatorname{Arg}(z)
$$

is called a Principal Branch of the Logarithm.

Exercise. Choose

$$
\operatorname{Arg}(z)=\operatorname{Arg}_{(-\pi, \pi]}(z)=\arg (z),-\pi<\arg (z) \leq \pi
$$

Show that

$$
\log (z) \equiv \ln |z|+i \operatorname{Arg}(z)
$$

is analytic except along the negative x-axis.
Hint: For $\Re z>0$, draw a picture to show that $\operatorname{Arg}(x+i y)=\arctan \left(\frac{y}{x}\right)$ and verify the Cauchy-Riemann equations. Then give similar representations for $\operatorname{Arg}(z)$ in the regions $\Im z>0$ and $\Im z<0$.

powers and Powers

If $z \neq 0$ and a is any complex number, z^{a} is any complex number of the form

$$
\begin{aligned}
z^{a} & =e^{a \log (z)} \\
& =e^{a \cdot(\ln |z|+i \arg (z))}
\end{aligned}
$$

In general z^{a} has more than one possible value. Choosing a Principle Argument Function $\operatorname{Arg}(z)$ give a Principal Branch of the Power Function, which is analytic at the places where the corresponding Principal Branch Logarithm Function $\log (z)$ is analytic (and perhaps elsewhere in special cases). The corresponding function $z^{a} \equiv e^{a \log (z)}$ is called a branch of the power function z^{a}.
Note that at any point where $\operatorname{Arg}(z)$ is continuous, $\log (z)$ and the Branch $f(z) \equiv e^{a \log (z)}$ of the power function z^{a} are analytic, and

$$
\frac{d z^{a}}{d z}=a z^{a-1} \quad \text { (same branches). }
$$

Exercises

1. Show that i^{i} is real and find the values of all of its branches.
2. For $z \neq 0$, how many values are there for $z^{\frac{1}{2}}$?
3. Show that for any branch, $\lim _{z \rightarrow 0} z^{\frac{1}{2}}=0$.

If $f(z)=e^{\frac{1}{2} \log (z)}$, is continuous and analytic at z, then

$$
f^{\prime}(z)=\frac{1}{2 f(z)}
$$

4. Show that it is NOT possible to define $\operatorname{Arg}(z)$ in such a way that

$$
\begin{aligned}
f(z) & =z^{\frac{1}{2}} \\
& =e^{\frac{1}{2} \log (z)} \\
& =e^{\frac{1}{2}((\ln |z|+i \operatorname{Arg}(z)))}
\end{aligned}
$$

is analytic in the region $\{z|0<|z|<R\}$.

Choices of a Principal Argument Function

If D is a simply connected region not containing $z=0$, the function $f(\zeta)=\frac{1}{\zeta}$ is analytic in D and for any path $C_{z_{0} \rightarrow z}$ in D from z_{0} to z,

$$
\int_{z_{0}}^{z} \frac{1}{\zeta} d \zeta \equiv \int_{C_{z_{0} \rightarrow z} \rightarrow} \frac{1}{\zeta} d \zeta,
$$

the integral being independent of the particular path chosen. Fixing $z_{0} \in D$ and a fixed choice for $\operatorname{Arg}\left(z_{0}\right)$, we can define on D :

$$
\begin{aligned}
\log \left(z_{0}\right) & =\ln \left|z_{0}\right|+i \operatorname{Arg}\left(z_{0}\right), \\
\log (z) & =\log \left(z_{0}\right)+\int_{z_{0}}^{z} \frac{1}{\zeta} d \zeta \\
& =\ln |z|+i \operatorname{Arg}(z), \\
\operatorname{Arg}(z) & =\operatorname{Arg}\left(z_{0}\right)+\Im \int_{z_{0}}^{z} \frac{1}{\zeta} d \zeta .
\end{aligned}
$$

A simply connected region D which does not contain $z=0$ can be constructed as the complement of a branch cut which consists of any simple curve C which has 0 as an initial point and extends to $z=\infty$.

