Logarithms and Powers

arguments and Arguments

If $z \neq 0$, z has the polar coordinate representation

$$z = re^{i\theta},$$

$$r = |z| > 0,$$

$$\theta = \arg(z).$$

The angle $\theta = \arg(z)$ is determined only modulo 2π .

If for every $z \neq 0$ we make a particular choice $\operatorname{Arg}(z)$, then $\operatorname{Arg}(z)$ is called a *Principle* Argument function. For such a Principal Argument function, $\operatorname{Arg}(z)$ is continuous at $z = z_0$ iff for all z near z_0 ,

$$\left|\operatorname{Arg}(z) - \operatorname{Arg}(z_0)\right| < \pi.$$

Common choices for $\operatorname{Arg}(z)$ are

$$\operatorname{Arg}(z) = \operatorname{Arg}_{[0,2\pi)}(z)$$
$$= \operatorname{arg}(z), 0 \le \operatorname{arg}(z) < 2\pi,$$
$$\operatorname{Arg}(z) = \operatorname{Arg}_{(-\pi,pi]}(z)$$
$$= \operatorname{arg}(z), -\pi < \operatorname{arg}(z) \le \pi.$$

The first choice gives a Principal Argument Function which is continuous everywhere *except* along the positive x-axis. The second choice gives a Principal Argument Function which is continuous everywhere *except along the negative* x-axis.

logarithms and Logarithms

Definition. If z is a nonzero complex number then a logarithm of z is any complex number w such that

$$\exp(w) = z.$$

Any logarithm is of the form

$$\log(z) = \ln|z| + i \arg(z).$$

If $\operatorname{Arg}(z)$ is a Principal Argument Function, the function

$$Log(z) = \ln |z| + i \operatorname{Arg}(z)$$

is called a Principal Branch of the Logarithm.

Exercise. Choose

$$\operatorname{Arg}(z) = \operatorname{Arg}_{(-\pi,\pi]}(z) = \operatorname{arg}(z), -\pi < \operatorname{arg}(z) \le \pi.$$

Show that

$$Log(z) \equiv ln |z| + iArg(z)$$

is analytic except along the negative x-axis.

Hint: For $\Re z > 0$, draw a picture to show that $\operatorname{Arg}(x + iy) = \arctan\left(\frac{y}{x}\right)$ and verify the Cauchy–Riemann equations. Then give similar representations for $\operatorname{Arg}(z)$ in the regions $\Im z > 0$ and $\Im z < 0$.

powers and Powers

If $z \neq 0$ and a is any complex number, z^a is any complex number of the form

$$z^{a} = e^{a \log(z)}$$
$$= e^{a \cdot (\ln|z| + i \arg(z))}$$

In general z^a has more than one possible value. Choosing a Principle Argument Function $\operatorname{Arg}(z)$ give a Principal Branch of the Power Function, which is analytic at the places where the corresponding Principal Branch Logarithm Function $\operatorname{Log}(z)$ is analytic (and perhaps elsewhere in special cases). The corresponding function $z^a \equiv e^{a\operatorname{Log}(z)}$ is called a *branch* of the power function z^a .

Note that at any point where $\operatorname{Arg}(z)$ is continuous, $\operatorname{Log}(z)$ and the Branch $f(z) \equiv e^{a \operatorname{Log}(z)}$ of the power function z^a are analytic, and

$$\frac{dz^a}{dz} = az^{a-1} \quad \text{(same branches)}.$$

Exercises

- 1. Show that i^i is real and find the values of all of its branches.
- 2. For $z \neq 0$, how many values are there for $z^{\frac{1}{2}}$?
- 3. Show that for any branch, $\lim_{z\to 0} z^{\frac{1}{2}} = 0$.

If $f(z) = e^{\frac{1}{2}\text{Log}(z)}$, is continuous and analytic at z, then

$$f'(z) = \frac{1}{2f(z)}$$

4. Show that it is NOT possible to define $\operatorname{Arg}(z)$ in such a way that

$$f(z) = z^{\frac{1}{2}}$$
$$= e^{\frac{1}{2}\text{Log}(z)},$$
$$= e^{\frac{1}{2}((\ln|z| + i\text{Arg}(z)))}$$

is analytic in the region $\{z \mid 0 < |z| < R\}$.

Choices of a Principal Argument Function

If D is a simply connected region not containing z = 0, the function $f(\zeta) = \frac{1}{\zeta}$ is analytic in D and for any path $C_{z_0 \to z}$ in D from z_0 to z,

$$\int_{z_0}^{z} \frac{1}{\zeta} d\zeta \equiv \int_{C_{z_0 \to z}} \frac{1}{\zeta} d\zeta,$$

the integral being independent of the particular path chosen. Fixing $z_0 \in D$ and a fixed choice for $\operatorname{Arg}(z_0)$, we can define on D:

$$Log(z_0) = \ln |z_0| + iArg(z_0),$$

$$Log(z) = Log(z_0) + \int_{z_0}^{z} \frac{1}{\zeta} d\zeta$$

$$= \ln |z| + iArg(z),$$

$$Arg(z) = Arg(z_0) + \Im \int_{z_0}^{z} \frac{1}{\zeta} d\zeta.$$

A simply connected region D which does not contain z = 0 can be constructed as the complement of a *branch cut* which consists of any simple curve C which has 0 as an initial point and extends to $z = \infty$.