Limits and Order

For functions of a real variable, the derivative is defined as

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

which means that the difference

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}-f^{\prime}(x)
$$

is small if Δx is small and not 0 (for which the quotient is not obviously defined).
Multiplying the remainder by Δx, we obtain that

$$
f(x+\Delta x)-f(x)-f^{\prime}(x) \Delta x=\text { small } \cdot \Delta x
$$

with the right hand side, (RHS), of the equation is "much smaller than Δx ", as $\Delta x \rightarrow 0$, in the precise sense

$$
\lim _{\Delta x \rightarrow 0} \frac{\text { RHS }}{|\Delta x|}=0
$$

Another formal advantage is that the equation is also defined and true for $\Delta x=0$.

Definition. As $\Delta x \rightarrow 0$, an expression $\phi(\Delta x)$ is little o of Δx, written $o(\Delta x)$, if

$$
\lim _{\Delta x \rightarrow 0} \frac{\phi(\Delta x)}{|\Delta x|}=0
$$

If we are not worried about the particular details of $\phi(x)$, we write $\phi(x)=o(\Delta x)$. With this convention, the definition of differentiability and the derivative takes the convenient form

$$
f(x+\Delta x)=f(x)+f^{\prime}(x) \cdot \Delta x+o(\Delta x) .
$$

In a similar way, if $\lim _{\Delta x \rightarrow 0} \psi(\Delta x)=0$, we write $\psi(\Delta x)=o$ (1) with the precise meaning that

$$
\lim _{\Delta x \rightarrow 0} \frac{\psi(\Delta x)}{1}=0
$$

Definition. Let $q(\Delta x)$ be nonzero for Δx near 0 . Then a function $\phi(\Delta x)$ is little o of $q(\Delta x)$, written $\phi(\Delta x)=o(q(\Delta x))$, if

$$
\lim _{\Delta x \rightarrow 0} \frac{\phi(\Delta x)}{|q(\Delta x)|}=0
$$

Then a function $\phi(x)$ is big O of $q(\Delta x)$, written $\phi(\Delta x)=O(q(\Delta x))$, if

$$
\frac{\phi(\Delta x)}{|q(\Delta x)|}
$$

is bounded as $\Delta x \rightarrow 0$.

With this convention, continuity of a function $f(x)$ can be expressed by

$$
f(x+\Delta x)=f(x)+o(1),
$$

and local boundedness of a function can be expressed as $f(x+\Delta x)=O(1)$.
There is a formal calculus for handling sums and products for functions which are little o or big O of one (or several) q. Verify that $O(1) \cdot o(\Delta x)=o(\Delta x)$; i.e., the product of a bounded function and a function which is $o(\Delta x)$ is $o(\Delta x)$. Similarly $o(\Delta x) \pm o(\Delta x)=o(\Delta x)$.

The concepts little o and big O are also useful as the argument $x \rightarrow \infty$. For example we write $x^{2}=o\left(e^{x}\right)$ as $x \rightarrow \infty$ with the precise meaning

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=0
$$

