
Complex Power Series JL

Convergence and Absolute Convergence

•
∞∑
∗
Cn CONVerges iff

lim
N→∞

N∑
∗
Cn

exists (finite).

• If Cn = xn + iyn, then
∞∑
∗
Cn CONVerges iff

∞∑
∗
xn CONVerges and

∞∑
∗
yn CONVerges.

•
∞∑
∗
Cn CONVerges ABSsolutely iff

∞∑
∗
|Cn| converges or

lim
N→∞

N∑
∗
|Cn|

exists (finite).

• If Cn = xn + iyn, then
∞∑
∗
Cn CONVerges ABSolutely iff

∞∑
∗
xn and

∞∑
∗
yn CONVerge

ABSolutely.

•
∞∑
∗
|Cn| converges iff the sequence

N∑
∗
|Cn| is bounded.

Comparison Test for Absolute Convergence

• If

|Cn| ≤ Bn,

then

0 ≤
∞∑
∗
|Cn| ≤

∞∑
∗
Bn.

So that if the series
∞∑
∗
Bn CONVerges, the

∞∑
∗
An CONVerges ABSolutely. Moreover

there is the obvious error estimate ∣∣∣∣∣
∞∑

N+1

Cn

∣∣∣∣∣ ≤
∞∑

N+1

|Cn|

≤
∞∑

N+1

Bn
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The Geometric Series

We consider the geometric series
∞∑
0

zn.

A bare hands calculation shows that

(1− z)
N∑
0

zn = (1− z)
(
1 + z + . . .+ zN

)
= 1− zN+1.

so that
∞∑
0

zn
{

CONVerges ABSolutely to 1
1−z for |z| < 1,

DIVerges for |z| ≥ 1.

For |z| < r < 1, there is the error estimate∣∣∣∣∣
∞∑

N+1

zn

∣∣∣∣∣ ≤
∞∑

N+1

|z|n =
|z|N+1

1− |z|

≤
∣∣∣z
r

∣∣∣N+1 rN+1

1− r

≤ rN+1

1− r
.

Ratio Test for ABSolute CONVergence

For the series
∞∑
∗
CN , suppose that

lim
n→∞

∣∣∣∣Cn+1

Cn

∣∣∣∣ = L.

• If 0 ≤ L < 1, the series
∞∑
∗
CN CONVerges ABSolutely.

Why? Choose an r, L < r < 1. For n sufficiently large, |Cn+1| < r |Cn| and for N large

enough,
∞∑
N

|Cn| ≤
∞∑
N

|CN | rn−N

= |CN |
1

1− r
.

• If 1 < L ≤ ∞, the series
∞∑
∗
CN DIVerges.
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• If L = 1, we are not sure – additional information is needed to decide DIVergence or

CONVergence and/or ABS0lute CONVergence.

Power Series, Radius of Convergence, and Circle/Disk of Convergence

• If the power series
∞∑

n=0

anz
n, converges for a nonzero z = z0, then for all z, |z| < |z0|, the

power series CONVerges ABSolutely.

Why? We have that limn→∞ |anzn0 | = 0. Then we can compare

∞∑
N+1

|anzn| =
∞∑

N+1

|anzn0 |
∣∣∣∣ zz0
∣∣∣∣n

≤
(

max
n≥N

|anzn0 |
) ∞∑

N+1

∣∣∣∣ zz0
∣∣∣∣n

= o (1)
θN+1

1− θ
,

where o (1) means limN→∞ o (1) = 0, and θ =
∣∣∣ zz0 ∣∣∣.

Thus the convergence of the series at a nonzero z0 forces the absolute convergence of the

series in the entire open disk centered at 0 with radius |z0|.

• For a power series
∞∑

n=0

anz
n, there is a number R, 0 ≤ R ≤ ∞ for which

∞∑
n=0

anz
n

{
CONVerges ABSolutely for |z| < R,
DIVerges for |z| > R.

The number R is called the radius of convergence of the power series. R can often be

determined by the Ratio Test.

• If f(z) is represented by a convergent power series for |z| < R, then f(z) is an analytic

function in the region |z| < R and its derivative is represented by the convergent series
∞∑

n=1

nanz
n−1, |z| < R.

Thus the power series for f ′ has radius of convergence at least R, and the formally

differentiated series converges to the analytic function f ′(z). Within the open disk of

convergence, it follows that function represented by a power series has derivatives of all

orders which are represented by the series differentiated term by term.

• If

f(z) =
∞∑

n=0

anz
n, |z| < R,
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then

f ′(z) =
∞∑

n=1

nanz
n−1 =

∞∑
n=0

(n+ 1)an+1x
n, |x| < R,

and1 ∫ z

0

f(ζ) dζ =
∞∑

n=0

an
n+ 1

zn+1 =
∞∑

n=1

an−1
n

zn, |z| < R

1 The integral must be very carefully defined. For now interpret the integral as being on

the straight line path from 0 to the point z.
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