Removable and Nonremovable Singularities

Let Ω be an open set. Let f(z) be analytic in Ω . A complex number z_0 in the boundary of Ω is a *removable singularity* for f [with respect to Ω] if there is a neighborhood¹ $B_{z_0,\epsilon}$ of z_0 , and a function g(z), analytic in $B_{z_0,\epsilon}$, such that g(z) = f(z) in $B_{z_0,\epsilon} \cap \Omega$.

In this case the function f(z) can be *continued* analytically to a larger open set, $\Omega \cup B_{z_0,\epsilon}$. The process is called *analytic continuation*.

Examples

- For example, if $\Omega = B_{0,r} \setminus \{0\}$, and f(z) is analytic and bounded in Ω , then the point z = 0 is a removable singularity for f(z).
- if $\Omega = B_{0,r}$, and $z_0 \in \partial \Omega$ and f(z) is analytic in Ω , but f(z) is unbounded for z near z_0 then the point $z = z_0$ is a *nonremovable* singularity for f(z) with respect to Ω .
- The function $f(z) = \ln(z)$ may be defined in the set

$$\Omega = \{ z = x + iy \mid x > 0 \}$$

as

$$\ln(z) = \ln|z| + i\arg(z), -\frac{\pi}{2} < \arg(z) < \frac{\pi}{2}$$

The only point on the imaginary axis, $\partial \Omega$, which is not a removable singularity for f(z) with respect to Ω is z = 0.

• The function $f_1(z) = \ln(z)$ may be defined in the set

$$\Omega_1 = \mathbf{C} \setminus \{ z = x + i0 \mid x \le 0 \}$$

as

$$\ln(z) = \ln |z| + i \arg(z), -\pi < \arg(z) < \pi.$$

Then all points on the nonnegative real axis, $\partial \Omega_1$, are nonremovable singularities for $f_1(z)$ with respect to Ω_1 . This example shows that whether the singularity is removable depends on the original domain of definition.

Radius of Convergence for Power Series

Suppose that f(z) is analytic in |z| < R and there is a point z_0 , $|z_0| = R$, such that z_0 is a nonremovable singularity for f(z) with respect to $B_{0,R}$. Then the radius convergence for the series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

is exactly R.

Proof: We know that the radius of convergence is at least R. If the series converges for $|z| < R_1, R_1 > R$, let

$$g(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R_1.$$

Then g(z) = f(z), $|z| < R_1$, but g(z) is analytic at $z = z_0$.

¹ We use the notation

$$B_{z_0,\epsilon} = \{ z \mid |z - z_0| < \epsilon \}.$$

for the open disk centered at z_0 of radius ϵ .