
The Laurent Expansion

Theorem. Let f(z) be analytic in the region {z |0 < |z| < R}. Then for 0 < |z| < R,

f(z) =
∞∑

n=−∞
anz

n,

an =
1

2πi

∮
Cr

f(ζ)ζ−n−1 dζ.

Here r is any number such that 0 < r < R.
The series

f1(z) =
∞∑

n=0

anz
n

is analytic in {z ||z| < R} ,
The series

f1(z) =

−1∑
n=−∞

anz
n

is analytic in {z |0 < |z| }.
Note that
• If f(z) be analytic in the region {z ||z| < R}, then

an =
1

2πi

∮
Cr

f(ζ)ζ−n−1 dζ = 0, n = −1,−2, . . . .

• If f(z) be analytic in the region {z |0 < |z| < R}, then

a−1 =
1

2πi

∮
Cr

f(ζ) dζ

is called the residue of f(z) at z = 0.

Isolated Singularities
For the moment, we shall consider a function f(z) analytic in the punctured disk

ḊR = {z |0 < |z| ≤ R} .
Thus the possible singularity of f(z) at z = 0 is isolated .
Then

f(z) =
∞∑

n=−∞
anz

n,

an =
1

2πi

∮
Cr

f(ζ)ζ−n−1 dζ.

• The coefficient of z−1 is called the residue of f(z) at z = 0, and is written

Res(f, z = 0) = Resf(z)|z=0 =
1

2πi

∮
Cr

f(ζ) dζ.

• If f(z) =
∑∞

n=0 anz
n, f(z) may be extended by defining f(0) = a0, and the resulting

function is analytic in |z| ≤ R. In this case the singularity is removable.
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• If f(z) =
∑∞

n=N anz
n, N ≥ 0, aM 6= 0, f(z) is said to have a zero of order N at z = 0.

Near z = 0,
f(z) = zN · g(z)

, where g(z) is analytic in |z| ≤ R, g(0) 6= 0.

• If f(z) =
∑∞

n=−M anz
n, M ≥ 0, a−M 6= 0, f(z) is said to have a pole of order M at

z = 0. Near z = 0,
f(z) = z−M · g(z)

, where g(z) is analytic in |z| ≤ R, g(0) 6= 0. The function is also meromorphic in ḊR.

• If f(z) = O
(
|z|−M

)
, M ≥ 0, the preceding exercises show that a−M−1 = 0, a−M−2 = 0,

. . .. Thus f(z) at z = 0 has a pole of order at most M .

• At z = 0, f(z) has a pole of order M iff there are positive constants c1 and c2 such that

c1

|z|M
≤ |f(z)| ≤ c2

|z|M
.

Isolated Essential Singularities

Definition. If f(z) =
∑∞

n=−∞ anz
n, an 6= 0 for infinitely many negative n, then f(z) is

said to have an essential singularity at z = 0.

Analytic functions which have isolated essential singularities behave very badly near the
essential singularity.

Theorem (Little Picard). Suppose that f(z) has an essential singularity at z = 0. Then
for any complex number w0, in any neighborhood of z = 0, f(z) gets arbitrarily close to
w0.

Proof of the Little Picard Theorem: The proof is by contradiction.If there is a
neighborhood Ḋr = {z |0 < |z| < r} in which f(z)− w0 is bounded away from 0, then

g(z) =
1

f(z)− w0

is analytic and bounded in Ḋr. Thus g(z) has a removable singularity at z = 0 and a zero
of order N , N ≥ 0. Thus g(z) = zN ·h(z), h(z) analytic near z = 0 and h(0) 6= 0. Possibly
shrinking r, we may assume that h(z) 6= 0 in Dr = {z ||z| < r}. Then

f(z)− w0 = z−N · 1

h(z)
.

It follows that f(z) has a pole of order at most N at z = 0.
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