Sums and Unconditional Convergence

For manipulations with power series we are interested in infinite sums such as

$$\sum_{j,k=0}^{\infty} a_{j,k}$$

We need to justify changing the order of summation and conditions which assure that

$$\sum_{j,k=0}^{\infty} a_{j,k} = \sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} a_{j,k} \right) = \sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} a_{j,k} \right).$$

The condition which justifies the manipulations is *absolute* or *unconditional convergence* of the series.

Theorem. Suppose that all the finite [partial] sums

$$\sum_{j,k \in \text{finite set}} |a_{j,k}|$$

form a bounded set. Then there is a unique finite (complex) number

$$S = \sum_{j,k=0}^{\infty} a_{j,k}$$

which may be calculated as

$$\sum_{j,k=0}^{\infty} a_{j,k} = \sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} a_{j,k} \right) = \sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} a_{j,k} \right),$$

or with any rearrangement in the summation of the terms – for example

$$S = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_{k,k-j} \right).$$

Since the sum may be calculated in "any order", the convergence is called *unconditional*.

Notes on Unconditional Convergence

Let A be an index set¹. For each $\alpha \in A$, Let z_{α} be a complex number. Then the sum

$$\sum_{\alpha \in A} z_{\alpha}$$

converges unconditionally to S if almost all the finite sums are close to S in the precise sense:

Given $\epsilon > 0$, there is a finite set F_{ϵ} such that if F is any finite subset of A, $F \supseteq F_{\epsilon}$, then

$$\left|\sum_{\alpha\in F} z_{\alpha} - S\right| < \epsilon.$$

Note that if $\sum_{\alpha \in A} z_{\alpha}$ converges unconditionally to S, then $\sum_{\alpha \in A} \Re z_{\alpha}$ converges unconditionally to $\Re S$ and $\sum_{\alpha \in A} \Im z_{\alpha}$ converges unconditionally to $\Im S$.

In particular, if $z_{\alpha} = x_{\alpha} \ge 0$, then

$$S = \sup_{F \text{ finite}} \sum_{\alpha \in F} x_{\alpha}.$$

In this case $\sum_{\alpha \in A} x_{\alpha}$ converges unconditionally iff the set of finite sums $\sum_{\alpha \in F} x_{\alpha}$, F finite, is bounded.

Let x_{α} be real. Define

$$x_{\alpha}^{+} = \max(x_{\alpha}, 0),$$

$$x_{\alpha}^{-} = \max(-x_{\alpha}, 0),$$

so that

$$x_{\alpha} = x_{\alpha}^{+} - x_{\alpha}^{-},$$
$$|x_{\alpha}| = x_{\alpha}^{+} + x_{\alpha}^{-}.$$

¹ For technical reasons, if $A = \emptyset$, the empty set, interpret $\sum_{\alpha \in \emptyset} z_{\alpha} = 0$.

Theorem. Let x_{α} be real. The sum $\sum_{\alpha \in A} x_{\alpha}$ converges unconditionally iff the sums $\sum_{\alpha \in A} x_{\alpha}^+$, $\sum_{\alpha \in A} x_{\alpha}^-$, and $\sum_{\alpha \in A} |x_{\alpha}|$ all converge unconditionally.

Proof. There is a finite set F_1 such that $\left|\sum_{\alpha \in F, F \supseteq F_1} x_\alpha - S\right| < 1$. Then if F is any finite set

set,

$$\sum_{\alpha \in F} x_{\alpha}^{+} \leq \sum_{\alpha \in F \setminus F_{1}} x_{\alpha}^{+} + \sum_{\alpha \in F \cap F_{1}} x_{\alpha}^{+}$$
$$\leq 1 + \sum_{\alpha \in F_{1}} |x_{\alpha}|$$
$$\leq C.$$

Thus all the finite sums of $\sum_{\alpha \in A} x_{\alpha}^+$, $\sum_{\alpha \in A} x_{\alpha}^-$, and $\sum_{\alpha \in A} |x_{\alpha}|$ are bounded.

Summary

By considering $z_{\alpha} = x_{\alpha}^{+} - x_{\alpha}^{-} + i(y_{\alpha}^{+} - y_{\alpha}^{-})$, we obtain:

- 1. The sum $\sum_{\alpha \in A} z_{\alpha}$ converges unconditionally iff
- The sum $\sum_{\alpha \in A} |z_{\alpha}|$ converges unconditionally.

 iff

- The set of finite sums $\sum_{\alpha \in F} |z_{\alpha}|$, F finite, is bounded.
- 2. If $\{A_j\}$ is a sequence of sets increasing to A $(A_0 \subseteq A_1 \subseteq A_2 \subseteq \ldots, A = \bigcup_{j=0}^{\infty} A_j)$, it is easy to see that if $\sum_{\alpha \in A} z_{\alpha}$ converges unconditionally, then

$$\sum_{\alpha \in A} z_{\alpha} = \lim_{j \to \infty} \sum_{\alpha \in A_j} z_{\alpha}.$$

3. Rearrangement: If $\sum_{\alpha \in A} z_{\alpha}$ converges unconditionally, and A is a disjoint union of sets,

 $A = \bigcup_{j=0}^{\infty} B_j$, with the B_j pairwise disjoint, then

$$\sum_{\alpha \in A} z_{\alpha} = \sum_{j=0}^{\infty} \left(\sum_{\alpha \in B_j} z_{\alpha} \right).$$