Sums and Unconditional Convergence

For manipulations with power series we are interested in infinite sums such as

$$
\sum_{j, k=0}^{\infty} a_{j, k}
$$

We need to justify changing the order of summation and conditions which assure that

$$
\sum_{j, k=0}^{\infty} a_{j, k}=\sum_{j=0}^{\infty}\left(\sum_{k=0}^{\infty} a_{j, k}\right)=\sum_{j=0}^{\infty}\left(\sum_{k=0}^{\infty} a_{j, k}\right) .
$$

The condition which justifies the manipulations is absolute or unconditional convergence of the series.

Theorem. Suppose that all the finite [partial] sums

$$
\sum_{j, k \in \text { finite set }}\left|a_{j, k}\right|
$$

form a bounded set. Then there is a unique finite (complex) number

$$
S=\sum_{j, k=0}^{\infty} a_{j, k}
$$

which may be calculated as

$$
\sum_{j, k=0}^{\infty} a_{j, k}=\sum_{j=0}^{\infty}\left(\sum_{k=0}^{\infty} a_{j, k}\right)=\sum_{j=0}^{\infty}\left(\sum_{k=0}^{\infty} a_{j, k}\right)
$$

or with any rearrangement in the summation of the terms - for example

$$
S=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{k, k-j}\right)
$$

Since the sum may be calculated in "any order", the convergence is called unconditional.

Notes on Unconditional Convergence

Let A be an index set ${ }^{1}$. For each $\alpha \in A$, Let z_{α} be a complex number. Then the sum

$$
\sum_{\alpha \in A} z_{\alpha}
$$

converges unconditionally to S if almost all the finite sums are close to S in the precise sense:

Given $\epsilon>0$, there is a finite set F_{ϵ} such that if F is any finite subset of $A, F \supseteq F_{\epsilon}$, then

$$
\left|\sum_{\alpha \in F} z_{\alpha}-S\right|<\epsilon .
$$

Note that if $\sum_{\alpha \in A} z_{\alpha}$ converges unconditionally to S, then $\sum_{\alpha \in A} \Re z_{\alpha}$ converges unconditionally to $\Re S$ and $\sum_{\alpha \in A} \Im z_{\alpha}$ converges unconditionally to $\Im S$.

In particular, if $z_{\alpha}=x_{\alpha} \geq 0$, then

$$
S=\sup _{F} \text { finite } \sum_{\alpha \in F} x_{\alpha} .
$$

In this case $\sum_{\alpha \in A} x_{\alpha}$ converges unconditionally iff the set of finite sums $\sum_{\alpha \in F} x_{\alpha}, F$ finite, is bounded.

Let x_{α} be real. Define

$$
\begin{aligned}
& x_{\alpha}^{+}=\max \left(x_{\alpha}, 0\right), \\
& x_{\alpha}^{-}=\max \left(-x_{\alpha}, 0\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
x_{\alpha} & =x_{\alpha}^{+}-x_{\alpha}^{-}, \\
\left|x_{\alpha}\right| & =x_{\alpha}^{+}+x_{\alpha}^{-} .
\end{aligned}
$$

${ }^{1}$ For technical reasons, if $A=\emptyset$, the empty set, interpret $\sum_{\alpha \in \emptyset} z_{\alpha}=0$.

Theorem. Let x_{α} be real. The sum $\sum_{\alpha \in A} x_{\alpha}$ converges unconditionally iff the sums $\sum_{\alpha \in A} x_{\alpha}^{+}$, $\sum_{\alpha \in A} x_{\alpha}^{-}$, and $\sum_{\alpha \in A}\left|x_{\alpha}\right|$ all converge unconditionally.

Proof. There is a finite set F_{1} such that $\left|\sum_{\alpha \in F, F \supseteq F_{1}} x_{\alpha}-S\right|<1$. Then if F is any finite set,

$$
\begin{aligned}
\sum_{\alpha \in F} x_{\alpha}^{+} & \leq \sum_{\alpha \in F \backslash F_{1}} x_{\alpha}^{+}+\sum_{\alpha \in F \cap F_{1}} x_{\alpha}^{+} \\
& \leq 1+\sum_{\alpha \in F_{1}}\left|x_{\alpha}\right| \\
& \leq C .
\end{aligned}
$$

Thus all the finite sums of $\sum_{\alpha \in A} x_{\alpha}^{+}, \sum_{\alpha \in A} x_{\alpha}^{-}$, and $\sum_{\alpha \in A}\left|x_{\alpha}\right|$ are bounded.

Summary

By considering $z_{\alpha}=x_{\alpha}^{+}-x_{\alpha}^{-}+i\left(y_{\alpha}^{+}-y_{\alpha}^{-}\right)$, we obtain:

1. The sum $\sum_{\alpha \in A} z_{\alpha}$ converges unconditionally iff

- The sum $\sum_{\alpha \in A}\left|z_{\alpha}\right|$ converges unconditionally. iff
- The set of finite sums $\sum_{\alpha \in F}\left|z_{\alpha}\right|, F$ finite, is bounded.

2. If $\left\{A_{j}\right\}$ is a sequence of sets increasing to $A\left(A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \ldots, A=\cup_{j=0}^{\infty} A_{j}\right)$, it is easy to see that if $\sum_{\alpha \in A} z_{\alpha}$ converges unconditionally, then

$$
\sum_{\alpha \in A} z_{\alpha}=\lim _{j \rightarrow \infty} \sum_{\alpha \in A_{j}} z_{\alpha} .
$$

3. Rearrangement: If $\sum_{\alpha \in A} z_{\alpha}$ converges unconditionally, and A is a disjoint union of sets,
$A=\cup_{j=0}^{\infty} B_{j}$, with the B_{j} pairwise disjoint, then

$$
\sum_{\alpha \in A} z_{\alpha}=\sum_{j=0}^{\infty}\left(\sum_{\alpha \in B_{j}} z_{\alpha}\right)
$$

