M417

Fall 1996
hw12.tex due Nov 18, 1996
Let D be a simply connected domain. Let z_{0} be a fixed point in D. Suppose that $f(z)$ is analytic in D, that $f(z) \neq 0$ in D, and that $f\left(z_{0}\right)=1$.

1. Show that there is a function $H(z)$ which is analytic in $D, H\left(z_{0}\right)=0$, and

$$
\frac{d H}{d z}=\frac{f^{\prime}}{f}, z \in D
$$

2. Show that

$$
\frac{d(f \exp (-H))}{d z}=0, z \in D
$$

3. Show that

$$
f(z)=\exp (H(z)), z \in D
$$

4. Show that " f has a square root defined in D ", i. e., there is a function $g(z)$, analytic in $D, g\left(z_{0}\right)=1$, such that

$$
(g(z))^{2}=f(z), z \in D
$$

N.B.: The function $H(z)$ is called a logarithm of the nonzero function f. How does the assumption that D is simply connected play an essential role?

