M417

Fall 1996
hw6.tex due October 18, 1996

1. Suppose that $f(z)$ is an entire (analytic in the entire complex plane) function. Suppose that there is are constants A and B such that $|f(z)| \leq A+B|z|^{N}$. Prove that $f^{(N+1)}(z)=0$. Conclude that $f(z)$ is a polynomial of degree $\leq N$.
2. Let $f(z)$ be analytic in the domain $D_{R} \equiv\{z|0<|z|<R\}$. Show that for $0<\epsilon<$ $|z|<R$,

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=R} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \int_{|\zeta|=\epsilon} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

Both integrals are taken in the positive direction.
3. Let f be as in problem 2. Suppose that in addition f is bounded in the domain D_{R}. Show that for $0<|z|<R$,

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=R} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

Conclude that $\lim _{z \rightarrow 0} f(z)$ exists.
N.B. The function $f(z)$ can be extended to be analytic in the domain $\{|z| \leq R\}$. This shows that an isolated singularity at which an analytic function remains bounded (in a deleted neighborhood) is removable.

