Math 165 Consumer's Surplus

This file is http://www.math.uic.edu/~jlewis/math165/165demand.pdf

Discussion of Consumer's Demand and Willingness to Spend

Consumer's Willingness to Spend is the Total amount $A(q)$ that consumers are willing to spend for q units. ($A(q)$ dollars)

The consumer's demand function, $p=D(q)$, is the rate of change of $A(q)$ wrt q; i.e., $D(q)$ is the marginal willingness to spend; units of $D(q)$ are dollars/unit.

$$
D\left(q_{0}\right) \approx A\left(q_{0}+1\right)-A\left(q_{0}\right)
$$

so that $D(q)$ approximates the price all consumers are willing to pay for the $\left(q_{0}+1\right)$ st unit produced ${ }^{1}$.

Note that

$$
A\left(q_{0}\right)=\int_{0}^{q_{0}} D(q) d q
$$

In the geometric context, $\int_{0}^{q_{0}} D(q) d q$ represents the area under the graph of $p=D(q)$, and above the interval $0 \leq q \leq q_{0}$ in the q-axis.

The Consumer's Surplus, $C S\left(q_{0}\right)$ is the total willingness to spend - actual expenditure for q_{0} units at price p_{0}.

$$
C S=\int_{0}^{q_{0}} D(q) d q-p_{0} q_{0}
$$

A supply function, $p=S(q)$ is the price at which all producers are willing to supply q units. It is generally assumed that $S(0)>0$, and that $S(q)$ is an increasing function of q. The text examples, $S(q)$, are also concave upward, which reflects a typical assumption that the total cost function, $C(q)$, is concave upward.

I (JL) think of $S(q)$ as approximating the price required for the production of the $(q+1)$ st unit,
${ }^{1}$ If $1 \ll q_{0}$,

$$
D(q) \approx \frac{A(q+1)-A(q-1)}{2}
$$

so we might say that $D(q)$ approximates the price all consumers are willing to pay for the q th unit produced.

The Producer's Surplus, $P S\left(q_{0}\right)$, is the total consumer expenditure for q_{0} units at price p_{0} - total amount producers receive for supplying q_{0} units.

$$
P S=p_{0} q_{0}-\int_{0}^{q_{0}} D(q) d q .
$$

The analysis is usually done for p_{0} as the equilibrium price where supply equals demand. Solve the equation

$$
D(q)=S(q)
$$

The corresponding price, $p_{0}=D\left(q_{0}\right)=S\left(q_{0}\right)$, is the equilibrium price. See Example 5.5.5 and Problems 5.5.15-5.5.19.

Another choice for p might be $p=$ the price for which profit is maximized. See Problems 5.5.33 and 5.5.34.

