Math 165 Linear Price - Demand Model

See Example 1.4.5 on p. 47 .
The phrase
for each $\$ 1$ increase in the price, 400 fewer cassettes are sold
can be expressed mathematically as

$$
\frac{\text { change in demand }}{\text { change in price }}=\frac{-400}{1.00}
$$

a constant (for each).
Another statement:
the rate of change of demand with respect to price is $\frac{-400}{1.00}$, a constant
Using the point-slope form for the demand, q, in terms of the price, p,

$$
q=q_{0}+\overbrace{(-400 / 1.00)}^{\text {fixed ratio }}\left(p-p_{0}\right)
$$

with $q_{0}=4000$, and $p_{0}=5.00$, so that

$$
q=4000+\frac{-400}{1.00}(p-5.00)
$$

We could also restate
for each $\$ 1$ increase in the price, 400 fewer cassettes are sold
as

$$
\frac{\text { change in price }}{\text { change in demand }}=\frac{1.00}{-400}
$$

a constant.
Another statement:
the rate of change of price with respect to demand is $\frac{1.00}{-400}$,
or
Using the point-slope form for the price, p, in terms of the demand, q,

$$
p=p_{0}+\frac{1.00}{-400}\left(q-q_{0}\right),
$$

with $q_{0}=4000$, and $p_{0}=5.00$, so that

$$
p=5.00+\frac{1.00}{-400}(q-4000) .
$$

Examples

1. for each 0.50 increase in the price, 120 fewer cassettes are sold

$$
\begin{aligned}
& q=q_{0}+\frac{-120}{0.50}\left(p-p_{0}\right) \\
& p=p_{0}+\frac{0.50}{-120}\left(q-q_{0}\right)
\end{aligned}
$$

We could interpret $\frac{p-p_{0}}{0.50}$ as the number of 0.50 price increases.
2. for each 0.25 increase in the price, 140 fewer cassettes are sold

$$
\begin{aligned}
& q=q_{0}+\frac{-140}{0.25}\left(p-p_{0}\right) \\
& p=p_{0}+\frac{0.25}{-140}\left(q-q_{0}\right)
\end{aligned}
$$

3. for each 0.08 increase in the price, 56 fewer cassettes are sold

$$
\begin{aligned}
& q=q_{0}+\frac{-56}{0.08}\left(p-p_{0}\right) \\
& p=p_{0}+\frac{0.08}{-56}\left(q-q_{0}\right)
\end{aligned}
$$

4. for each 0.10 increase in the fare, there are 180 fewer riders

$$
\begin{aligned}
& q=q_{0}+\frac{-180}{0.10}\left(p-p_{0}\right) \\
& p=p_{0}+\frac{0.10}{-180}\left(q-q_{0}\right)
\end{aligned}
$$

5. for each 0.08 increase in the fare, there are 300 fewer riders

$$
\begin{aligned}
& q=q_{0}+\frac{-300}{0.08}\left(p-p_{0}\right) \\
& p=p_{0}+\frac{0.08}{-300}\left(q-q_{0}\right)
\end{aligned}
$$

