MthT 430 Notes Chapter 5a Limits

Notation

The expression
\[\lim_{x \to a} f(x) = L \]
is read

• The limit of \(f \) at \(x = a \) is \(L \).
• The limit as \(x \) approaches \(a \) of \(f(x) \) is \(L \).
• The limit of \(f(x) \) is \(L \) as \(x \) approaches \(a \).
• \(f(x) \) approaches \(L \) as \(x \) approaches \(a \).
• The function \(f \) approaches the limit \(L \) near \(a \) (Note: no mention of \(x \)).
• (Briefer – p. 99) \(f \) approaches \(L \) near \(a \).

Meaning

The meaning of the phrase is

Provisional Definition. (p. 90) The function \(f \) approaches the limit \(L \) near \(a \), if we can make \(f(x) \) as close as we like to \(L \) by requiring that \(x \) be sufficiently close to (but \(\neq \)) \(a \).

• (Somewhat Informal) The function \(f \) approaches the limit \(L \) near \(a \), if \(f(x) - L \) is small whenever \(x - a \) is small enough (but \(x \neq a \)).
• (Different Words – Somewhat Informal) The function \(f \) approaches the limit \(L \) near \(a \), if \(f(x) = L + \) small whenever \(x = a + \) small enough (but \(x \neq a \)).
• (Informal) The function \(f \) approaches the limit \(L \) near \(a \), if \(f(x) \) is close to \(L \) whenever \(x \) is close enough to (but \(\neq \)) \(a \).
• (Explanation of Provisional) You tell me how close you want \(f(x) \) to be to \(L \) and I will tell you how close \(x \) needs to be to \(a \) to force \(f(x) \) to be as close to \(L \) as you requested.
• (Explanation of Different Words – Somewhat Informal) \(f(x) = L + \) small means that size of \(f(x) - L \) is small in the sense that, \(f(x) - L \) is as small as we like (whether \(.1, .00001, 10^{-100}, \ldots \)), by imposing that \(|x - a| \) is small enough (but \(\neq 0 \)). How small is small enough for \(x - a \) depends on how small we require \(f(x) - L \) to be.
• (More Explanation of Provisional JL) Given a positive size [number] \(\epsilon \), there is a positive
size \([\text{number}]\) \(\delta\) such that if the size of \(x - a\) is less than \(\delta\) (but not 0, then the size of \(f(x) - L\) is less than \(\epsilon\). Here the size of a number is its absolute value.

Definition of Limit

Definition. (p. 96) The function \(f\) approaches the limit \(L\) near \(a\) means: For every \(\epsilon > 0\), there is some \(\delta > 0\) such that, for all \(x\), if \(0 < |x - a| < \delta\), then \(|f(x) - L| < \epsilon\).

Different Words. (p. 96) The function \(f\) approaches the limit \(L\) near \(a\) means: For every desired degree of closeness \(\epsilon > 0\), there is a degree of closeness \(\delta > 0\) such that, for all \(x \neq a\), if \(x - a\) is within \(\delta\) of \(a\), then \(f(x)\) is within \(\epsilon\) of \(L\).

The phrase \(\alpha\) is within \(\epsilon\) of \(\beta\) means: \(|\alpha - \beta| < \epsilon\).

Change of Notation. The function \(f\) approaches the limit \(L\) near \(a\) means: For every \(♣ > 0\), there is some \(♥ > 0\) such that, for all \(♠\), if \(0 < |♠ - a| < ♥\), then \(|f(♠) - L| < ♣\).

Fundamental Properties of Limits

Theorem 1. The limit is unique. If \(f\) approaches \(L\) near \(a\), and \(f\) approaches \(M\) near \(a\), then \(L = M\).

Informal Proof: For \(x\) near enough to \(a\), \(f(x)\) is very close to both \(L\) and \(M\). By the triangle inequality,

\[
|L - M| = |(L - f(x)) + (f(x) - M)|
\leq |L - f(x)| + |f(x) - M|
= \text{small} + \text{small}
= \text{small}.
\]

Thus for \(x - a\) small enough, \(|L - M|\) is as small as desired. Conclude \(L = M\).

Fact. A number \(Y = 0\) iff for very \(\epsilon > 0\), \(|Y| < \epsilon\).

Proof: (Text, p. 98.)

Theorem 2. If \(\lim_{x \to a} f(x) = L\) and \(\lim_{x \to a} g(x) = M\), then

\[
\lim_{x \to a} (f + g)(x) = L + M,
\]

\[
\lim_{x \to a} (f \cdot g)(x) = L \cdot M.
\]

If \(M \neq 0\), then

\[
\lim_{x \to a} \left(\frac{1}{g}\right)(x) = \frac{1}{M}.
\]
Proof. See Spivak, Problems 1.20 ff.

Discussion before the proof: Let’s do the result for products. We can make (how? – by requiring $x - a$ to be small enough (and $\neq 0$) $f(x) = L + \text{small}_f$ and $g(x) = M + \text{small}_g$. Then for $x = a + \text{small enough}$, $x \neq a$,

$$f(x) \cdot g(x) = (L + \text{small}_f) \cdot (M + \text{small}_g)$$

$$= L \cdot M + \text{small}_f \cdot M + L \cdot \text{small}_g + \text{small}_f \cdot \text{small}_g$$

$$= L \cdot M + \text{Remainder}.$$

Now it is evident that Remainder can be made as small as we like by requiring $|x - a|$ sufficiently small (but $\neq 0$).

The Proof: Given $\epsilon > 0$, we have

$$|f(x) \cdot g(x) - L \cdot M| = |\text{small}_f \cdot M + L \cdot \text{small}_g + \text{small}_f \cdot \text{small}_g|,$$

where $\text{small}_f = f(x) - L$, $\text{small}_g = g(x) - M$. Now choose $\delta > 0$ so that whenever $0 < |x - a| < \delta$,

$$|\text{small}_f| = |f(x) - L| < \epsilon,$$

$$|\text{small}_g| = |g(x) - M| < \epsilon.$$

Then whenever $0 < |x - a| < \delta$,

$$|f(x) \cdot g(x) - L \cdot M| = |\text{small}_f \cdot M + L \cdot \text{small}_g + \text{small}_f \cdot \text{small}_g|,$$

$$\leq |\epsilon \cdot M| + |\epsilon \cdot L| + \epsilon^2.$$ \hspace{1cm} (\ast)

Now if we also assume that $\epsilon < 1$, we have that

$$\ast \leq \epsilon \cdot (|M| + |L| + 1),$$

and it is evident that $|f(x) - L|$ can be made as small as desired. There are a couple of ways:

- Choose the δ that works for $\hat{\epsilon} = \frac{\epsilon}{(|M| + |L| + 1)} > 0$.

- Use a modified equivalent definition of limit: The function f approaches the limit L near a means: There is an $\epsilon_0 > 0$ and a $K > 0$ such that: For every ϵ, $\epsilon_0 > \epsilon > 0$, there is a $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < K \cdot \epsilon$.

chap5a.pdf page 3/4
Notes

• Given $\epsilon > 0$, the δ such that $0 < |x - a| < \delta$ assures $|f(x) - L| < \epsilon$ usually depends on ϵ, as well as depending on the point a and function f and all of its properties. Finding an explicit expression for the optimal δ is not required nor necessarily interesting unless doing numerical error estimates.

• In the product and quotient example, the $\delta = \delta_\epsilon$ was chosen with the additional requirement that $\epsilon < 1$.

• Pay attention to the domain of the function. See the technical detail on p. 102.

• Observe the definitions of one sided limits – also called limits from above /below/ and limits from the left /right/.

Thinking About Limits

Definition. (Actual, p. 96)

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition - Working JL II.

$$\lim_{x \to a} f(x) = L$$

means:

• For all $x = a$ + smallenufneq0, x is in domain f.

• $f(x) = L$ + assmallasdesired, for $x = a$ + smallenufneq0.

Translation:

• assmallasdesired means, given $\epsilon > 0$, then $|assmallasdesired| < \epsilon$ is the desired result.

• smallenufneq0 means, find a $\delta > 0$ such that $0 < |smallenufneq0| < \delta$ is the sufficient condition.

• smallenuf means, find a $\delta > 0$ such that $|smallenufneq0| < \delta$ is the sufficient condition.

Definition - Working JL II’.

$$\lim_{x \to a} f(x) = L$$

means:

• For $|x - a|$ smallenufneq0, x is in domain f.

• $f(x) - L$ is assmallasdesired, for $x - a$ is smallenufneq0.