Sequences
Cf. Spivak Chapter 22.

Definition. An infinite sequence is a function whose domain is \(\mathbb{N} \).

As a convention, we also allow the domain of a sequence to be a subset of \(\mathbb{N} \) which includes all natural numbers sufficiently large.

Notation

If \(a \) is the name of the sequence, instead of listing the particular values by

\[a(1), a(2), \ldots, \]

we almost always use the subscript notation

\[a_1, a_2, \ldots. \]

We denote the sequence by

\[\{a_n\} \]

Limits of sequences

Definition. A sequence \(\{a_n\} \) converges to \(L \) (in symbols \(\lim_{n \to \infty} a_n = L \)) iff for every \(\epsilon > 0 \), there is a natural number \(N \) such that, for all natural numbers \(n \),

\[\text{if } n > N, \text{ then } |a_n - L| < \epsilon. \]

A sequence \(\{a_n\} \) is said to converge if it converges to \(L \) for some [finite!] number \(L \), and to diverge if it does not converge.

Compare

- For a function \(f \) whose domain includes all \(x \) sufficiently large and positive,

\[\lim_{x \to \infty} f(x) = L. \]

- For a sequence \(\{a_n\} \), whose domain includes all \(n \) sufficiently large and positive,

\[\lim_{n \to \infty} a_n = L. \]