This note is an attempt to clear up the confusion I (JL) probably created at the beginning of class October 10, 2007.

It is also closely related to problems 5.25 and 5.26 in Spivak.

In applying the definition of \(\lim_{x\to a} f(x) = L \), it is sometimes convenient to multiply \(\epsilon \) and/or \(\delta \) by positive constants.

Limits – Definitions

Definition (Actual, p. 96).

\[
\lim_{x \to a} f(x) = L
\]

means: For every \(\epsilon > 0 \), there is some \(\delta > 0 \) such that, for all \(x \), if \(0 < |x - a| < \delta \), then \(|f(x) - L| < \epsilon \).

An Equivalent Definition of Limit

Definition 10^6.

\[
\lim_{x \to a} f(x) = L
\]

means: For every \(\epsilon > 0 \), there is some \(\delta > 0 \) such that, for all \(x \), if \(0 < |x - a| < 10^6 \delta \), then \(|f(x) - L| < \epsilon \).

10^6 \Rightarrow **Actual:** Fix \(\epsilon > 0 \). By 10^6, there is a \(\delta > 0 \) such that, for all \(x \), if \(0 < |x - a| < 10^6 \delta \), then \(|f(x) - L| < \epsilon \). If \(0 < |x - a| < \delta \), then \(0 < |x - a| < 10^6 \delta \), so \(|f(x) - L| < \epsilon \).

Actual \Rightarrow 10^6: Fix \(\epsilon > 0 \). By **Actual**, there is an \(\eta > 0 \) such that, for all \(x \), if \(0 < |x - a| < \eta \), then \(|f(x) - L| < \epsilon \). Let \(\delta = 10^{-6} \eta \). Then \(\delta > 0 \) iff \(\eta > 0 \). For all \(x \), if \(0 < |x - a| < 10^6 \delta = \eta \), \(|f(x) - L| < \epsilon \).

10^6 \Rightarrow **Actual:** (another Proof) Fix \(\epsilon > 0 \). By 10^6, there is a \(\rho > 0 \) such that, for all \(x \), if \(0 < |x - a| < 10^6 \rho \), then \(|f(x) - L| < \epsilon \). Let \(\delta = 10^6 \rho \). Then \(\delta > 0 \) iff \(\rho > 0 \). For all \(x \), if \(0 < |x - a| < \delta = 10^6 \rho \), \(|f(x) - L| < \epsilon \).