Limits

1. Let \(f(x) \) be a function such that
 - domain \((f) = [0,1).\)
 - For all \(x \) (in \([0,1]\)), \(0 \leq f(x) < 1.\)
 - The function \(f \) is increasing on \([0,1).\)

 Show that there is a number \(L, 0 \leq L \leq 1, \) such that
 \[
 \lim_{x \to 1^-} f(x) = L.
 \]

 Hint: Construct a binary expansion for \(L.\)

2. Discuss the continuity of the function described on p. 97 and whose graph is sketched in FIGURE 14.

3. Prove: If \(g \) is continuous at \(a, g(a) \neq 0, \) then there is a \(\delta > 0 \) for which \((a - \delta, a + \delta)\) is contained in the domain of \(1/g.\)

 Solution. For every \(\epsilon > 0, \) there is some \(\delta > 0 \) such that, for all \(x, \) if \(|x - a| < \delta, \) then \(|g(x) - g(a)| < \epsilon.\)

 Let \(\epsilon = |g(a)|. \) Then there is a \(\delta > 0 \) such that for \(|x - a| < \delta, \) \(|g(x) - g(a)| < |g(a)|. \) Thus for \(a - \delta < x < a + \delta, g(a) - |g(a)| < g(x) < g(a) + |g(a)|; \) if \(g(a) > 0, 0 < g(x) < 2g(a); \) if \(g(a) < 0, 2g(a) < g(x) < 0. \) In either case, for \(a - \delta < x < a + \delta, g(x) \neq 0, \) and \(x \) is in the domain of \(1/g.\)

 Another Solution. For every \(\epsilon > 0, \) there is some \(\delta > 0 \) such that, for all \(x, \) if \(|x - a| < \delta, \) then \(|g(x) - g(a)| < \epsilon.\)

 Let \(\epsilon = |g(a)|. \) Then there is a \(\delta > 0 \) such that for \(|x - a| < \delta, \) \(|g(x) - g(a)| < |g(a)|. \) Thus for \(a - \delta < x < a + \delta, |g(x)| = |g(a) + (g(x) - g(a))| \geq |g(a) - |g(x) - g(a)|| > 0. \) Here we have used the triangle inequality in the form \(|A \pm B| \geq |A| - |B|. \)

 Thus, for \(a - \delta < x < a + \delta, g(x) \neq 0, \) and \(x \) is in the domain of \(1/g.\)

 **Good Variation ... \(\epsilon = |g(a)| ... \) If \(g(a) > 0, ... \) for \(a - \delta < x < a + \delta, g(x) \in (g(a) - \epsilon, g(a) + \epsilon) = (0, 2g(a)) \) and \(g(x) \neq 0. ... \)