## MthT 430 Notes Chapter 6c Binary Expansions

## Real Numbers and Binary Expansions

The real numbers in $\mathbf{R}$ are identified with points on a horizontal line. For the time being, we will identify a real number $x$ with a decimal expansion.

- Every decimal expansion represents a real number $x$ :

$$
\begin{aligned}
x & = \pm N . d_{1} d_{2} \ldots, \\
d_{k} & \in\{0,1, \ldots, 9\} .
\end{aligned}
$$

This is the statement that every infinite series of the form

$$
d_{1} 10^{-1}+d_{2} 10^{-2}+\ldots, \quad d_{k} \in\{0,1, \ldots, 9\},
$$

converges.
Just as well we could identify a real number $x$ with a binary expansion.

- Every binary expansion represents a real number $x$ :

$$
\begin{aligned}
x & = \pm N_{\cdot \operatorname{bin}} b_{1} b_{2} \ldots, \\
b_{k} & \in\{0,1\} .
\end{aligned}
$$

This is the statement that every infinite series of the form

$$
b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots, \quad b_{k} \in\{0,1\}
$$

converges.

A demonstration of a correspondence between the binary expansion and a point on a horizontal line was given in class.

## Constructing the Binary Expansion

Let $x$ be a real number, $0 \leq x<1$.
We divide $[0,1)$ into two half-open intervals, $\left[0, \frac{1}{2}\right)$ and $\left[\frac{1}{2}, 1\right)$.


Notice, that in binary notation we may write the two intervals as $\left[0,0 \cdot{ }_{\text {bin }} 1\right)$ and $\left[0 \cdot{ }_{\text {bin }} 1,1\right)$.
If $x$ is in the left interval, $x=0+0 \cdot 2^{-1}+\ldots$, so we let $b_{1}=0, s_{1}=0 \cdot$ bin $b_{1}$, so that

$$
\begin{aligned}
x & =0 \cdot \cdot_{\operatorname{bin}} 0+\ldots \\
& =s_{1}+r_{1},
\end{aligned}
$$

where

$$
0 \leq r_{1}<2^{-1}
$$

If $x$ is in the right interval, $x=0+1 \cdot 2^{-1}+\ldots$, so we let $b_{1}=1, s_{1}=0 \cdot{ }_{\cdot \operatorname{bin}} b_{1}$, so that

$$
\begin{aligned}
x & =0 \cdot \cdot_{\operatorname{bin}} 1+\ldots \\
& =s_{1}+r_{1},
\end{aligned}
$$

where

$$
0 \leq r_{1}<2^{-1}
$$

We formalize the process by saying: Let

$$
\begin{aligned}
b_{1} & = \begin{cases}0, & 0 \leq x<\frac{1}{2}, \\
1, & \frac{1}{2} \leq x<1,\end{cases} \\
s_{1} & =0 \cdot{ }_{b i n} b_{1} \\
& =b_{1} \cdot 2^{-1}, \\
x & =s_{1}+r_{1}, \\
& 0 \leq r_{1}<2^{-1} .
\end{aligned}
$$

If the first remainder $r_{1}$ is 0 , that is $x=0$ or $x=\frac{1}{2}, \mathrm{STOP}!-x=s_{1}$ and the binary expansion of $x$ has been found.

If $r_{1} \neq 0$, we apply a similar process to $r_{1}=x-s_{1}$ to find the second binary digit in the expansion of $x$. Let $r_{1}^{*}=2^{1} \cdot r_{1}$. Once again divide $[0,1)$ into the two half-open intervals, $\left[0, \frac{1}{2}\right)$ and $\left[\frac{1}{2}, 1\right)$.


If $r_{1}^{*}$ is in the left interval, $x=0+b_{1} \cdot 2^{-1}+0 \cdot 2^{-2}+\ldots$. If $r_{1}^{*}$ is in the right interval, $x=0+b_{1} \cdot 2^{-1}+1 \cdot 2^{-2}+\ldots$, so we let $b_{1}=1$. This is same is saying that $x$ is in the left or right half as the interval selected in step 1 .

Thus

$$
\begin{aligned}
b_{2} & = \begin{cases}0, & 0 \leq r_{1}^{*}<\frac{1}{2}, \\
1, & \frac{1}{2} \leq r_{1}^{*}<1,\end{cases} \\
s_{2} & =0 \cdot{ }_{b i n} b_{1} b_{2} \\
& =s_{1}+b_{2} \cdot 2^{-2} \\
x & =s_{2}+r_{2}, \\
0 & \leq r_{2}<2^{-2} .
\end{aligned}
$$

If the second remainder $r_{2}$ is 0, STOP $!-x=s_{2}$ and the binary expansion of $x$ has been found. Otherwise continue!

The continuation may be defined by the Principle of Mathematical Induction (Recursion) so that if $b_{n}, s_{n}=0 \cdot$ bin $b_{1} \ldots b_{n}, x=s_{n}+r_{n}$, have been constructed so that $0 \leq r_{n}<2^{-n}$, let

$$
\begin{aligned}
r_{n}^{*} & =2^{n} \cdot r_{n}, \\
b_{n+1} & = \begin{cases}0, & 0 \leq r_{n}^{*}<\frac{1}{2}, \\
1, & \frac{1}{2} \leq r_{n}^{*}<1,\end{cases} \\
s_{n+1} & =0 \cdot{ }_{b i n} b_{1} b_{2} \ldots b_{n} b_{n+1} \\
& =s_{n}+b_{n+1} \cdot 2^{-(n+1)} \\
x & =s_{n+1}+r_{n+1}, \\
0 & \leq r_{n+1}<2^{-(n+1)} .
\end{aligned}
$$

If the remainder $r_{n+1}$ is $0, \mathrm{STOP}!-x=s_{n+1}$ and the binary expansion of $x$ has been found. Otherwise continue!

What has been done: Given $x, 0 \leq x<1$, there is a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of finite binary expansions such that $0 \leq x-s_{n}<2^{-n}$.

## Binary Expansion Arguments

Consider the following problem:

1. Let $f(x)$ be a function such that

- domain $(f)=[0,1)$.
- For all $x($ in $[0,1)), 0 \leq f(x)<1$.
- The function $f$ is increasing on $[0,1)$.

Show that there is a number $L, 0 \leq L \leq 1$, such that

$$
\lim _{x \rightarrow 1^{-}} f(x)=L
$$

Hint: Construct a binary expansion for $L$.
A picture is helpful! See http://www.math.uic.edu/ lewis/math430/chap6d.pdf
To find the expansion for $L$, ask the question:
Is there an $x \in[0,1)$ such that $f(x) \geq \frac{1}{2}=0 \cdot$ bin 1 ?
If NO, let $x_{1}=0, b_{1}=0, s_{1}=0 \cdot$.bin $_{1} b_{1}$. If YES, let $x_{1}=x, b_{1}=1, s_{1}=0 \cdot{ }_{\text {bin }} b_{1}=$ $0 \cdot$ bin 1 . In both cases, for $x_{1} \leq x<1, s_{1} \leq f\left(x_{1}\right) \leq f(x) \leq s_{1}+\frac{1}{2}$.

Next divide the interval $\left[s_{1}, s_{1}+\frac{1}{2}\right)$ into two parts $\left[0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} 0,0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} 1\right)$ and $\left[0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} 1, s_{1}+\frac{1}{2}\right)$. Ask the question:

Is there an $x \in\left[x_{1}, 1\right)$ such that $f(x) \geq s_{1}+\frac{1}{2^{2}}=0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} 1 ?^{1}$
If NO, let $x_{2}=x_{1}, b_{2}=0, s_{2}=0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} b_{2}$. If YES, let $x_{2}=x, b_{1}=1, s_{2}=0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} b_{2}=$ $s_{1}+\frac{1}{2^{2}}$. Then for $x_{2} \leq x<1, s_{2} \leq f\left(x_{2}\right) \leq f(x) \leq s_{2}+\frac{1}{2^{2}}$.

If $x_{1}, \ldots, x_{n}, b_{1}, \ldots b_{n}, s_{n}=0 \cdot$ bin $b_{1} \ldots b_{n}$ have been constructed so that for $x_{n} \leq x<1$, $s_{n} \leq f\left(x_{n}\right) \leq f(x) \leq s_{n}+\frac{1}{2^{n}}$,

Ask the question: Is there an $x \in\left[x_{n}, 1\right)$ such that $f\left(x_{n+1}\right) \geq s_{n}+\frac{1}{2^{n+1}}=0 \cdot{ }_{\cdot} \operatorname{bin} b_{1} \ldots b_{n} 1$ ?
1 Thinking about this later, I noticed that $s_{1}+\frac{1}{2^{2}}$ is the midpoint of the new interval under consideration.

Then let

$$
\begin{aligned}
x_{n+1} & = \begin{cases}x_{n}, & \text { NO, } \\
x, & \text { YES },\end{cases} \\
b_{n+1} & = \begin{cases}0, & \text { NO, } \\
1, & \text { YES, }\end{cases} \\
s_{n+1} & =0 \cdot{ }_{b i n} b_{1} b_{2} \ldots b_{n+1} \\
& =b_{1} \cdot 2^{-1}+b_{2} \cdot 2^{-2}+\ldots+b_{n+1} \cdot 2^{-(n+1)}
\end{aligned}
$$

For $x_{n+1} \leq x<1, \quad s_{n+1} \leq f\left(x_{n+1}\right) \leq f(x) \leq s_{n+1}+\frac{1}{2^{n+1}}$.
Then

$$
L=0 . b_{1} b_{2} \ldots b_{n} \ldots=\lim _{n \rightarrow \infty} s_{n}
$$

since for all $x$, if $x_{n} \leq x<1$,

$$
s_{n} \leq f(x) \leq L \leq s_{n}+\frac{1}{2^{n}}
$$

and

$$
0 \leq L-f(x)<\frac{1}{2^{n}}
$$

This shows that

$$
\lim _{x \rightarrow 1^{-}} f(x)=L
$$

Additional Arguments Constructing the Binary Expansion of the Number Sought

See http://www.math.uic.edu/~lewis/mtht430/chap7b.pdf

