MthT 430 Notes Chapter 6c Binary Expansions

Real Numbers and Binary Expansions

The real numbers in \mathbf{R} are identified with points on a horizontal line. For the time being, we will identify a real number x with a *decimal expansion*.

• Every decimal expansion represents a real number x:

$$x = \pm N.d_1d_2...,$$

 $d_k \in \{0, 1, ..., 9\}.$

This is the statement that every infinite series of the form

$$d_1 10^{-1} + d_2 10^{-2} + \dots, \quad d_k \in \{0, 1, \dots, 9\},\$$

converges.

Just as well we could identify a real number x with a *binary expansion*.

• Every binary expansion represents a real number x:

$$x = \pm N \cdot_{\text{bin}} b_1 b_2 \dots,$$
$$b_k \in \{0, 1\}.$$

This is the statement that every infinite series of the form

$$b_1 2^{-1} + b_2 2^{-2} + \dots, \quad b_k \in \{0, 1\},\$$

converges.

A demonstration of a correspondence between the binary expansion and a point on a horizontal line was given in class.

Constructing the Binary Expansion

Let x be a real number, $0 \le x < 1$.

We divide
$$[0,1)$$
 into two *half-open* intervals, $\left[0,\frac{1}{2}\right)$ and $\left[\frac{1}{2},1\right)$.

 $0._{\text{bin}}0$ $0._{\text{bin}}1 = 2^{-1}$ x $1._{\text{bin}}0$

chap6c.pdf page 1/5

Notice, that in binary notation we may write the two intervals as [0, 0.bin 1) and [0.bin 1, 1). If x is in the left interval, $x = 0 + 0 \cdot 2^{-1} + \dots$, so we let $b_1 = 0$, $s_1 = 0.bin b_1$, so that

$$\begin{aligned} x &= 0.\min_{bin} 0 + \dots \\ &= s_1 + r_1, \end{aligned}$$

where

$$0 \le r_1 < 2^{-1}.$$

If x is in the right interval, $x = 0 + 1 \cdot 2^{-1} + \ldots$, so we let $b_1 = 1$, $s_1 = 0$. bin b_1 , so that

$$x = 0._{\text{bin}} 1 + \dots$$
$$= s_1 + r_1,$$

where

$$0 \le r_1 < 2^{-1}.$$

We formalize the process by saying: Let

$$b_{1} = \begin{cases} 0, & 0 \le x < \frac{1}{2}, \\ 1, & \frac{1}{2} \le x < 1, \end{cases}$$

$$s_{1} = 0 \cdot \min b_{1}$$

$$= b_{1} \cdot 2^{-1}, \\ x = s_{1} + r_{1}, \\ 0 \le r_{1} < 2^{-1}. \end{cases}$$

If the first remainder r_1 is 0, that is x = 0 or $x = \frac{1}{2}$, STOP! $-x = s_1$ and the binary expansion of x has been found.

If $r_1 \neq 0$, we apply a similar process to $r_1 = x - s_1$ to find the second binary digit in the expansion of x. Let $r_1^* = 2^1 \cdot r_1$. Once again divide [0, 1) into the two *half-open* intervals, $\left[0, \frac{1}{2}\right)$ and $\left[\frac{1}{2}, 1\right)$. $r_1 = x - \frac{1}{2}$

chap6c.pdf page 2/5

If r_1^* is in the left interval, $x = 0 + b_1 \cdot 2^{-1} + 0 \cdot 2^{-2} + \dots$ If r_1^* is in the right interval, $x = 0 + b_1 \cdot 2^{-1} + 1 \cdot 2^{-2} + \dots$, so we let $b_1 = 1$. This is same is saying that x is in the left or right half as the interval selected in step 1.

Thus

$$b_{2} = \begin{cases} 0, & 0 \le r_{1}^{*} < \frac{1}{2}, \\ 1, & \frac{1}{2} \le r_{1}^{*} < 1, \end{cases}$$

$$s_{2} = 0._{\text{bin}} b_{1} b_{2}$$

$$= s_{1} + b_{2} \cdot 2^{-2}$$

$$x = s_{2} + r_{2},$$

$$0 \le r_{2} < 2^{-2}.$$

If the second remainder r_2 is 0, STOP! – $x = s_2$ and the binary expansion of x has been found. Otherwise continue!

The continuation may be defined by the Principle of Mathematical Induction (Recursion) so that if b_n , $s_n = 0$. $b_{in}b_1 \dots b_n$, $x = s_n + r_n$, have been constructed so that $0 \le r_n < 2^{-n}$, let

$$r_n^* = 2^n \cdot r_n,$$

$$b_{n+1} = \begin{cases} 0, & 0 \le r_n^* < \frac{1}{2}, \\ 1, & \frac{1}{2} \le r_n^* < 1, \end{cases}$$

$$s_{n+1} = 0. \min b_1 b_2 \dots b_n b_{n+1}$$

$$= s_n + b_{n+1} \cdot 2^{-(n+1)}$$

$$x = s_{n+1} + r_{n+1},$$

$$0 \le r_{n+1} < 2^{-(n+1)}.$$

If the remainder r_{n+1} is 0, STOP! $-x = s_{n+1}$ and the binary expansion of x has been found. Otherwise continue!

What has been done: Given $x, 0 \le x < 1$, there is a sequence $\{s_n\}_{n=1}^{\infty}$ of finite binary expansions such that $0 \le x - s_n < 2^{-n}$.

Binary Expansion Arguments

Consider the following problem:

- 1. Let f(x) be a function such that
 - domain (f) = [0, 1).
 - For all x (in [0, 1)), $0 \le f(x) < 1$.
 - The function f is increasing on [0, 1).

Show that there is a number $L, 0 \leq L \leq 1$, such that

$$\lim_{x \to 1^{-}} f(x) = L.$$

Hint: Construct a binary expansion for *L*.

A picture is helpful! See http://www.math.uic.edu/ lewis/math430/chap6d.pdf

To find the expansion for L, ask the question:

Is there an $x \in [0, 1)$ such that $f(x) \ge \frac{1}{2} = 0.$ bin 1?

If NO, let $x_1 = 0$, $b_1 = 0$, $s_1 = 0$._{bin} b_1 . If YES, let $x_1 = x$, $b_1 = 1$, $s_1 = 0$._{bin} $b_1 = 0$._{bin}1. In both cases, for $x_1 \le x < 1$, $s_1 \le f(x_1) \le f(x) \le s_1 + \frac{1}{2}$.

Next divide the interval $[s_1, s_1 + \frac{1}{2})$ into two parts $[0.\text{bin}b_10, 0.\text{bin}b_11)$ and $[0.\text{bin}b_11, s_1 + \frac{1}{2})$. Ask the question:

Is there an $x \in [x_1, 1)$ such that $f(x) \ge s_1 + \frac{1}{2^2} = 0.$ bin $b_1 1?^1$

If NO, let $x_2 = x_1$, $b_2 = 0$, $s_2 = 0$._{bin} b_1b_2 . If YES, let $x_2 = x$, $b_1 = 1$, $s_2 = 0$._{bin} $b_1b_2 = s_1 + \frac{1}{2^2}$. Then for $x_2 \le x < 1$, $s_2 \le f(x_2) \le f(x) \le s_2 + \frac{1}{2^2}$.

If $x_1, \ldots, x_n, b_1, \ldots, b_n, s_n = 0$. bin $b_1 \ldots b_n$ have been constructed so that for $x_n \le x < 1$, $s_n \le f(x_n) \le f(x) \le s_n + \frac{1}{2^n}$,

Ask the question: Is there an $x \in [x_n, 1)$ such that $f(x_{n+1}) \ge s_n + \frac{1}{2^{n+1}} = 0$. bin $b_1 \dots b_n 1$?

¹ Thinking about this later, I noticed that $s_1 + \frac{1}{2^2}$ is the *midpoint* of the new interval under consideration.

Then let

$$\begin{aligned} x_{n+1} &= \begin{cases} x_n, & \text{NO}, \\ x, & \text{YES}, \end{cases} \\ b_{n+1} &= \begin{cases} 0, & \text{NO}, \\ 1, & \text{YES}, \end{cases} \\ s_{n+1} &= 0. \lim_{i \to 1} b_1 b_2 \dots b_{n+1} \\ &= b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \dots + b_{n+1} \cdot 2^{-(n+1)} \end{aligned}$$

For $x_{n+1} \leq x < 1$, $s_{n+1} \leq f(x_{n+1}) \leq f(x) \leq s_{n+1} + \frac{1}{2^{n+1}}. \end{aligned}$

Then

$$L = 0.b_1b_2\dots b_n\dots = \lim_{n \to \infty} s_n$$

since for all x, if $x_n \leq x < 1$,

$$s_n \le f(x) \le L \le s_n + \frac{1}{2^n}$$

and

$$0 \le L - f(x) < \frac{1}{2^n}.$$

This shows that

$$\lim_{x \to 1^-} f(x) = L$$

Additional Arguments Constructing the Binary Expansion of the Number Sought

See http://www.math.uic.edu/~lewis/mtht430/chap7b.pdf