MthT 430 Notes Chapter 6d Graphical Binary Expansion Arguments

Binary Expansion Arguments

Consider the following problem:

- 1. Let f(x) be a function such that
 - domain (f) = [0, 1).
 - For all x (in [0, 1)), $0 \le f(x) < 1$.
 - The function f is increasing on [0, 1).

Show that there is a number $L, 0 \leq L \leq 1$, such that

$$\lim_{x \to 1^{-}} f(x) = L.$$

Hint: Construct a binary expansion for *L*.

A picture is helpful!

To find the expansion for L, divide the range into two halves and ask the question: Is there an $x \in [0, 1)$ such that $f(x) \ge \frac{1}{2} = 0.$ bin 1?

If NO, let $x_1 = 0$, $b_1 = 0$, $s_1 = 0$._{bin} b_1 . If YES, let $x_1 = x$, $b_1 = 1$, $s_1 = 0$._{bin} $b_1 = 0$._{bin}1. In both cases, for $x_1 \le x < 1$, $s_1 \le f(x_1) \le f(x) \le s_1 + \frac{1}{2}$.

Next divide the interval $[s_1, s_1 + \frac{1}{2})$ into two halves $[0.\text{bin}b_10, 0.\text{bin}b_11)$ and $[0.\text{bin}b_1, 1, s_1 + \frac{1}{2})$.

Ask the question:

Is there an $x \in [x_1, 1)$ such that $f(x) \ge s_1 + \frac{1}{2^2} = 0.$ bin $b_1 1?^1$

If NO, let $x_2 = x_1$, $b_2 = 0$, $s_2 = s_1 = 0$. bin $b_1b_2 = s_1 + b_2\frac{1}{2^2}$. If YES, let $x_2 = x$, $b_1 = 1$, $s_2 = 0$. bin $b_1b_2 = s_1 + \frac{1}{2^2}$. Then for $x_2 \le x < 1$, $s_2 \le f(x_2) \le f(x) \le s_2 + \frac{1}{2^2}$.

¹ Thinking about this later, I noticed that $s_1 + \frac{1}{2^2}$ is the *midpoint* of the new interval under consideration.

If $x_1, \ldots, x_n, b_1, \ldots, b_n, s_n = 0$. bin $b_1 \ldots b_n$ have been constructed so that for $x_n \le x < 1$, $s_n \le f(x_n) \le f(x) \le s_n + \frac{1}{2^n}$,

Ask the question: Is there an $x \in [x_n, 1)$ such that $f(x) \ge s_n + \frac{1}{2^{n+1}} = 0.$ bin $b_1 \dots b_n 1$?

Then let

$$x_{n+1} = \begin{cases} x_n, & \text{NO}, \\ x, & \text{YES}, \end{cases}$$
$$b_{n+1} = \begin{cases} 0, & \text{NO}, \\ 1, & \text{YES}, \end{cases}$$
$$s_{n+1} = 0 \cdot \min b_1 b_2 \dots b_{n+1}$$
$$= s_n + b_{n+1} \cdot 2^{-(n+1)}.$$

Then for $x_{n+1} \le x < 1$, $s_{n+1} \le f(x_{n+1}) \le f(x) \le s_{n+1} + \frac{1}{2^{n+1}}$.

Let $L = \lim_{n \to \infty} s_n = 0.$ bin $b_1 b_2 \dots b_n \dots$ Let us agree that L represents a real number. For all x, if $x_n \le x < 1$, then

$$s_n \le f(x) \le L \le s_n + \frac{1}{2^n}$$

and

$$0 \le L - f(x) < \frac{1}{2^n}.$$

Thus

$$\lim_{x \to 1^{-}} f(x) = L$$