MthT 430 Notes Chap 7d Bolzano – Weierstraß Theorem

For this discussion, we shall assume:

(P13–BIN) Binary Expansions Converge. Every binary expansion represents a real number x: every infinite series of the form

$$c_1 2^{-1} + c_2 2^{-2} + \ldots + c_k 2^{-k} + \ldots, \quad c_k \in \{0, 1\},$$

converges to a real number x in [0,1] and write the binary expansion of x as

$$x = ._{\text{bin}} c_1 c_2 \dots$$

In ./chap7b.pdf#BW, there was an indication of the proof of

The Bolzano–Weierstraß Theorem

Theorem (Bolzano–Weierstraß). Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of points in. [0,1]. Then there is an x in [0,1] which is a limit point³ of the sequence $\{x_n\}_{n=1}^{\infty}$.

The proof will construct a binary expansion for x.

Now – either infinitely many terms of the sequence are 1, in which case x = 1 = 1._{bin}0 is the desired limit point OR

Ask the question: For infinitely many k, is it true that $x_k \in \left[0, \frac{1}{2^1}\right)$?

If YES, let

$$c_1 = 0,$$

 $a_1 = 0 = 0.bin 0,$
 $b_1 = \frac{1}{2}$
 $= a_1 + \frac{1}{2^1}.$
 $s_1 = a_1.$

Then

$$b_1 - a_1 = \frac{1}{2^1},$$

Infinitely many x_k are in $[a_1, b_1)$.

³ A point x is a limit point of the sequence if for every $\epsilon > 0$, infinitely many terms of the sequence are within ϵ of x. Alternately, there is a subsequence which converges to x. A more informal idea is to say that infinitely many terms are as close as desired to x.

If NO, let

$$c_1 = 1,$$

 $a_1 = \frac{1}{2} = 0._{\text{bin}} 1,$
 $b_1 = 1 = 1._{\text{bin}} 0$
 $= a_1 + \frac{1}{2^1}.$
 $s_1 = a_1.$

Then

$$b_1 - a_1 = \frac{1}{2^1},$$

Infinitely many x_k are in $[a_1, b_1)$.

Now continue, ...

$$x = \lim_{n \to \infty} s_n$$
$$= \lim_{n \to \infty} \left(s_n + \frac{1}{2^n} \right)$$

Note that $0 \le x - s_n = |x - s_n| \le \frac{1}{2^n}$.

Fuller Proof of Bolzano-Weierstraß)

Let's be more precise.

Theorem (Bolzano–Weierstraß). Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of points in. [0,1]. Then there is an x in [0,1] which is a limit point³ of the sequence $\{x_n\}_{n=1}^{\infty}$.

The proof will construct a binary expansion for x.

Now – either infinitely many terms of the sequence are as close as desired to 1, in which case x = 1 = 1._{bin}0 is the desired limit point.

Otherwise -

We will try to construct a sequence $c_k \in \{0, 1\}$ such that if

$$a_k = \cdot_{\text{bin}} c_1 \dots c_k,$$

$$b_k = a_k + \frac{1}{2^k},$$

$$I_k = [a_k, b_k),$$

³ A point x is a limit point of the sequence if for every $\epsilon > 0$, infinitely many terms of the sequence are within ϵ of x. Alternately, there is a subsequence which converges to x. A more informal idea is to say that infinitely many terms are as close as desired to x.

then I_k is a decreasing sequence of intervals such that for every k, I_k contains infinitely many terms of the sequence $\{x_n\}$.

Let

$$a_0 = 0,$$

 $b_0 = 1 = a_0 + \frac{1}{2^0},$
 $I_0 = [a_0, b_0);$

 I_0 contains infinitely many terms of the sequence $\{x_n\}$.

Divide the interval I_0 into two halves, $\left[a_0, a_0 + \frac{1}{2^1}\right)$ and $\left[a_0 + \frac{1}{2^1}, b_0\right)$ – call them the *left half* and *right half* – at least one contains infinitely many terms of the sequence $\{x_n\}$. Pick it (in case of a tie, choose either as you desire). If the *left* is chosen, let

$$c_{1} = 0,$$

$$a_{1} = a_{0} = \cdot_{\text{bin}} c_{1},$$

$$b_{1} = a_{0} + \frac{1}{2^{1}} = a_{1} + \frac{1}{2^{1}}$$

$$I_{1} = [a_{1}, b_{1}).$$

If the right is chosen, let

$$c_1 = 1,$$

 $a_1 = a_0 + \frac{1}{2^1} = \cdot_{\text{bin}} c_1,$
 $b_1 = b_0 = a_1 + \frac{1}{2^1},$
 $I_1 = [a_1, b_1).$

 I_1 contains infinitely many terms of the sequence $\{x_n\}$.

Now continue, by recursion to choose c_k .

If c_1, \ldots, c_k , have been chosen so that for $1 \leq j \leq k$,

$$a_j = \cdot_{\text{bin}} c_1 \dots c_j,$$

$$b_j = a_j + \frac{1}{2^j},$$

$$I_j = [a_j, b_j),$$

 $I_1 \supseteq \ldots \supseteq I_k$, and for $1 \le j \le k$, I_j contains infinitely many terms of the sequence $\{x_n\}$ –

Divide the interval I_k into two halves, $\left[a_k, a_k + \frac{1}{2^{k+1}}\right)$ and $\left[a_k + \frac{1}{2^{k+1}}, b_k\right)$ – call them the *left half* and *right half* – at least one contains infinitely many terms of the sequence

 $\{x_n\}$. Pick it (in case of a tie, choose either as you desire). If the *left* is chosen, let

$$c_{k+1} = 0,$$

$$a_{k+1} = a_k = ._{\text{bin}} c_1 \dots c_{k+1},$$

$$b_{k+1} = a_k + \frac{1}{2^{k+1}} = a_{k+1} + \frac{1}{2^{k+1}},$$

$$I_{k+1} = [a_{k+1}, b_{k+1}).$$

If the right is chosen, let

$$c_{k+1} = 1,$$

$$a_{k+1} = a_k + \frac{1}{2^{k+1}} = \cdot_{\text{bin}} c_1 \dots c_{k+1},$$

$$b_{k+1} = b_k = a_{k+1} + \frac{1}{2^{k+1}},$$

$$I_{k+1} = [a_{k+1}, b_{k+1}).$$

 I_{k+1} contains infinitely many terms of the sequence $\{x_n\}$.

The desired limit point x is

$$x = \lim_{k \to \infty} a_k$$
$$= \lim_{k \to \infty} (b_k)$$

Note that $0 \le x - a_k = |x - a_k| \le \frac{1}{2^k}$.