MthT 430 Notes Chap 7d Bolzano - Weierstraß Theorem

For this discussion, we shall assume:
(P13-BIN) Binary Expansions Converge. Every binary expansion represents a real number x : every infinite series of the form

$$
c_{1} 2^{-1}+c_{2} 2^{-2}+\ldots+c_{k} 2^{-k}+\ldots, \quad c_{k} \in\{0,1\}
$$

converges to a real number x in $[0,1]$ and write the binary expansion of x as

$$
x=\cdot \operatorname{bin} c_{1} c_{2} \ldots
$$

In ./chap7b.pdf\#BW, there was an indication of the proof of

The Bolzano-Weierstraß Theorem

Theorem (Bolzano-Weierstraß). Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of points in. [0, 1]. Then there is an x in $[0,1]$ which is a limit point ${ }^{3}$ of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$.

The proof will construct a binary expansion for x.
Now - either infinitely many terms of the sequence are 1 , in which case $x=1=1$. ${ }_{\text {bin }} 0$ is the desired limit point OR

Ask the question: For infinitely many k, is it true that $x_{k} \in\left[0, \frac{1}{2^{1}}\right)$?
If YES, let

$$
\begin{aligned}
c_{1} & =0, \\
a_{1} & =0=0 \cdot \operatorname{bin} 0, \\
b_{1} & =\frac{1}{2} \\
& =a_{1}+\frac{1}{2^{1}} . \\
s_{1} & =a_{1} .
\end{aligned}
$$

Then

$$
b_{1}-a_{1}=\frac{1}{2^{1}}
$$

Infinitely many x_{k} are in $\left[a_{1}, b_{1}\right)$.
${ }^{3}$ A point x is a limit point of the sequence if for every $\epsilon>0$, infinitely many terms of the sequence are within ϵ of x. Alternately, there is a subsequence which converges to x. A more informal idea is to say that infinitely many terms are as close as desired to x.

If $N O$, let

$$
\begin{aligned}
c_{1} & =1, \\
a_{1} & =\frac{1}{2}=0 \cdot \operatorname{bin}^{1}, \\
b_{1} & =1=1 \cdot \operatorname{bin}^{0} \\
& =a_{1}+\frac{1}{2^{1}} . \\
s_{1} & =a_{1} .
\end{aligned}
$$

Then

$$
b_{1}-a_{1}=\frac{1}{2^{1}}
$$

Infinitely many x_{k} are in $\left[a_{1}, b_{1}\right)$.

Now continue, ...

$$
\begin{aligned}
x & =\lim _{n \rightarrow \infty} s_{n} \\
& =\lim _{n \rightarrow \infty}\left(s_{n}+\frac{1}{2^{n}}\right)
\end{aligned}
$$

Note that $0 \leq x-s_{n}=\left|x-s_{n}\right| \leq \frac{1}{2^{n}}$.

Fuller Proof of Bolzano-Weierstraß)

Let's be more precise.

Theorem (Bolzano-Weierstraß). Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of points in. [0, 1]. Then there is an x in $[0,1]$ which is a limit point ${ }^{3}$ of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$.

The proof will construct a binary expansion for x.
Now - either infinitely many terms of the sequence are as close as desired to 1 , in which case $x=1=1$.bin 0 is the desired limit point.

Otherwise -
We will try to construct a sequence $c_{k} \in\{0,1\}$ such that if

$$
\begin{aligned}
a_{k} & =\cdot \operatorname{bin} c_{1} \ldots c_{k}, \\
b_{k} & =a_{k}+\frac{1}{2^{k}}, \\
I_{k} & =\left[a_{k}, b_{k}\right),
\end{aligned}
$$

[^0]then I_{k} is a decreasing sequence of intervals such that for every k, I_{k} contains infinitely many terms of the sequence $\left\{x_{n}\right\}$.

Let

$$
\begin{aligned}
& a_{0}=0 \\
& b_{0}=1=a_{0}+\frac{1}{2^{0}} \\
& I_{0}=\left[a_{0}, b_{0}\right)
\end{aligned}
$$

I_{0} contains infinitely many terms of the sequence $\left\{x_{n}\right\}$.
Divide the interval I_{0} into two halves, $\left[a_{0}, a_{0}+\frac{1}{2^{1}}\right)$ and $\left[a_{0}+\frac{1}{2^{1}}, b_{0}\right)-$ call them the left half and right half - at least one contains infinitely many terms of the sequence $\left\{x_{n}\right\}$. Pick it (in case of a tie, choose either as you desire). If the left is chosen, let

$$
\begin{aligned}
c_{1} & =0, \\
a_{1} & =a_{0}=\cdot \operatorname{bin} c_{1}, \\
b_{1} & =a_{0}+\frac{1}{2^{1}}=a_{1}+\frac{1}{2^{1}}, \\
I_{1} & =\left[a_{1}, b_{1}\right) .
\end{aligned}
$$

If the right is chosen, let

$$
\begin{aligned}
& c_{1}=1 \\
& a_{1}=a_{0}+\frac{1}{2^{1}}=\cdot \operatorname{bin}^{c}, \\
& b_{1}=b_{0}=a_{1}+\frac{1}{2^{1}} \\
& I_{1}=\left[a_{1}, b_{1}\right) .
\end{aligned}
$$

I_{1} contains infinitely many terms of the sequence $\left\{x_{n}\right\}$.
Now continue, by recursion to choose c_{k}.
If $c_{1}, \ldots c_{k}$, have been chosen so that for $1 \leq j \leq k$,

$$
\begin{aligned}
a_{j} & =\cdot \operatorname{bin} c_{1} \ldots c_{j}, \\
b_{j} & =a_{j}+\frac{1}{2^{j}}, \\
I_{j} & =\left[a_{j}, b_{j}\right),
\end{aligned}
$$

$I_{1} \supseteq \ldots \supseteq I_{k}$, and for $1 \leq j \leq k, I_{j}$ contains infinitely many terms of the sequence $\left\{x_{n}\right\}-$ Divide the interval I_{k} into two halves, $\left[a_{k}, a_{k}+\frac{1}{2^{k+1}}\right)$ and $\left[a_{k}+\frac{1}{2^{k+1}}, b_{k}\right)$ - call them the left half and right half - at least one contains infinitely many terms of the sequence
$\left\{x_{n}\right\}$. Pick it (in case of a tie, choose either as you desire). If the left is chosen, let

$$
\begin{aligned}
c_{k+1} & =0 \\
a_{k+1} & =a_{k}=\cdot \operatorname{bin} c_{1} \ldots c_{k+1} \\
b_{k+1} & =a_{k}+\frac{1}{2^{k+1}}=a_{k+1}+\frac{1}{2^{k+1}}, \\
I_{k+1} & =\left[a_{k+1}, b_{k+1}\right)
\end{aligned}
$$

If the right is chosen, let

$$
\begin{aligned}
c_{k+1} & =1 \\
a_{k+1} & =a_{k}+\frac{1}{2^{k+1}}=\cdot \operatorname{bin}_{1} c_{1} \ldots c_{k+1} \\
b_{k+1} & =b_{k}=a_{k+1}+\frac{1}{2^{k+1}} \\
I_{k+1} & =\left[a_{k+1}, b_{k+1}\right)
\end{aligned}
$$

I_{k+1} contains infinitely many terms of the sequence $\left\{x_{n}\right\}$.
The desired limit point x is

$$
\begin{aligned}
x & =\lim _{k \rightarrow \infty} a_{k} \\
& =\lim _{k \rightarrow \infty}\left(b_{k}\right)
\end{aligned}
$$

Note that $0 \leq x-a_{k}=\left|x-a_{k}\right| \leq \frac{1}{2^{k}}$.

[^0]: ${ }^{3}$ A point x is a limit point of the sequence if for every $\epsilon>0$, infinitely many terms of the sequence are within ϵ of x. Alternately, there is a subsequence which converges to x. A more informal idea is to say that infinitely many terms are as close as desired to x.

