MthT 430 Notes Chapter 8c Equivalent Definitions

Tuesday, November 14, 2006 at 17:59. This file has been replaced by http://www2.math.uic.edu/~lewis/mtht430/chap5define.pdf

Equivalent Definitions of Limit

Definition. (Actual, p. 96)

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

After many years of looking at many students' rephrasing a definition, we wish to decide which variations are "correct" and still give an equivalent definition.

What is the point? Think of a *Definition* as an *If and Only If Theorem*. Thus you are able to use interchangeably the phrases

- $\lim_{x \to a} f(x) = L.$
- For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x-a| < \delta$, then $|f(x) L| < \epsilon$.

The phrase "**Definition X** is *equivalent* to **Definition Y**" means you can use interchangeably the phrases

- [Definition] Term¹ (What is being defined)
- [Definition] Description X (Details)
- [Definition] Description Y (Details)

To show that two definitions \mathbf{X} and \mathbf{Y} for the same Definition Term are equivalent we must show the following:

- Satisfying Definition Description $X \Rightarrow$ Satisfying Definition Description Y.
- Satisfying Definition Description $Y \Rightarrow$ Satisfying Definition Description X.

Now if **Definition X** is not equivalent to **Definition Y** for the same Definition Term, then at least one of the following is false:

¹ I borrow the words *Definition Term* and *Definition Description* from the html tags <DT> and <DD>.

- Satisfying Definition Description $X \Rightarrow$ Satisfying Definition Description Y.
- Satisfying Definition Description $Y \Rightarrow$ Satisfying Definition Description X.

Interpreting each of the above as a *Theorem*, the way to show a *Theorem* is false is to construct a *counterexample*. A *counterexample* is an object [construct, \ldots] which satisfies the hypotheses of the Theorem, but does not satisfy the conclusion[s] of the Theorem.

Actual Definition of Limit

Definition ACTUAL. (Actual, p. 96)

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Proposed Variations

For each of the proposed variations AA – OO of the definition description of

$$\lim_{x \to a} f(x) = L,$$

decide whether the proposed variation **Definition XX** is equivalent to **Definition Actual**. Thus for each you must think about the validity of the the two Theorems:

- Satisfying Definition Description XX \Rightarrow Satisfying Definition Description ACTUAL. If False, construct a counterexample.
- Satisfying Definition Description ACTUAL \Rightarrow Satisfying Definition Description XX. If False, construct a counterexample.

You may construct any counterexample graphically, by formula, or by a precise description.

Definition AA.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all $x, 0 < |x - a| < \delta$, and $|f(x) - L| < \epsilon$.

Definition BB.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for some $x, 0 < |x - a| < \delta$, and $|f(x) - L| < \epsilon$.

Definition CC.

$$\lim_{x \to a} f(x) = L$$

means: For an $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition DD.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, $|f(x) - L| < \epsilon$.

Definition EE.

$$\lim_{x \to a} f(x) = L$$

means: For any $\epsilon > 0$, there is a $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition FF.

$$\lim_{x \to a} f(x) = L$$

means: For any $\epsilon > 0$, there is a $\delta > 0$ such that, for all $x, 0 < |x-a| < \delta$ implies $|f(x) - L| < \epsilon$.

Definition GG.

$$\lim_{x \to a} f(x) = L$$

means: For any $\epsilon > 0$, there is a $\delta > 0$ such that, for all x, $|f(x) - L| < \epsilon$ if $0 < |x - a| < \delta$.

Definition HH.

$$\lim_{x \to a} f(x) = L$$

means: For any $\epsilon > 0$, there is a $\delta > 0$ such that, for all x, $|f(x) - L| < \epsilon$ and $0 < |x - a| < \delta$.

Definition II.

$$\lim_{x \to a} f(x) = L$$

means: For any $\epsilon > 0$, there is a $\delta > 0$ such that, for all x, $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$.

Definition JJ.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is a $\delta > 0$ such that, for all x, $|f(x) - L| < \epsilon$ for $0 < |x - a| < \delta$.

Definition KK.

$$\lim_{x \to a} f(x) = L$$

means: For an $\epsilon > 0$, there is a $\delta > 0$ such that, for all x, $|f(x) - L| < \epsilon$ for $0 < |x - a| < \delta$.

Definition LL.

$$\lim_{x \to a} f(x) = L$$

means: For a $\delta > 0$, there is an $\epsilon > 0$ such that, for all x, $|f(x) - L| < \epsilon$ provided that $0 < |x - a| < \delta$.

Definition MM.

$$\lim_{x \to a} f(x) = L$$

means: For all $\delta > 0$, there is an $\epsilon > 0$ such that, for all x, $|f(x) - L| < \epsilon$ for $0 < |x - a| < \delta$.

Definition NN.

$$\lim_{x \to a} f(x) = L$$

means: For some $\delta > 0$, there is an $\epsilon > 0$ such that, for all x, if $|f(x) - L| < \epsilon$, then $0 < |x - a| < \delta$.

Definition OO.

$$\lim_{x \to a} f(x) = L$$

means: For some $\delta > 0$, for all $\epsilon > 0$, for all x, $|f(x) - L| < \epsilon$ if $0 < |x - a| < \delta$.