MthT 430 Projects Chap 8f Note – lim sup and lim inf

Really Understanding sup and inf

• (See also Spivak Chapter 8 - Problem 18) Let $\{x_k\}$ be a bounded sequence. We define the *limit superior* and *limit inferior* of the sequence to be

$$\limsup_{k \to \infty} x_k = \lim_{k \to \infty} \left(\sup_{n \ge k} x_n \right),$$
$$\liminf_{k \to \infty} x_k = \lim_{k \to \infty} \left(\inf_{n \ge k} x_n \right).$$

• (P13–BISHL) shows that both $\limsup_{k\to\infty} x_k$ and $\liminf_{k\to\infty} x_k$ exist.

In http://www.math.uic.edu/~lewis/mtht430/2007project.pdf, we made the definition

Definition. If f is a bounded function on [0, 1], we define

$$\sup f = \sup_{x \in [0,1]} f(x),$$
$$\inf f = \inf_{x \in [0,1]} f(x).$$

We could just replace the domain of the function f, [0,1], by a set of natural numbers $Z_k = \{k, k+1, \ldots\}$, and use the usual conventions for sequences to make the definition:

Definition. If $\{x_k\}$ is a bounded sequence of real numbers, we define

$$\overline{x}_k = \sup_{n \ge k} x_n,$$
$$\underline{x}_k = \inf_{n \ge k} x_n.$$

Note that $\{\overline{x}_k\}$ is a nonincreasing sequence which is bounded below so that

$$\limsup_{k \to \infty} x_k = \lim_{k \to \infty} \overline{x}_k = \inf_k \overline{x}_k$$

exists. Similarly $\{\underline{x}_k\}$ is a nondecreasing sequence which is bounded above so that

$$\liminf_{k \to \infty} x_k = \lim_{k \to \infty} \underline{x}_k = \sup_k \underline{x}_k$$

chap8fprojnote.pdf page 1/3

exists.

N.B. For every k,

 $\underline{x}_k \le \overline{x}_k.$

It follows that

$$\liminf_{k \to \infty} x_k \le \limsup_{k \to \infty} x_k$$

Necessary and Sufficient Condition (NASC) for Existence of a Limit of a Sequence

• Show that

$$\limsup_{k \to \infty} x_k = A$$

if and only if for every $\epsilon > 0$,

 $\begin{cases} x_k > A + \epsilon & \text{for at most finitely many } k, \\ x_k > A - \epsilon & \text{for infinitely many } k. \end{cases}$

• Show that

$$\liminf_{k \to \infty} x_k = A$$

if and only if for every $\epsilon > 0$,

 $\begin{cases} x_k < A - \epsilon & \text{for at most finitely many } k, \\ x_k < A + \epsilon & \text{for infinitely many } k. \end{cases}$

• Prove:

Theorem. Let $\{x_k\}$ be a bounded sequence. Then

$$\lim_{k \to \infty} x_k \text{ exists}$$

if and only if

$$\liminf_{k \to \infty} x_k = \limsup_{k \to \infty} x_k.$$

Proof. If $\lim_{k\to\infty} x_k = L$, show that $\liminf_{k\to\infty} x_k = \lim_{k\to\infty} x_k$. For the converse, assume $\liminf_{k\to\infty} x_k = A = \limsup_{k\to\infty} x_k$. Given $\epsilon > 0$, except for at most finitely many $k, A - \epsilon < x_k < A + \epsilon$.

Inequalities with lim sup and lim inf

See http://www.math.uic.edu/~lewis/mtht430/2007project.pdf

N.B. Let $\{x_k\}$ and $\{y_k\}$ be bounded sequences. Following the proof of Problem 10 in 2007project.pdf, for each k have

$$\inf_{n \ge k} x_n + \inf_{n \ge k} y_n \le \inf_{n \ge k} (x_n + y_n)$$
$$\le \inf_{n \ge k} x_n + \sup_{n \ge k} y_n$$
$$\le \sup_{n \ge k} (x_n + y_n)$$
$$\le \sup_{n \ge k} x_n + \sup_{n \ge k} y_n.$$

• Show that if $\{x_k\}$ and $\{y_k\}$ are bounded sequences, then

 $\limsup_{k \to \infty} (x_k + y_k) \le \limsup_{k \to \infty} x_k + \limsup_{k \to \infty} y_k.$

• Give an example of bounded sequences $\{x_k\}$ and $\{y_k\}$ such that

 $\limsup_{k \to \infty} (x_k + y_k) < \limsup_{k \to \infty} x_k + \limsup_{k \to \infty} y_k.$

• Show that if $\{x_k\}$ and $\{y_k\}$ are bounded sequences, then

$$\liminf_{k \to \infty} x_k + \limsup_{k \to \infty} y_k \le \limsup_{k \to \infty} (x_k + y_k).$$

• The general result is that for two bounded sequences $\{x_k\}$ and $\{y_k\}$,

$$\begin{split} \liminf_{k \to \infty} x_k + \liminf_{k \to \infty} y_k &\leq \liminf_{k \to \infty} \left(x_k + y_k \right) \\ &\leq \liminf_{k \to \infty} x_k + \limsup_{k \to \infty} y_k \\ &\leq \limsup_{k \to \infty} \left(x_k + y_k \right) \\ &\leq \limsup_{k \to \infty} x_k + \limsup_{k \to \infty} y_k \end{split}$$

• The Monster Counterexample to Equality:

$$\{x_k\} = \{2, 2, 0, 0, 2, 2, 0, 0, \ldots\},\$$
$$\{y_k\} = \{0, 1, 1, 2, 0, 1, 1, 2, \ldots\},\$$
$$\{x_k + y_k\} = \{2, 3, 1, 2, 2, 3, 1, 2, \ldots\}$$