MthT 430 Projects Chap $8 f$ Note - limsup and liminf

Really Understanding sup and inf

- (See also Spivak Chapter 8 - Problem 18) Let $\left\{x_{k}\right\}$ be a bounded sequence. We define the limit superior and limit inferior of the sequence to be

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} x_{k} & =\lim _{k \rightarrow \infty}\left(\sup _{n \geq k} x_{n}\right) \\
\liminf _{k \rightarrow \infty} x_{k} & =\lim _{k \rightarrow \infty}\left(\inf _{n \geq k} x_{n}\right) .
\end{aligned}
$$

- (P13-BISHL) shows that both $\limsup _{k \rightarrow \infty} x_{k}$ and $\liminf _{k \rightarrow \infty} x_{k}$ exist.

In http://www.math.uic.edu/~lewis/mtht430/2007project.pdf, we made the definition

Definition. If f is a bounded function on $[0,1]$, we define

$$
\begin{aligned}
\sup f & =\sup _{x \in[0,1]} f(x), \\
\inf f & =\inf _{x \in[0,1]} f(x) .
\end{aligned}
$$

We could just replace the domain of the function $f,[0,1]$, by a set of natural numbers $Z_{k}=\{k, k+1, \ldots\}$, and use the usual conventions for sequences to make the definition:

Definition. If $\left\{x_{k}\right\}$ is a bounded sequence of real numbers, we define

$$
\begin{aligned}
& \bar{x}_{k}=\sup _{n \geq k} x_{n} \\
& \underline{x}_{k}=\inf _{n \geq k} x_{n}
\end{aligned}
$$

Note that $\left\{\bar{x}_{k}\right\}$ is a nonincreasing sequence which is bounded below so that

$$
\limsup _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} \bar{x}_{k}=\inf _{k} \bar{x}_{k}
$$

exists. Similarly $\left\{\underline{x}_{k}\right\}$ is a nondecreasing sequence which is bounded above so that

$$
\liminf _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} \underline{x}_{k}=\sup _{k} \underline{x}_{k}
$$

exists.
N.B. For every k,

$$
\underline{x}_{k} \leq \bar{x}_{k}
$$

It follows that

$$
\liminf _{k \rightarrow \infty} x_{k} \leq \limsup _{k \rightarrow \infty} x_{k}
$$

Necessary and Sufficient Condition (NASC) for Existence of a Limit of a Sequence

- Show that

$$
\limsup _{k \rightarrow \infty} x_{k}=A
$$

if and only if for every $\epsilon>0$,

$$
\left\{\begin{array}{l}
x_{k}>A+\epsilon \quad \text { for at most finitely many } k, \\
x_{k}>A-\epsilon \quad \text { for infinitely many } k .
\end{array}\right.
$$

- Show that

$$
\liminf _{k \rightarrow \infty} x_{k}=A
$$

if and only if for every $\epsilon>0$,

$$
\left\{\begin{array}{l}
x_{k}<A-\epsilon \quad \text { for at most finitely many } k, \\
x_{k}<A+\epsilon \quad \text { for infinitely many } k
\end{array}\right.
$$

- Prove:

Theorem. Let $\left\{x_{k}\right\}$ be a bounded sequence. Then

$$
\lim _{k \rightarrow \infty} x_{k} \text { exists }
$$

if and only if

$$
\liminf _{k \rightarrow \infty} x_{k}=\limsup _{k \rightarrow \infty} x_{k}
$$

Proof. If $\lim _{k \rightarrow \infty} x_{k}=L$, show that $\liminf _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} x_{k} ., \ldots$ For the converse, assume $\lim \inf _{k \rightarrow \infty} x_{k}=A=\lim \sup _{k \rightarrow \infty} x_{k}$. Given $\epsilon>0$, except for at most finitely many $k, A-\epsilon<x_{k}<A+\epsilon$.

Inequalities with limsup and liminf
See http://www.math.uic.edu/~lewis/mtht430/2007project.pdf
N.B. Let $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ be bounded sequences. Following the proof of Problem 10 in 2007project.pdf, for each k have

$$
\begin{aligned}
\inf _{n \geq k} x_{n}+\inf _{n \geq k} y_{n} & \leq \inf _{n \geq k}\left(x_{n}+y_{n}\right) \\
& \leq \inf _{n \geq k} x_{n}+\sup _{n \geq k} y_{n} \\
& \leq \sup _{n \geq k}\left(x_{n}+y_{n}\right) \\
& \leq \sup _{n \geq k} x_{n}+\sup _{n \geq k} y_{n} .
\end{aligned}
$$

- Show that if $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are bounded sequences, then

$$
\limsup _{k \rightarrow \infty}\left(x_{k}+y_{k}\right) \leq \limsup _{k \rightarrow \infty} x_{k}+\limsup _{k \rightarrow \infty} y_{k} .
$$

- Give an example of bounded sequences $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ such that

$$
\limsup _{k \rightarrow \infty}\left(x_{k}+y_{k}\right)<\limsup _{k \rightarrow \infty} x_{k}+\limsup _{k \rightarrow \infty} y_{k} .
$$

- Show that if $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are bounded sequences, then

$$
\liminf _{k \rightarrow \infty} x_{k}+\limsup _{k \rightarrow \infty} y_{k} \leq \limsup _{k \rightarrow \infty}\left(x_{k}+y_{k}\right) .
$$

- The general result is that for two bounded sequences $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$,

$$
\begin{aligned}
\liminf _{k \rightarrow \infty} x_{k}+\liminf _{k \rightarrow \infty} y_{k} & \leq \liminf _{k \rightarrow \infty}\left(x_{k}+y_{k}\right) \\
& \leq \liminf _{k \rightarrow \infty} x_{k}+\limsup _{k \rightarrow \infty} y_{k} \\
& \leq \limsup _{k \rightarrow \infty}\left(x_{k}+y_{k}\right) \\
& \leq \limsup _{k \rightarrow \infty} x_{k}+\limsup _{k \rightarrow \infty} y_{k} .
\end{aligned}
$$

- The Monster Counterexample to Equality:

$$
\begin{aligned}
\left\{x_{k}\right\} & =\{2,2,0,0,2,2,0,0, \ldots\} \\
\left\{y_{k}\right\} & =\{0,1,1,2,0,1,1,2, \ldots\} \\
\left\{x_{k}+y_{k}\right\} & =\{2,3,1,2,2,3,1,2, \ldots\}
\end{aligned}
$$

