Let \(\{x_k\} \) be a bounded sequence. We define the \textit{limit superior} and \textit{limit inferior} of the sequence to be

\[
\limsup_{k \to \infty} x_k = \lim_{k \to \infty} \left(\sup_{n \geq k} x_n \right),
\]
\[
\liminf_{k \to \infty} x_k = \lim_{k \to \infty} \left(\inf_{n \geq k} x_n \right).
\]

For the time being, we speak of a function \(f(x) \) defined and bounded near \(x = a \). In the same spirit, we define \(\limsup \) and \(\liminf \) for functions.

Let \(f \) be a bounded function. We define the \textit{limit superior} and \textit{limit inferior} of \(f \) near \(a \) to be

\[
\limsup_{x \to a} f(x) = \lim_{\delta \to 0^+} \left(\sup_{0 < |x-a| < \delta} f(x) \right),
\]
\[
\liminf_{x \to a} f(x) = \lim_{\delta \to 0^+} \left(\inf_{0 < |x-a| < \delta} f(x) \right).
\]

(P13–LUB) shows that both \(\limsup_{x \to a} f(x) \) and \(\liminf_{x \to a} f(x) \) exist.

\textbf{Definition.} \textit{If} \(f \) \textit{is a bounded function defined near} \(a \), \textit{we define}

\[
M(f, a, \delta) = \sup_{0 < |x-a| < \delta} f(x),
\]
\[
m(f, a, \delta) = \inf_{0 < |x-a| < \delta} f(x).
\]

For \(\delta > 0 \) and small enough, \(M(f, a, \delta) \) is a bounded nondecreasing function of \(\delta \), and

\[
\lim_{\delta \to 0^+} M(f, a, \delta) = \inf_{\delta > 0} M(f, a, \delta)
\]

exists.

For \(\delta > 0 \) and small enough, \(m(f, a, \delta) \) is a bounded nonincreasing function of \(\delta \), and

\[
\lim_{\delta \to 0^+} m(f, a, \delta) = \sup_{\delta > 0} m(f, a, \delta)
\]

exists.
Necessary and Sufficient Condition (NASC) for Existence of a Limit of a Function

• Show that \(\limsup_{x \to a} f(x) = A \)
 if and only if for every \(\epsilon > 0 \),
 \[
 \begin{cases}
 \text{there is a } \delta > 0 \text{ such that } f(x) < A + \epsilon \text{ for } 0 < |x - a| < \delta, \\
 \text{for every } \delta > 0, \text{ there is an } x_\delta, 0 < |x_\delta - a| < \delta, \text{ such that } f(x_\delta) > A - \epsilon.
 \end{cases}
 \]

• Show that \(\liminf_{x \to a} f(x) = A \)
 if and only if for every \(\epsilon > 0 \),
 \[
 \begin{cases}
 \text{there is a } \delta > 0 \text{ such that } f(x) > A - \epsilon \text{ for } 0 < |x - a| < \delta, \\
 \text{for every } \delta > 0, \text{ there is an } x_\delta, 0 < |x_\delta - a| < \delta, \text{ such that } f(x_\delta) < A + \epsilon.
 \end{cases}
 \]

• Prove:

\textbf{Theorem.} Let \(f \) be a bounded function for \(x \) near \(a \) and \(\neq a \). Then
 \[
 \lim_{x \to a} f(x) \text{ exists}
 \]
 if and only if
 \[
 \liminf_{x \to a} f(x) = \limsup_{x \to a} f(x)
 \]

\textbf{Proof.} Easy - If \(\lim_{x \to a} f(x) = L \), then \(\liminf_{x \to a} f(x) = L \), For the converse, use the first of the two conditions in the characterizations of \(\limsup_{x \to a} f(x) = L \) and \(\liminf_{x \to a} f(x) = L \).