MthT 491 Products of Negative Numbers

Example The Burning Candle

Consider the candle of length 18 cm which burns in 6 hrs . Then the rate of burning is

$$
\frac{18 \mathrm{~cm}}{6 \mathrm{hr}}=3 \mathrm{~cm} / \mathrm{hr}
$$

Now if L is the length of that candle, L is changing at the rate of $-3 \mathrm{~cm} / \mathrm{hr}$. Observe the candle when $L=15 \mathrm{~cm}$. Ask the question: What was the length of the candle 1 hour ago?

$$
\begin{aligned}
L & =15+(\text { rate }) \cdot(\text { time change }) \\
& =15+(-3) \cdot(-1) \\
& =18 .
\end{aligned}
$$

Thus $(-3) \cdot(-1)=+3$.

Discussion of Products

We need to think about the meaning of multiplication. However we interpret multiplication by positive integers, we should have a distributive property, e. g.

$$
(3+2) \cdot a=3 \cdot a+2 \cdot a
$$

The trick is to interpret or "define" multiplication by negative numbers in a way that the distributive property is maintained. If we think of ${ }^{+} 1 \cdot a$ as adding a to whatever, we could define ${ }^{-1} \cdot a$ as "undoing" the addition, i.e. adding ${ }^{-} a$ to whatever.

The crucial mathematical fact is that for a number a, the number ${ }^{-} a$, negative or opposite of a is the same as the product $(-1) \cdot a$; i.e.,

$$
{ }^{-} a={ }^{-} 1 \cdot a .
$$

The matter is rather delicate. If there is justice, we have the distributive property, $a(b+c)=a b+a c$. This tells us that

$$
\begin{aligned}
a+{ }^{-} a & =0 \\
& =0 \cdot a \\
& =\left(1+{ }^{-} 1\right) \cdot a \\
& =1 \cdot a+{ }^{-} 1 \cdot a \\
& =a+{ }^{-} 1 \cdot a .
\end{aligned}
$$

It follows that

$$
{ }^{-} a={ }^{-} 1 \cdot a .
$$

