MthT 491 Divisibility and Prime Numbers

Definition. An integer $p>1$ is called a prime number, or a prime, if there is no divisor d of p satisfying $1<d<p$. If an integer $p>1$ is not a prime, it is called a composite number.
N.B. We don't call 1, 0 , or negative integers either prime or composite.

Equivalent definition?

Definition. A positive integer $p \neq 1$ is called a prime number, or a prime, if there is no positive divisor d of p satisfying $d \neq 1, p$. If a positive integer $p \neq 1$ is not a prime, it is called a composite number.

Our first result is the easy version of the Fundamental Theorem of Arithmetic.

Theorem. [$\mathbf{N}-\mathbf{Z}]$ (1.14). Every integer $n>1$ can be expressed as a product of primes (with perhaps only one factor).

Proof. Let's try a proof by contradiction. Suppose there is an integer $n>1$ which cannot expressed as a product of primes. By the WOP, there is a smallest n, call it n_{0} which cannot expressed as a product of primes. We know that $n_{0}>1$ and that n_{0} is not a prime. But then $n_{0}=n_{1} n_{2}, 1<n_{1}, n_{2}<n_{0}$. But then both n_{1} and n_{2} can be expressed as a product of primes. This is a contradiction since we now have both

$$
\begin{aligned}
& A \equiv n_{0} \text { cannot be expressed as a product of primes } \\
& \neg A \equiv n_{0} \text { can be expressed as a product of primes }
\end{aligned}
$$

are true.
For integers $n>1$, the factorization into primes is unique. This is the Fundamental Theorem of Arithmetic.

Theorem. [N-Z], Theorem 1.15. If $p \mid a b, p$ being a prime, then $p \mid a$ or $p \mid b$.

Proof. (not intuitive without buildup!) Let k be an integer such that $a b=p k$. If p does not divide a, then $\operatorname{gcd}(p, a)=1$. (The gcd must be either p or 1). For some integers x, y, $1=p x+a y$ and $b=p b x+b a y=p b x+p k y=p(b x+k y)$. Thus $p \mid b$.

Theorem. The factoring of any integer $n>1$ into primes is unique apart from the order of the prime factors.

Proof. Another proof by contradiction!. If the Theorem is not true, there is a smallest integer n for which the factorization is not unique. Dividing out any common factors, we
have

$$
\begin{aligned}
n & =p_{1} p_{2} \cdots p_{r} \\
& =q_{1} q_{2} \cdots q_{s} .
\end{aligned}
$$

Without loss of generality, $p_{1}<q_{1}$. Let

$$
\begin{aligned}
N & =\left(q_{1}-p_{1}\right) q_{2} \cdots q_{r} \\
& =N-p_{1} q_{2} \cdots q_{s} \\
& =p_{1}\left(p_{2} \cdots p_{r}-q_{2} \cdots q_{s}\right)
\end{aligned}
$$

But p_{1} does not divide $\left(q_{1}-p_{1}\right)$ (Why?). We have $0<N<n$, and N has two distinct factorings, on involving p_{1}, and the other without p_{1}.

Weird Examples of Non-Unique Prime Factorization

1. Let \mathbf{E} consist of even integers of the form $2 k, k=0, \pm 1, \pm 2, \ldots$

$$
\mathbf{E}=\{0, \pm 2, \pm 4, \ldots\}
$$

Usual multiplication and addition is well defined. Working very carefully, the primes are those numbers $p=2 \cdot$ odd >1 and the composite numbers are $n=2 \cdot$ even >1. So

$$
\begin{aligned}
\text { primes } & =\{2,6,10,14, \ldots\} \\
\text { composites } & =\{4,8,12, \ldots\}
\end{aligned}
$$

Prime factoring is not unique since $60=2 \cdot 30=6 \cdot 10$ has (at least) two factorings into primes.
2. Let \mathbf{W} consist of all integers of the form $4 k+1, k=0, \pm 1, \pm 2, \ldots$

$$
\mathbf{W}=\{\ldots,-7,-3,1,5,9,13, \ldots\} .
$$

Usual multiplication works, in the sense that the product of two numbers in \mathbf{W} remains in \mathbf{W}. Addition does not work within the class. Working very carefully, the primes are those numbers $p=4 k+1>1$ which have no factors (divisors!) of the form $4 j+1$ except for p and 1 . Thus $1,5,9,13,17,21,29,33,37,41,49$ are primes, but $25=5 \cdot 5,45=5 \cdot 9$ are not a prime in this context. We have two prime factorizations for $(21)^{2}=441$;

$$
\begin{aligned}
(21)^{2} & =21 \cdot 21 \\
& =(3 \cdot 7) \cdot(3 \cdot 7) \\
& =(3 \cdot 3) \cdot(7 \cdot 7) \\
& =9 \cdot 49
\end{aligned}
$$

Show that 33^{2} has two prime factorizations in this context.

