
MthT 491 Divisibility and Prime Numbers

Definition. An integer p > 1 is called a prime number, or a prime, if there is no divisor d
of p satisfying 1 < d < p. If an integer p > 1 is not a prime, it is called a composite number.

N.B. We don’t call 1, 0, or negative integers either prime or composite.

Equivalent definition?

Definition. A positive integer p 6= 1 is called a prime number, or a prime, if there is no
positive divisor d of p satisfying d 6= 1, p. If a positive integer p 6= 1 is not a prime, it is
called a composite number.

Our first result is the easy version of the Fundamental Theorem of Arithmetic.

Theorem. [N–Z] (1.14). Every integer n > 1 can be expressed as a product of primes
(with perhaps only one factor).

Proof. Let’s try a proof by contradiction. Suppose there is an integer n > 1 which cannot
expressed as a product of primes. By the WOP, there is a smallest n, call it n0 which
cannot expressed as a product of primes. We know that n0 > 1 and that n0 is not a prime.
But then n0 = n1n2, 1 < n1, n2 < n0. But then both n1 and n2 can be expressed as a
product of primes. This is a contradiction since we now have both

A ≡ n0 cannot be expressed as a product of primes

¬A ≡ n0 can be expressed as a product of primes

are true.

For integers n > 1, the factorization into primes is unique. This is the Fundamental
Theorem of Arithmetic.

Theorem. [N-Z], Theorem 1.15. If p | ab, p being a prime, then p | a or p | b.

Proof. (not intuitive without buildup!) Let k be an integer such that ab = pk. If p does
not divide a, then gcd(p, a) = 1. (The gcd must be either p or 1). For some integers x, y,
1 = px + ay and b = pbx + bay = pbx + pky = p (bx + ky). Thus p | b.

Theorem. The factoring of any integer n > 1 into primes is unique apart from the order
of the prime factors.

Proof. Another proof by contradiction!. If the Theorem is not true, there is a smallest
integer n for which the factorization is not unique. Dividing out any common factors, we
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have
n = p1p2 · · · pr

= q1q2 · · · qs.

Without loss of generality, p1 < q1. Let

N = (q1 − p1)q2 · · · qr
= N − p1q2 · · · qs
= p1 (p2 · · · pr − q2 · · · qs) .

But p1 does not divide (q1 − p1) (Why?). We have 0 < N < n, and N has two distinct
factorings, on involving p1, and the other without p1.

Weird Examples of Non–Unique Prime Factorization

1. Let E consist of even integers of the form 2k, k = 0,±1,±2, . . . .

E = {0,±2,±4, . . .} .

Usual multiplication and addition is well defined. Working very carefully, the primes are
those numbers p = 2 · odd > 1 and the composite numbers are n = 2 · even > 1. So

primes = {2, 6, 10, 14, . . .} ,
composites = {4, 8, 12, . . .} .

Prime factoring is not unique since 60 = 2 · 30 = 6 · 10 has (at least) two factorings into
primes.

2. Let W consist of all integers of the form 4k + 1, k = 0,±1,±2, . . . .

W = {. . . ,−7,−3, 1, 5, 9, 13, . . .} .

Usual multiplication works, in the sense that the product of two numbers in W remains
in W. Addition does not work within the class. Working very carefully, the primes are
those numbers p = 4k + 1 > 1 which have no factors (divisors!) of the form 4j + 1 except
for p and 1. Thus 1, 5, 9, 13, 17, 21, 29, 33, 37, 41, 49 are primes, but 25 = 5 · 5, 45 = 5 · 9
are not a prime in this context. We have two prime factorizations for (21)

2
= 441;

(21)
2

= 21 · 21

= (3 · 7) · (3 · 7)

= (3 · 3) · (7 · 7)

= 9 · 49.

Show that 332 has two prime factorizations in this context.
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