MthT 491 Mathematical Statements

Formulation of Mathematical Propositions

The following observations are motivated by the discussion in Chapter 1 of An Introduction to the Theory of Numbers by Ivan Niven and Herbert Zuckerman [$\mathbf{N}-\mathbf{Z}$].

Students (including me!) are often tripped by mathematical statements which are stated differently as a matter of convenience or style. To quote $[\mathbf{N}-\mathbf{Z}]$:
\ldots. if A denotes some assertion or collection of assertions, and B likewise, the following statements are equivalent - they are just different ways of saying the same thing.

- A implies B.
- If A is true, then B is true.
- In order that A be true it is necessary that B be true.
- B is a necessary condition for A.
- A is a sufficient condition for B.

We add the equivalent statements:

- If A, then B.
- Whenever A is true, B is true.
- Whenever A, B.
- A implies B.
- B is implied by A.
- $A \Longrightarrow B$.
- Satisfying A implies satisfying B.

Definitions and Variations

In calculus, an important definition is limit of a function $f(x)$, as x approaches $(\rightarrow) a$. I take the definition from Michael Spivak's Calculus [S].

Definition. (Spivak, p. 96)

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Remarks. After many years of looking at students' rephrasing a definition, we wish to decide which variations are "correct" and still give an equivalent definition.

What is the point of the exercise? Think of a Definition as an If and Only If Theorem. Thus you are able to use interchangeably the phrases

- $\lim _{x \rightarrow a} f(x)=L$.
- For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Replacing the names of the variables, we could use interchangeably the phrases

- $\lim _{h \rightarrow 0} f(x+h)=L$.
- For every $\epsilon>0$, there is some $\delta>0$ such that, for all h, if $0<|h|<\delta$, then $|f(x+h)-L|<\epsilon$.

The actual details are:

1. The function of the variable h having a limit as $h \rightarrow 0$ is $f(x+h)$, or in a programming languages, $h \rightarrow f(x+h)$. The number x is an inert parameter in the definition of the function.
2. Using the definition: For every $\epsilon>0$, there is some $\delta>0$ such that, for all h, if $0<|h-0|<\delta$, then $|f(x+h)-L|<\epsilon$.

With experience, if needed we could also change the names of variables introduced internally within the descriptive statement (in this example ϵ, δ). Thus (Be careful!) we could say:

For every $\epsilon_{1}>0$, there is some $\delta_{1}>0$ such that, for all h, if $0<|h|<\delta_{1}$, then $|f(x+h)-L|<\epsilon_{1}$.

Remarks. After many years of looking at students' rephrasing a definition, we wish to
decide which variations are "correct" and still give an equivalent definition.
The phrase "Definition \mathbf{X} is equivalent to Definition \mathbf{Y} " means you can use interchangeably the phrases

- [Definition] Term ${ }^{1}$ (What is being defined)
- [Definition] Description X (Details)
- [Definition] Description Y (Details)

Now if Definition \mathbf{X} is not equivalent to Definition Y, then at least one of the following is false:

- Definition Description $X \Rightarrow$ Definition Description Y.
- Definition Description Y \Rightarrow Definition Description X.

Interpreting each of the above as a Theorem, the way to show a Theorem is false is to construct a counterexample. A counterexample is an object [construct, ...], which satisfies the hypotheses of the Theorem, but does not satisfy the conclusion[s] of the Theorem.

So let's begin.

[^0]
Contradiction

If A denotes some assertion or collection of assertions, we have a contradiction if both A and $\neg A$, the negation of A are true.

A theorem

$$
A \Rightarrow B
$$

is proved by contradiction if we show that

$$
\neg B \Rightarrow \neg A
$$

Please note that usually the assertion A may contain within itself many definitions and properties not stated explicitly. For example, if A contains the statement n is a natural number ...,
and we proved that
$\neg B$ implies $n<0$.
we would have a proof by contradiction of $A \Rightarrow B$.

[^0]: ${ }^{1}$ I borrow the words Definition Term and Definition Description from the html tags <DT> and <DD>.

