The Algebra Symposium: Discussion of Variables and Units

1. I went to Pompeii and bought the same number of salads and small pizzas. Salads cost two dollars each and pizzas cost six dollars each. I spent $\$ 40$ all together. Assuming that the equation $2 S+6 P=40$ is correct. Then

$$
2 S+6 P=40
$$

Since $S=P$, I can write

$$
2 P+6 P=40
$$

So

$$
8 P=40
$$

The last equation says 8 pizzas is equal to $\$ 40$ so each pizza costs $\$ 5$.
What is wrong with the above reasoning? Be as detailed as possible. How would you try to help a student who made this mistake.

Discussion

The paradox is that the data told us that pizzas cost six dollars each but the calculation seems to show that each pizza costs $\$ 5$.

Let's examine the units of variables and constants in the equation

$$
2 S+6 P=40
$$

$$
\begin{aligned}
S & =\text { number of salads } \\
P & =\text { number of pizzas } \\
2 & =2 \frac{\text { dollars }}{\text { salad }} \\
6 & =6 \frac{\text { dollars }}{\text { pizza }} \\
40 & =40 \text { dollars }
\end{aligned}
$$

Thus the equation reads

$$
2 \frac{\text { dollars }}{\text { salad }} S \text { salads }+6 \frac{\text { dollars }}{\text { pizza }} P \text { pizzas }=40 \text { dollars. }
$$

Using that $S=P$,

$$
\begin{aligned}
2 P \text { dollars }+6 P \text { dollars } & =40 \text { dollars, } \\
P & =5
\end{aligned}
$$

and $P=5$, where the variable P represents the number of pizzas, not the price per pizza, in $\frac{\text { dollars }}{\text { pizza }}$.

Old Proportion Problems

Simple Proportion

2. If the interest upon a sum of money for 9 months is 318.69 , what will be the interest for $111 / 2$ months?
3. If 15 men can do a piece of work in 36 days, in how many days can they perform the same work with the assistance of 9 men more?

Units: 1 workpiece $=(15$ men $) \cdot(36$ days $)=15 \cdot 36$ man-days. The question is

$$
\begin{aligned}
1 \text { workpiece } & =15 \cdot 36 \text { man-days } \\
& =(24 \mathrm{men}) \cdot(x \text { days })
\end{aligned}
$$

4. If a garrison of 200 men has provisions for 8 months, how many men must leave at the end of 5 months that the provisions remaining may last the rest 8 months longer?

Units: 1 commisary $=(200$ men $) \cdot(8$ provision - months $)$.
The question is
1 commisary $=200 \cdot 8$ man-provision - months

$$
=200 \cdot 5 \text { man-provision-months }+(200-x) \cdot 8 \text { man-provision-months } .
$$

Compound Proportions

5. If 11 men build 45 rods of wall in 6 days of 10 hours each, how many men will be required to build 81 rods of wall in 12 days of 11 hours each?

Units :

$$
\begin{aligned}
45 \text { rods } & =11 \text { men } \cdot 6 \text { days } \cdot 10 \frac{\text { hours }}{\text { day }} \\
& =11 \cdot 6 \cdot 10 \text { man-hours. }
\end{aligned}
$$

The question is

$$
\begin{aligned}
81 \text { rods } & =x \text { men } \cdot 12 \text { days } \cdot 11 \frac{\text { hours }}{\text { day }} . \\
& =x \cdot 12 \cdot 11 \text { man-hours } .
\end{aligned}
$$

6. (oral exercise) If 7 men can dig 32 rods of ditch in 1 day, how many men will be required to dig 92 rods in $3 / 4$ day.
