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Abstract

To help students adjust to group problem solving, questions can be
posed with different students receiving different ‘clues’. Several such
problems are presented here and their use in workshops is described.

Keywords: cooperative learning, many-piece problems

Beginning with Treisman’s development of the Professional Development
Program (PDP) at the University of California, Berkeley [5], a number of
universities across the country have begun programs that aim to improve
performance in elementary mathematics courses by encouraging collabora-
tive/cooperative student effort on challenging problems. In Treisman’s study,
students involved in these workshops, African-American students especially,
performed significantly better in the freshman calculus course than similar
students without the workshops. These results have been replicated at the
University of Illinois at Chicago during the last two years. Such results
are expected in the light of research on cooperative learning such as that
summarized by [4]. Students who work together to clarify questions, dis-
cuss and select problem-solving strategies, and resolve controversies usually
demonstrate greater gains in concept development and problem-solving abil-
ities than similar students who work alone. Cooperative learning has been
associated with an increase in problem-solving skills of college students [2].
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The University of Illinois at Chicago has about 20,000 studemts. About
10% of the students taking Precalculus and Calculus are enrolled in auxiliary
PDP workshops. The courses meet for three lectures and two recitation
sections per week. The workshops meet for two further two hour sessions.
About 10% of the class registration is African American and 15% Hispanic.
These groups comprise about 1/2 the students in the PDP workshops. Each
workshop is led by a TA and an undergraduate assistant. The presence of two
facilitators in the room makes a valuable change in the center of gravity of the
classroom. These leaders meet for several periods of training at the beginning
of the year and occasionally while classes continue. All training is conducted
in the style that we intend for a PDP class. Problems (both mathematical
and pedagogical) are discussed in small groups and reported to the meeting.
The coordinator plays a further important role in the program by helping
students with the bureaucracy, counseling, as well as general management.

A distinguishing feature of PDP programs is the use of additional class
time to present students with conceptual problems that are often too hard for
a single student to master. In developing such a program at a commuter cam-
pus certain additional obstacles arise. It is important to try to develop class
cohesion and a willingness to cooperate as early in the semester as possible.
Commuting students rarely see each other outside of class. Thus the forma-
tion of a group of students centered on mathematical interests is even more
important than at a residential institution. Moreover, we want the students
to work cooperatively on the solution of the problems from the beginning.
Ice-breaking exercises, such as requiring each student to introduce another
to the class after a brief interview, help to instill a sense of membership in
the group. Such a session is described under Example 5 below.

The level of interaction we seek is not the same as individually solving
the problem and then comparing answers or just doing separate parts of a
problem which can be combined to answer a larger question. (These are also
valid techniques in a course of this sort, but they do not require the intense
communication between students that we are trying to generate.)

The many-piece problem (adapted from the EQUALS project [3]) is one
way to require this kind of interaction. Each member of a group (usually 4
students) is presented with a clue to the problem. Each student may read
the clue aloud, but is not allowed to show the clue to someone else. The
group must work from the information provided orally to solve the problem.
Groups of 5 or 6 can also by accommodated by extra clues. These may be
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redundant; if only four students are in the group, the extra clues are not
used.

Originally these usually were logical puzzles, in which students might be
trying to determine, among five people, which was the doctor, lawyer, me-
chanic, secretary, and physicist. In keeping with the equity goals of EQUALS,
the doctor, physicist and mechanic often turned out to be females. A recent
publication [3] includes many-piece problems on a variety of subject matters
and levels.

Here is an icebreaking problem that doesn’t come in many pieces. Each
pair of people at your table should shake hands. How many hand shakes
were there? What if each pair in the room shook hands?

Students who are not used to working together can be encouraged to do
so through logic puzzles or recreational topics. However, we present here a
number of examples to show that the technique can be used to study material
in the normal curriculum. We have discovered that the information in more
complex problems can often be divided up to meet our major requirement:
Each student in the group should have information needed to solve the prob-
lem. Thus, the participation of every student is required for a correct group
solution.

1 Some Examples of Many-piece Problems

1.1 Example 1. Here is problem that might appear in an Intermediate Al-
gbra class.

The Simpsons are converting a section of a warehouse into an apartment.
They are decorating an open 20’ x 30’ area that will serve as both living room
and dining room. They have bought a new 9’ x 12’ carpet for the living room
area. Mrs. Simpson’s mother gave them an antique braided circular rug, 11
feet in diameter, that they plan to use in the dining area. The Simpsons will
paint only the floor area not covered by the carpets. How much floor area
needs to be painted?

Converted to many-piece format, in this case with some editing, we have
a problem for a group of four:

The instructor gives these Guidelines: ‘Here is a problem for your group.
Each one of you will have a piece of paper with part of the problem. You may
share the information by telling or reading aloud. You may not show your
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piece to anyone else. When the group agrees on the solution, and everyone
in the group can explain it, raise your hands.’

A. The Simpsons are converting a section of a warehouse into an apart-
ment. Mrs. Simpson’s mother gave her an antique braided circular rug, 11
feet in diameter, that she plans to use in the dining area.

B. The Simpsons have bought a new 9’ x 12’ carpet for the living room
area. How much floor area needs to be painted?

C. The Simpsons will paint only the floor area not covered by the carpets.
Make a scale drawing of a possible layout on graph paper.

D. They are decorating an open 20’ x 30’ area that will serve as both
living room and dining room. Graph paper might be helpful in solving this
problem.

After the group has agreed that they have solved the problem, it is impor-
tant that the instructor checks to see that it is an agreement by consensus,
rather than a majority solution. The instructor may then choose a group
member to explain the solution to him within the small group. The student
should eventually be comfortable enough, with the help of group members,
to explain the group’s solution to the entire class.

1.2 Example 2. A Syllogism
This is freely adapted from one of numerous syllogisms of 2 through per-

haps 12 lines by Lewis Carroll. It could be used in many ways. The many
clever examples by Carroll are to be found in his ‘Symbolic Logic’ [1].

Each student (of 4 in this particular group) is given one of the following
phrases. He/she should read it aloud but not show it to the others. Together,
all the students at the table try to come up with the simple conclusion which
is implied when all statements are taken together.

No students under 18 are admitted to this school as boarders.

All the industrious students have red hair.

None of the day-students get A’s.

None but those under 18 are idle.

A more current version might be:

No students not serious about basketball are admitted to this
school on scholarship.
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All the industrious students have purple socks.

None of the paying students ever shoot the final basket.

None but those not serious about basketball are idle.

A five line syllogism from the same source might be:

Promise-breakers are untrustworthy.

Wine-drinkers are very communicative.

A man who keeps his promises is honest.

No teetotalers are pawnbrokers.

One can always trust a very communicative person.

The complicated language (e.g. double negatives) force the students to
discuss the meanings of text and their problems of analysis in a nonthreat-
ening situation. (No one can understand the first one without effort.) Both
important mathematical distinctions (A → B versus B → A) and the value
of considering the problem setter’s situation (Apparently no one in England
drinks only whiskey.) will come up in the discussion. Posing the syllogisms
without stating the conclusion allows for a number of correct intermediate
solutions. The groups might be asked to exchange their solutions to illus-
trate this. Still another extension (especially in high school) would be to
have the students write their own syllogisms on the same pattern but with
more contemporary situations.

This same structure can be used for problems that both address the
pedagodical goals outlined above and move the students into the heart of
the course. Examples 3 and 4 were designed for a Precalculus course and
Example 4 for a Calculus course.

1.3 Example 3. The Sears Tower
Here are the instructions given the teaching assistant.
This is a set of problems designed to encourage cooperation while working

on a nontrivial problem. There are 4 sets of 6 clues. Put the students in
groups of 4, 5, or 6 and give each member of each group one of the clues.
Ideally the groups have 5 members each and clue 6 (which is identified to
the T.A. as irrelevant by an asterisk ) is omitted. For a group of 4, put the
fifth clue (the question) in the middle of the table. The four groups each
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get slightly different information. One gets the height of the Sears tower in
feet without the antennas; a second gets the height with the antennas; these
two need to compare to get the height of the antennas (in feet). The other
pair will do the same things but the answer is in meters. (The height of the
tower without antennas is correct; but the distances on the ground are only
approximate and the height of the antennas was sheer guesswork.) At the
end have the metric and English units groups compare their answers. Note
that translation between the two systems is most easy by the approximation
that a kilometer is 5/8 of a mile. (Sometimes .6 is used.)

Here are the clues for the first group. As indicated in the instructions for
the teaching assistant, the other sets of clues are slight variants (e.g. meters
instead of feet).

A1 The Sears Tower is located 4 blocks East of Halsted Street on Jackson.
A2 The Corner of Halsted and Polk (Chicago Circle Center) is three

blocks south of Jackson.
A3 There are eight Chicago city blocks to a mile. Each mile contains

5280 feet.
A4 A straight line from the top of the Sears tower ( not including the

television antennas) to the corner of Halsted and Polk makes an angle of
23.77 degrees with the ground.

A5 How many feet high is the Sears tower (without antennas)? How tall
is each antenna? (You will need help from another group to answer the last
part.)

A6 * It is
√

2 miles from Chicago Circle Center to Comiskey Park.

1.4 Example 4. The following problems do not require as much interaction
at first. But the second stage is the most important. The students all have
graphing calculators.

Six students will work on each problem, one on part a), one on part b)
etc. If there are less than six students in your group, each do one part then
split up the remaining parts.

Problem 1) a) Calculate sin 20◦, calculate sin 220◦, calculate sin 40◦, cal-
culate sin2 20◦.

Problem 1) b) Calculate cos 20◦, calculate cos2 20◦, calculate cos 40◦, cal-
culate cos2 20◦.

Problem 1) c) Calculate tan 20◦, calculate tan2 20◦, calculate tan 40◦, cal-
culate tan2 20◦.
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Problem 1) d) Calculate sec 20◦, calculate sec2 20◦, calculate sec 40◦, cal-
culate sec2 20◦.

Problem 1) e) Calculate cot 20◦, calculate cot2 20◦, calculate cot 40◦, cal-
culate cot2 20◦.

Problem 1) f) Calculate csc 20◦, calculate csc2 20◦, calculate csc 40◦, cal-
culate csc2 20◦.

Compare your answers. What relationships can you find between them?
(There are several important ones)

Problem 2) a) Calculate sin 2 (radians), calculate sin2 2, calculate sin 4,
calculate sin2 4.

Problem 2) b) Calculate cos 2 (radians), calculate cos2 2, calculate cos 4,
calculate cos2 4.

Problem 2) c) Calculate tan 2 (radians), calculate tan2 2, calculate tan
4, calculate tan2 4.

Problem 2) d) Calculate sec 2 (radians), calculate sec2 2, calculate sec 4,
calculate sec2 4.

Problem 2) e) Calculate cot 2 (radians), calculate cot2 2, calculate cot 4,
calculate cot2 4.

Problem 2) f) Calculate csc 2 (radians), calculate csc 4, calculate csc2 2,
calculate csc2 4.

Compare your answers. What relationships can you find between them?
(There are several important ones)

Problem 3) What is the difference between problems 1) and 2)? Do the
relationships you are discussing depend on whether the angle is measured in
radians or degrees?

1.5 Example 5. Finally, here is a problem given to calculus students on the
first day of class.

Clue 1. x < 0.
Clue 2. |x− 1| ≤ 11/2.
Clue 3. |x + 1| > 2.
Clue 4. y = mx + b has slope −3 and x-intercept 2/3.
Clue 5. Find the maximum and minimum value of y. Sketch a figure

illustrating this problem.
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The initial workshop section in calculus began by assigning students ran-
domly to groups of four or five. Pairs were then assigned to interview each
other asking about name, major, home etc. Then the members of the group
exchanged this information and finally one person reported for the group to
the room at large. Example 5 was then given to the groups (one clue per
person) with no further instructions. Some groups had to be nudged towards
the notion of minimizing y on the domain determined by the restraints on
x, but this sort of hint wasn’t given until the students had had five or ten
minutes to work out the meaning of the problems. In one class, after forty-
five minutes, three of the groups had solved the problem - complete to a
common insistence that the minimum of the given decreasing function on a
open interval existed but was ‘a little bit bigger than’ the value at the end
point. The fourth group had solved the system of inequalities but was not
really sure how to interpret the minimization problem.

1.6 Conclusion. The combination of icebreaking exercises, the clear spec-
ification that cooperation was demanded, and the use of many-piece puz-
zles enabled the students to form their groups more quickly and produced
more fruitful work on difficult problems. At the end of the semester, even a
teaching assistant somewhat skeptical of ‘social engineering’ agreed that this
strategy had paid off.
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